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A GENETIC ALGORITHM AND ENSEMBLE OF SVM 
APPROACH FOR BCI P300 CLASSIFICATION PROBLEM 

Salim GHOGGALI1, Mihaela UNGUREANU2, Rodica STRUNGARU3 

The latest BCI literature shows that support vector machine (SVM) methods 
generally outperform traditional statistical and neural methods in classification 
problems involving P300 speller. However, there are still open issues that, if 
suitably addressed, could allow further improvement of their performances in terms 
of classification accuracy. Especially two issues are to be considered: 1) accurate 
detection of the user targeted characters and 2) choosing the best feature subspace 
where to carry out the classification task. In this study, the first issue is addressed 
through an ensemble of classifier approach, each classifier consisting of linear 
support vector machine (SVM) trained on a few set of the available data. The second 
issue is solve by a genetic optimization formulated in such a way that the best 
discriminative features are automatically detected, without requiring any a priori 
information. The effectiveness of the proposed classification method is assessed on 
the real dataset II of the BCI Competition III. 

Keywords: Feature detection/ selection, BCI P300 speller, genetic algorithms 
(GAs), support vector machines (SVMs), Ensemble of SVMs 
classifiers. 

1. Introduction 

Brain-Computer Interfaces (BCIs) have gained increasing interest in the 
field of signal and image processing. The BCI is a cooperation between a 
subject/patient brain and a computer that decodes signals from the brain to direct 
some external tasks. During the past few years, research in the field of BCI has 
witnessed a fabulous development ([1], [2]) and is nowadays regarded as one of 
the most successful applications of the neurosciences. Indeed, such systems can 
provide a significant improvement of the quality of life for subjects suffering from 
some form of disability. 

Two famous techniques for BCIs control can be found in the literature, 
i.e., the invasive and non-invasive one. In invasive BCIs technique, a micro-

                                                            
1 PhD Student, Dept. of Applied Electronics and  Information Technology, University 

POLITEHNICA of Bucharest, Romania, e-mail: ghoggalisalim@yahoo.com 
2 Prof., Dept. of Applied Electronics and  Information Technology, University POLITEHNICA of 

Bucharest, Romania, e-mail: mickyungureanu@yahoo.de 
3 Prof., Dept. of Applied Electronics and  Information Technology, University POLITEHNICA of 

Bucharest, Romania, e-mail: strungar@elmed.pub.ro 



130                              Salim Ghoggali, Mihaela Ungureanu, Rodica Strungaru 

electrode array is implanted in the brain (mainly in the motor or premotor frontal 
areas or into the parietal cortex, [3]), while in non-invasive BCIs technique, 
mostly electroencephalograms (EEGs) are recorded from the scalp. Many types of 
EEG-based BCIs can be found; for instance some are based on Steady State 
Visually Evoked Potential (SSVEP, [4]); they are based on the detection of the 
activity of the brain at a specific frequency corresponding to the intensifying 
frequency of a visual stimulus ([5], [6]). Another type of BCIs relies on the 
detection of mental tasks (imagination of right/left hand movements, subtraction, 
word association, etc.) which are detected through slow co-cortical potentials 
(SCP) [7], readiness potential [8] and event-related desynchronization (ERD) [9]. 

The BCI control strategy considered in this paper belongs to another 
category; it is based on the detection of the P300 Event-Related Potential (ERP: 
stereotyped electrophysiological response to an internal or external stimulus, 
[10]), which allows subjects to write a text on a computer. It is based on the 
oddball paradigm: the task is to discriminate between epochs containing a 
positive-going potential evoked at a latency of about 300 ms by target stimuli 
(rarely presented) and epochs associated with the non-target (frequently present) 
stimuli. In order to achieve a good generalization capability for the classifier, it is 
necessary to collect enough training samples. For that, in real application 
scenarios, each symbol/stimulus is flashed several times. This is done at the 
expense of decreasing the speed of the system: e.g., when considering 15 
repetitions, about two symbols can be spelt per minute only [11]. Moreover, the 
signal-to-noise ratio (SNR) of the P300 ERP signals is very low, which makes this 
potential almost undetectable in single trial. To increase SNR and hence 
classification accuracy, the sequence of intensifications are repeated several times, 
in order to average the EEG responses and increase the signal-to-noise ratio. 

The first spelling paradigm based on the detection of the P300 was 
introduced in 1988 by Farwell and Donchin [11]. This application is nowadays 
one of the most studied BCI and the current study considers this very system. In 
this paradigm, the subject is presented with a 6 by 6 matrix of characters as shown 
in Fig. 1.a. The subject's task is to spell the word displayed on top of the matrix, 
one character at time. For the spelling of a single character, each of the 12 rows 
and columns (6 rows and 6 columns) of this matrix were successively and 
randomly intensified. Rows/columns are consecutively and randomly intensified. 
In order to make the spelling procedure more reliable, the sets of 12 
intensifications were repeated 15 times for each character sequence (i.e., any 
specific row/column was intensified 15 times and thus there were 180 total 
intensifications for each character sequences). The subject focuses on one out of 
36 different characters of the matrix. Two out of 12 intensifications of rows or 
columns contained the desired character. The EEG signals have been acquired 
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using 64- channels. A more detailed description of the dataset can be found in the 
BCI competition online web site [12]. 

The problem addressed in this paper is to predict if the post-intensification 
segments (i.e., the 64-channel signals collected after the intensification of a row or 
column, named a post-intensification segments) contains P300 ERP or not. This 
first part is a binary classification problem that applied 15 times corresponding to 
the number of sequences in each character spelling. The second part of the 
problem deals with a 36-class classification problem to recognize a character from 
a 6 by 6 matrix. 

In literature, in order to cope with this problem, Hoffman et al. [13] 
adopted a boosting strategy with orthogonal least square (OLS) as a classifier. 
Lenhardt et al. and Bostanov [14] used the linear discriminant analysis (LDA) to 
minimize the overlap between the two classes. Using the same reasoning in LDA, 
a Bayesian LDA (BLDA) classifier was proposed in [14]. The support vector 
machine (SVM) [16][17], has been used in BCI researches [14]. Recently, 
Rakotomamonj [15] utilized an ensemble of SVM classifiers instead of a single 
SVM, to improve the detection rate. 

The current paper proposes a novel approach based on the genetic 
algorithms and SVMs. The choice of SVMs is motivated by the fact that they 
seem so far the best classifiers for P300 BCI’s, thanks to the margin maximization 
principle they are based on, which provides them with a higher generalization 
capability. 

The remaining part of this paper is organized as follows. First, we recall 
the basic concepts of SVM and genetic algorithms (GA) and then we present the 
proposed classification approach. After that, a description of the datasets and the 
experiments performed are provided. The Experimental results and the 
conclusions are provided finally. 

2. Support Vector Machines 

For simplicity, let us first consider a binary classification problem. Let us 
assume that the training set consists of N vectors xi ∈ ℜd (i = 1, 2, …, N) from 
the d-dimensional feature space X. A target, yi ∈ {-1, +1}, is associated to each 
vector xi. The linear SVM classification approach consists in finding an optimal 
hyperplane that maximizes the separation (margin) between the two classes in X. 
In the nonlinear case, data are first mapped with a kernel method in a higher 
dimensional feature space, i.e., Φ(X) ∈ ℜd’ (d’> d). The membership decision 
rule is based on the function sign[f(x)], where f(x) represents the discriminant 
function associated to the hyperplane in the transformed space and is defined as: 

∗+Φ⋅= bxwxf )()( * , (1) 



132                              Salim Ghoggali, Mihaela Ungureanu, Rodica Strungaru 

The optimal hyperplane defined by the weight vector w* ∈ ℜd’ and the 
bias b* ∈ ℜ is the one that minimizes the cost function that relies on two criteria: 
margin maximization and empirical risk minimization. When adopting a 1-norm 
measure of the empirical errors, the SVM cost function is defined as: 
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and is subject to the following functional margin constraints: 

iii bxwy ξ−≥+Φ⋅ 1))(( ,   i = 1, …, N. (3) 

with : 

0≥iξ ,  i = 1, …, N. (4) 

The ξi’s are the so-called slack variables introduced to account for non-
separable data. The constant C represents a regularization parameter that allows 
controlling the trade-off between the model complexity and the empirical risk: 
large values of C favor the empirical risk minimization leading thus to complex 
decision boundaries and overfitting problems while small values of C runs into 
model simplicity and hence underfitting risk. The dual formulation of the above 
optimization problem is given by: 
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under the constraints : 

0≥iα , i = 1, …, N. (6) 

and : 
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where α=[α1, α2,…, αN] is a vector of Lagrange multipliers. The final 
result is a discriminant function conveniently expressed as a function of the data 
in the original (lower) dimensional feature space X: 
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where K(⋅,⋅)  is a kernel function. The set S is a subset of the indices {1, 2, 
…, N} corresponding to the non-zero Lagrange multipliers αi’s which define the 
so-called support vectors. The kernel K(⋅,⋅) must satisfy the condition stated in 
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Mercer’s theorem so as to correspond to some type of inner product in the 
transformed (higher) dimensional feature space Φ(X). A typical example of such 
kernels is represented by the following Gaussian function: 

( )2-γxpe),K( xxxx ii −= , (9) 
where γ  represents a parameter inversely proportional to the width of the 

Gaussian kernel. 

3. Genetic Algorithms 

Genetic algorithms (GAs) are optimization techniques which exploit 
principles inspired from the principle of evolution and natural genetic [18], [19]. 
A genetic optimization algorithm performs a search by evolving a population of 
candidate solutions (individuals) modeled with “chromosomes”. From one 
generation to the next, the population is improved by mechanisms derived from 
genetics. The most common form of GAs involves the following steps. First, an 
initial population of chromosomes is randomly generated. Then, the goodness of 
each chromosome is evaluated according to a predefined fitness function,  
Selection operation selects the best and reject the worst chromosome among the 
population by using an appropriate selection rule based on the principle that the 
better the fitness, the higher the chance of being selected through some fitness 
function. This fitness evaluation step allows keeping the best chromosomes. Once 
the selection process is over, the next step is devoted to reproducing a new 
population. This is done by applying crossover and mutation operators. The entire 
process is iterated until a user-defined convergence criterion is reached. 

4. Problem formulation 

The problem analyzed in the current study is described as following: given 
the 64-channel (see Fig. 1.b for electrode configuration) signals collected after the 
intensification of a row or column, named a post-stimulus signal, it is desired to 
find out if the recorded signals contains P300 ERP component. Therefore, a 
discrimination between the epochs which have P300 ERP component and the 
epochs which have no P300 ERP component, is accomplished (i.e., the first part 
of the problem is a binary classification problem). Afterwards, according to the 
previous classification of each post-stimulus signal, the aim is to correctly predict 
which row or column is related to desired character. Hence, this second part of the 
problem deals with a multiclass classification problem since the aim is to 
recognize a symbol from the 6 × 6 matrix as given in Fig. 1.a. 

To solve this problem, the study considers a training set consisting of 
signals recorded using a 64-electrode cap (Fig. 1 b), for which the target 
characters are labeled. Note that these characters come from the spelling of word, 
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but the chronology of spelled characters has been lost because it was decided to 
scramble them. For each subject, the training set is made of 85 spelling characters 
which correspond to 15300 = 12 × 15 × 85 post-stimulus labeled signals from 
which 2550=15x2x85=2550 are targets. 

 
Fig. 1a. Example of 6x6 user display in P300 speller. 

 

 
Fig. 1b. EEG electrode placement system. 
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4. Data preprocessing and feature extraction 

Firstly, all data samples between 0 to 667 ms, following the beginning of 
intensification, are extracted from each channel. Considering that P300 ERP 
component appears about 300 ms after the stimulus, this window is large enough 
to capture all the time features demanded by an efficient classification process. 
Afterwards, each extracted signal is bandpass filtered in the frequency range 0.1-
10 Hz by applying an 8-order Chebyshev bandpass filter and is downsampled, 
while considering the high cutoff frequency, in order to reduce the signal size to 
14 samples. 

After this preprocessing stage, post-stimulus signals are transformed into a 
feature vector by concatenating the 14 samples of all the 64 channels. Thus, for a 
single subject, the training set is composed of 15300 post-stimulus vectors xi of 
dimension 896 = 14×64, having the labels yi = {1,−1}. 

• Phase 1: SVM Classifier Design 
Step 1.1) Generate 17 different partitions based on the available 

training set. Each training partition is composed of 5 
characters and thus 900 (i.e.: Single character spelling 
corresponds to 180 post-stimulus signals) training samples of 
dimension 896 are provided by considering all the 64 
channels. 

Step 1.2) Train a binary SVM classifier with a linear kernel using just 
the training samples, after estimating its best parameter 
values with the k-fold cross-validation procedure (e.g., 
partitioning a sample of data into k subsets, performing the 
analysis on one subset the training set), and validate the 
analysis on the other subset (validation set). In order to 
reduce variability, multiple rounds of cross-validation are 
performed using different partitions, and the validation 
results are averaged over the rounds.). The goodness of this 

classifier is evaluated according to 
fnfptp

tpCcs ++
= , 

fnfptp  , , where are respectively the number of true positive, 
false positive and false negative as stated in A. 
Rakotomamonj [15]. It is worth noting that the number of 
true negative is ignored in the Ccs criterion for the reason that 
positive examples are fewer than negative examples. 

• Phase 2: Root Chromosome Generation 
Step 2.1) Build a root chromosome [ ]64211 ,...,, chchchC =  composed of 

64 binary genes, each gene being either 1, meaning that the 
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corresponding channel is selected, or 0, meaning the 
corresponding channel is omitted. 

• Phase 3: Genetic Algorithm Initialization 
Step 3.1) Generate an initial chromosome population P(t) (t=0) of size 

D by randomly disturbing D-1 times the root chromosome. 
The perturbation process is done as follows: for each 
chromosome gene, the real number pg is generated, having a 
random uniformly distribution in the interval [0, 1]. If pg is 
less than a user-defined probability then it is assigned to the 
gene either 0 or 1. The process is repeated till an initial 
population  P(t) of D chromosomes is built. 

• Phase 4: Genetic Optimization 
Step 4.1) For each chromosome [ ]64211 ,...,, chchchC =  of the 

population P(t), a new training set is constructed, in which the 
channels corresponding to the genes value set to 0 are 
discarded. Then, a cross-validation is run, in order to estimate 
the fitness function Ccs , as mentioned in step 1.2. 

Step 4.2) Two chromosomes are selected from the current population 
for the reproduction, using the roulette wheel spinning 
method. In this way, the best chromosomes will be more 
likely to be selected than the worst ones and thus will 
contribute in the generation of the new offspring. 

Step 4.3) Two children are generated, by sequentially applying the 
crossover and mutation operators, to the two selected 
chromosomes. The former operation is accomplished first by 
generating a real random value between [0, 1]. If this value is 
smaller than a user-defined crossover probability, the two 
candidate chromosomes undergo a crossover operation; 
otherwise, the children are taken as the exact copy of their 
parents. After crossover, each of the two obtained children is 
subject to mutation in order to introduce randomness in the 
search process. This is done by flipping each bit with a user-
defined mutation probability; the objective of the mutation is 
to prevent the genetic process to get trapped in a local 
optimum. Then, the two resulting offspring are then inserted 
into the new population. 

Step 4.4) Return to Step 4.3), unless the new population reaches the 
size D. 

Step 4.6)  If the maximal number of generations is not reached go to 
Step 4.2. 

• Phase 5: Test Classification  
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Step 5.1)  At the end of the genetic optimization process, pick up the 
best chromosome from the final population in terms the 
fitness function Ccs. 

Step 5.2)  Using the best chromosome, construct the resulting new 
training set. This will be latter fed to our classifier as a 
training set, to predict the test samples associated to a given 
row or column. 

Step 5.3) In order to predict which character correspond the given test 
post stimulus vector crx  associated to a given row or 

column. After J sequences, the most probable row or column 

that maximizes the score: )(11 )(
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chosen. In other words, the scores of all the K classifiers (K = 
17) are fused together to produce a single predicted character, 
which leads to a more robust classification scheme since the 
worst classifier in term of score will be corrected by the 
remaining classifiers. 

5. Data description 

The P300-speller was considered for the first time in 1988 by Farwell and 
Donchin [11], who developed a procedure whereby a subject is presented a 6 × 6 
character matrix as illustrated in Fig. 1. For the spelling of a single character, each 
of the 12 rows and columns of the matrix is then intensified according to a random 
sequence (a sequence is considered such a set of 12 intensifications). The subject 
is asked to focus its attention on the character he wants to spell, and then a P300 
evoked potential appears in the recorded EEG, in response to the intensification of 
a row or column containing the desired character. In order to make the spelling 
procedure more reliable, this sequence of intensifications is repeated 15 times for 
each character to spell. The motivation behind choosing such dataset is that the 
results of this paper can be compared with the ones of other works which were 
presented in different papers. 

The experimental validation was conducted on the basis of the dataset 
from the BCI 2003 competition, which is still available in the competition page 
[20]; it has been recorded from two different subjects and 5 different spelling 
sessions. Each session is composed of runs, and for each run, a subject is asked to 
spell a word. For a given acquisition session, all EEG signals of a 64-channel 
scalp recording (see Fig. 1) have been continuously collected. Before digitization 
at a sample rate of 240 Hz, the signals have been bandpass filtered from 0.1 Hz to 
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60 Hz [12]. A more detailed description of the dataset can be found in the BCI 
competition paper [21]. 

6. Experimental results 

This section presents the classification results achieved for two different 
datasets, ‘A’ and ‘B’, using two different scenarios. For the first scenario, the root 
chromosome is initialized randomly, without any a priory information about the 
channels. In contrast to the first scenario, in the second one, the root chromosome 
is initialized with the channels obtained by Rokotomamonj algorithm. Finally, we 
carried out an experimental comparison with the 3 best algorithm submitted to the 
competition, namely the Rokotomamonj, Yandong and Zongtan algorithms. In all 
the experiments, we used the following standard parameters for the genetic 
inflation process: population size D= 20; crossover probability pc=0.9; mutation 
probability pm=0.01; and maximum number of generations set to 50. The SVM 
classifier parameter C is varied in the range [0.01, 0.05, 0.1, 0.5, 1]. 

The test sets have been processed in the same way as the training set and 
then are fed to our proposed classifiers. For the competition, performances have 
been evaluated based on the accuracy (i.e., the ratio of the total number of test 
samples correctly classified to the total number of test samples) of predicted 
characters in the test sets composed of 200 spelling characters.  

Table 1 
Percentage accuracy achieved by our algorithm on the test set 

 
Number of sequences 

Scenario 1 Scenario 2 
Subject 5 15 5 15 

A 50 89 71 96 

B 65 92.5 74 97 

Mean 57.5 90.75 72.5 96.5 

Hence, the 36-class classification problem is considered, and each 
predicted character is obtained according to the above described method. 

Table 1 depicts the performance achieved on the test sets, with respect to 
the number of sequences. Concerning the scenario 1, for 5 and 15 sequences we 
obtained accuracy of 57.5% and 90.75% respectively. In scenario 2, we obtained 
accuracy of 70% and 94.5% for 5 and 15 sequences respectively. 

Interestingly, the first ranked (Rokotomamonj) and the second ranked 
(Yandong) algorithms have results similar to ones obtained by applying the 
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proposed algorithm. Indeed, they use a multiple classifier strategy where each 
single classifier is a SVM. In the first ranked, each classifier is composed of a 
linear Support Vector Machine trained on a small part of the available data and for 
which recursive channel elimination is used to select a subset of channels. The 
score of these classifiers are fused together in order to produce a single result. 
However, in the second ranked algorithm, instead of summing the score of each 
single classifier, a voting strategy is used. The algorithm also uses a different 
procedure for channel selection. It has been decided to use a fixed number of 
channels, chosen in an ad-hoc way. These channels are different for each subject. 
Zongtan utilizes the T-statistic criterion. After decorrelating the signals by 
applying the principal component analysis (PCA), the optimized weighted sum of 
EEG signal is computed to construct new features that feed to the classifier. 

Table 2 present the results obtained for the proposed algorithm and those 
of the mentioned algorithms. These latter have been obtained from BCI 
competition website. From this table, the following observations can be drawn. 

Table 2 
Comparison with the average accuracy of the three best competitors algorithms 

 Number of sequences 

Algorithm 5 15 

The proposed algorithm scenario 2 72.5 96.5 

1st ranked algorithm 73.5 96.5 

2nd ranked algorithm 55 90.5 

3rd ranked algorithm 59.5 90 

For 5 character sequences, the proposed algorithm is adopted, when the 
best case (scenario 2) scenario, provided a decrease of 1% as compared to the 1st 
ranked algorithm; this can be explained by the fact that the genetic optimization 
have been trapped into the local minimum (i.e.: after 20 generations it converges 
to a suboptimal solution). A gain of 17.5%, and 13% is obtained for the proposed 
algorithm as compared to the 2nd and 3rd ranked algorithms, respectively (see 
Fig. 2). 
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Fig. 2. Overall error obtained by proposed and the competitors algorithms. 

For 15 character sequences (i.e., in greater details), the proposed algorithm 
provides a gain of 6% and 6.5% compared to the 2nd and 3rd ranked algorithms 
respectively, when the second scenario is adopted. However, it acts as well as the 
1st ranked algorithm (i.e.: the same accuracy). 

Furthermore, the advantage of the ensemble SVM classifiers technique is 
investigated. By comparing the results of those with the ones obtained by a single 
SVM trained on original hyperdimentional feature space (i.e.,without feature 
reduction) (see Table III). It is clear that the single SVM without channel selection 
for 15 character sequences yields to a performance similar to the one of the 
proposed algorithm, when all the channels are used. However, for only 5 
sequences, ensemble SVM performs better than a single SVM (about 5% more). 
Also, it can be seen that the gap between the single and ensemble SVM, in terms 
of accuracy, is more significant when considering 5 sequences. Another 
interesting point, as seen from this table, is that when only 8 fixed channels are 
utilized, the ensemble of SVM classifier gives a gain about 9%. Note that these 8 
prefixed channels are selected according to Huffman et al. [22]. Turning back to 
the results obtained by the proposed  algorithm, the worst scenario (scenario 1) 
provides a decrease of 17%  and 12% for Ensemble SVM without channel 
selection and Single SVM without channel selection, respectively; the rusults are 
still much better than those obtained for the Single SVM with 8 prefixed channels 
and Ensemble SVM with 8 prefixed channels. For scenario 2, much better results 
are obtained for the proposed algorithm as compared to the other methods, 
excepting the last method which shows an about 2% higher average accuracy. 
Finally, the proposed algorithm yields to the best results for the best scenario, like 
the Single SVM without channel selection (table 3). 
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Table 3 
Comparison with the average accuracy of the three best competitors algorithms 

 Number of sequences 

Algorithm 5 15 

The proposed algorithm scenario 1 57.5 90.75 

The proposed algorithm scenario 2 72.5 96.5 

Single SVM without channel selection, 
C = 0.01 69.5 96.5 

Single SVM with 8 prefixed channels, 
C = 1e-5 31 70 

Ensemble SVM with 8 prefixed 
channels 40 80 

Ensemble SVM without prefixed 
channels 74.5 95.5 

 

7. Conclusions and discussions 

In this paper, a novel solution is presented for tackling the problem of 
classifying BCI P300 ERP in the very low signal-to-noise ratio EEG. It relies on 
genetic algorithm and ensemble of classifiers. The novelty of the approach 
consists in using a genetic optimization algorithm to indentify the best features 
and discard the useless. However, the main drawback is the computational load 
which can be significant high (up to several days). In general, the experimental 
results confirm the usefulness of proposed approach. However, as observed in the 
obtained results, the best accuracy is obtained with the 1st ranked algorithm for 5 
sequences, its value being slightly higher than that obtained for the proposed 
algorithm. This can be explained by considering the convergence to a local 
(suboptimal) solution. It is reasonable to assume that the proposed approach can 
be much improved by pushing further the genetic optimization process (augment 
the number of the population and the number of the generation). 

The detection of P300 waves in BCI P300 Speller remains a very 
challenging problem, since it has a large variability over subjects. As its presence 
is unclear, it presents high potential of outliers for the classification, both for the 
machine learning algorithms and neuroscience experts; in addition, many trials are 
demanded due the low SNR ratio. In order to enhance it, more efforts have to be 
involved. 
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