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BIFURCATIONS OF A HOLLING TYPE II
COMMENSAL-HOST-PARASITE SYSTEM

Cristina Bercia!

The objective of this paper is to study the dynamical properties of the
commensal-host-parasite differential system with 9 parameters, where the func-
tional response of the parasite and the commensal species are of Holling type I1.
It is shown that the system has up to 8 equilibrium points, that saddle-node bifur-
cations occur or Hopf bifurcations from two different stationary solutions. From
numerical simulations we found a situation of bistability for the system and we
obtained phase portraits for different strata in the control parameter space induced
by the topological equivalence. We detected two limit cycles in according with the
analytical findings.
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1. Introduction

Symbiotic relationships appear to be very common in biological and ecological
communities [10]. There are generally identified three different symbiotic associa-
tions [9]. In mutualism, all the different species benefit from the interactions. In
parasitism, the parasite get benefits at the expenses of the host, for instance bacte-
ria, helmints and viruses fall generally in this category.

Commensalism denotes the interaction for which one organism benefits, but for the
other one there is no gain or loss; for example golden jackals, who link themselves
to a tiger maintaining a safe distance, feed on the remnants of the tiger’s prey.
Another example is the commensal microbiota that inhabit different parts of the
gastrointestinal human tract and has been shaped by co-evolution with the host.
The intestinal microbiota enhances resistence of the organism to infection by bac-
terial pathogens [5]. For example, the Lactobacillus bacteria alters the persistence
of an gastrointestinal parasite (helminth) [8]. In ecology, in the commensal relation,
the host organism is unmodified, whereas the commensal species may show great
structural adaptation, for instance numerous birds perch on bodies of large mamal
herbivores or feed on the insects turned up by grazing mammals.

Several scholars studied the dynamic behaviors of the commensalism or mutualism
model for two species, for example in [1] a model with harvesting was proposed and
in [11], a model with Allee efect, also [3] investigated a model with the equations of
polynom-type.

In the present study, we consider three populations; commensal population
X(t), the host population Y (¢) and the parasite population Z(t) at time t. The
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model describing the interaction between them is governed by the following system
of differential equations:

X aXY
X'(t) = X[(1—-— XZ 1
0 = nx(1-3 )+ 200+ 1)
Y hYZz
Y'(t) = YIl——|—
() 2 < ]432) as+Y
Y Z
Z't) = —-mZ —0XZ
0 = -mz+ 22

In [2] it is a study of a close form of the model, but the term in the first equation
OOC‘I)SX/ is replaced by 071)_?;( and the dynamics appear not to contain any limit cycle
which is a necessary condition for a realistic model [6].

The assumptions of the model include that the first and second population grow
logistically, since both have sufficient resources for alternative foods. The parameters
r1,T9 represent their intrinesc growth rate; k; is the environmental carrying capacity
of the commensals, in the absence of all the other populations, the same is ko for
the host population.

a?}rfy represents the rate of consumption of one commensal per unit of time;

a1 is the half saturation rate for the first population. Also it grows proportional
with the parasite population, but there is no saturation effect when fedding upon
the parasite. The host is not affected by the commensal and no recovery is possible
for the host species once they get infected with the parasite.

al;lfy denotes the functional response of the parasite (i.e. the rate of consumption
of one parasite); its form, known as Holling type II response function [6] is the same
as the commensal’s.

The third population has the rate m of mortality and grows only from interaction
with Y, by being the maximum growth rate of the parasite. The parameters are all
strictly positive.

We adimensionalize the system, as follows:

X(t) Y (¢) Z(t) r a vk
t = N = -_—]" = -_—}: = ——— — = S — = '7:b 2
T2 7'7.%'(7') Ky 7y(7—) ks aZ(T) ks 7o "y a; To ) ( )
ok b b
D a2 =g =g = 2 =y =
ko ko 2 T2 T2 2
We keep the notation 2’ = j—f and the system (1) becomes:
¥ = rz(l—-2)+ Y4 bye (3)
cty
Pryz
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y v =9) =y
Payz
/
= — —0
z uz + d+y Tz

We consider the biologically meaningful initial conditions z(0),y(0), 2(0) > 0.
Proposition 1.1. The domain sz’r is an invariant set of the system (3).

Proof. If (vi,ve,v3) is the vector-field which defines the differential system (3),
v1 |p=0 = 0, therefore all trajectories which initiate in this plane, remain in it,
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Vvt > 0, so the plane z = 0 is an invariant set for the system. Similar arguments,
v2 |y=0 = 0 and v3|,—9 = 0 imply that y = 0 and z = 0 are also invariant sets and
the three coordinate planes separate the interior of the first octant, which also will
be invariant under the flow generated by the system. O

Proposition 1.2. Every solution of the system (3) with positive initial values, is
bounded.

Proof. Let (z(t),y(t), 2(t)) be such a solution. We know from the previous proposi-
tion that its components remain positive for any future time.
Denote by U(t) = z(t) + %y(t) + z(t). Then U'(t) < Px(1 —2) + La+

0
Gyl —y) —pz < R )+ (1 y) — pm

So, U'(t) < C — Wx(t) - %y(t) — pz(t), vVt >0, where C = (Ha) gz > 0.

If M =min(1l,r+ a,u), then U'(t) < C — MU(t), Vt > 0. We obtaln

U(t) < (U0) — L)exp(—Mt) + £, that is U(t) < max(U(0), &), vt > 0 and U(%)
is bounded. Since the first octant is an invariant set, the solutions starting in it are
bounded. 0

2. The equilibrium points and their stability

We determine the location of the equilibrium points of the system (3) and
we state criteria that guarantee their existence. For any values of the param-
eters, the system admits the trivial equilibrium FEy(0,0,0), the axial equilibria
E1(1,0,0), E2(0,1,0) and the parasite-free equilibrium E3(z3,1,0), where

T3 = ﬁ + 1. There exists a commensal-free point of equilibrium Fy (0, y4, 24),
where y; = &dfu, 24 = W, iff B2 > wu(l + d). The system has an
interior equilibrium Fs(zs,ys, 25) with x5,ys5,25 > 0, where x5 = (gj_ii — ,u)%,
25 = mys‘%&, iff y5 € (0,1) is a solution of the equation:
def 7 [Boy — (O +p)(y+d)] ay b
lof 7 - ——(1—y)d+y)=0 4
fly) =5 ity ety 61( y)(d+y) (4)
with necessary conditions that ys > 5( +9) and [y > (d+1)(p+0).
Proposition 2.1. Let
abfic def
d> = dp. )
(c+ 1)((0+ p)Bir + 2bch) + abpy ° 5)
If there is an interior equilibrium Es, then
ad def
>d+1)0+p+ —— 6
B> [+ )0+t ) B2 ()
Proof. The equation (4) can be written in the form
def d+y aby b0
Ba=h(y) = ——[0+nu +ﬁ 7“51( —y)d+y)lye€(0,1) (7)

and h(1) = B2. Simple calculations give us that

p— al —C —_ — 2 . . .
h(y) —h(1) = d(0+;2(1 Y 4 f((cil))((;y%) + %M. If d is not too small, i.e. it

is at least a fraction of ¢ and verifies (5), then h(y) > h(1). O
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Proposition 2.2. If 32 > (2, the system has one, two or three interior equili-bria.
The second case happens if there exists y € (0,1) such that S = h(y) and h'(y) = 0.
For the values {B2|B2 = h(y), ' (y) > 0}, there are three interior equilibria. For all
other values of B2, there exists only one interior equilibrium.

Proof. Denote by f(y,32) = 0 the equation (4), defined for y € (A def ;2(”;%, 1).
The condition 8y > (3 gets the form f(1,32) > 0. Note also that f(A,B2) < 0
Since the equation in y is equivalent to a fourth order equation, it implies that on
the interval (A,1) it has 1,2 or 3 distinct solutions. The second case is when one
solution is double, one is distinct and it occurs if there exists y such that

{f(y,ﬁz>—o,2§=0}<:>{ﬁ2—h<> '(y) = 0}.
Also, we have By — h(y) = i d+y f(y, B2), so the set {Ba2|B2 = h(y), ' (y) > 0}=
{B2|f(y, B2) =0, %f < 0}. Then, due to the signs of f for y in A and 1, we obtain for

these values of 33, the case when there are three interior equilibria. (The numerical
simulations illustrate these conclusions, see fig. 5) O

Using propositions (2.1) and (2.2), we get the following result:

Theorem 2.1. 1) If B2 < p(l +d) = e

Ey, By, Es, E3.

2) If BS < Ba < 33, there exist Ey, E1, B, B3 and Ey. If d > dy, there is no interior
equilibrium.

3) For By > ﬂ%, the system has the equilibria E;, i = 0,4 and generically, a single
interior equilibrium or three.

B9, the system (3) has four equilibria

We are now discussing the local stability of the equilibria. The Jacobian
matrix J of the system, evaluated at each equilibrium gives explicit eigenvalues for
the boundary equilibria, as follows: J(Ep) has Ay = r, Ao = 1,A\3 = —p;

J(El) has )\1 = —7“,)\221,/\3:—u 9
For J(EQ), Al =r+ c-i—Ll’)Q = —1,/\3 =—u+ d+1;
J(E3) has M = —=r — 28, 0 = =1, Mg = 2 — (40 + 25);

For J(Ey), A1 =71+ % + bzy, and A 3 verify the equation

2 | plB2(d=1)+pu(1+d)] p(l+d)y _
Nt T e At el - Sg =0

If d < 1 and fBy > 2D 46 g1 e find that Re(Mg3) >
Ifd>1or By e (u(l+ d),BQ), it implies Re(A23) < 0.

Remark 2.1. i) 83 < 2 is equivalent with d < % def dy

ii) Let be d < 1. For any combination of the other parameters, 35 < min(B3, 53).

We also compute the eigenvectors of J(E;) for i = 0,4, to determine the liniar
eigenspaces tangents to the stable or unstable manifolds of the equilibria. If we
recall that the planes x = 0, y = 0, z = 0 are invariant sets for the system, we can
find the stable manifolds for F;.

Theorem 2.2. 1) The equilibrium point Ey is a saddle, for any values of the pa-
rameters, attractive in the Oz-direction, repulsive in the directions of Ox and Oy;
2) Eq is always a saddle, with Oz the stable manifold;
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3) Ey is always a saddle, attractive in the Oy direction, repulsive in Ox direction;

4) If Ba < B9, then Ej is a stable node;

5) Letd < 1. If By € (8, 83), for d < dy or if Ba € (89, 83), for d > dy, then Ej3 is
a stable node and Ey is a saddle, with yOz the stable manifold;

6) Let d < dy. If B2 € (B3,52), then Ey is an unstable focus (or node) and Ej is
a stable node. If B2 > B2, only Es changes its stability into a saddle with xOy the
stable manifold;

7) Let d < 1. If By € (B2, 583), for d > dy, then E3 and E4 are saddles. If Ba > B3,
only E4 changes its stability into an unstable focus (node);

8) Letd > 1. If B2 > 39, Ey is a saddle. If B2 € (89, 82), E3 is a stable node and
for Ba > B3, E3 is a saddle.

Next we consider the dynamics of the system in the neighborhood of an interior
equilibrium Fs. The linear part of the system at this equilibrium is determined by
the Jacobian matrix J(Es) = (aij)1<i,j<3,

" :_<Bzys —,u>r'a ___a ay b (8)
Cys(l—=d—2ys5)  Bys 01 —ys5)(d+ys)
a2 = ;23 = — ;a31 = — ;
d+ys d+ys b1
dpBa(1 —
032_M§a21:a33:0

~ Buld+ys)

where y5 verifies the equation (4).
The eigenvalues of J(Es5) are the solutions of the characteristic equation

>\3+A1)\2 +A2)\+A3 =0, (9)
where
Ay = —a11 — a2, As = aj1a22 — ai13a31 — a23a32
and
A3 = aza13a31 + a11a23a32 — 12023031.

Using the Routh-Hurwitz criterion, E5 is asymptotically stable iff AjAs > Ajs,
Aq > 0 and A3 > 0. The first two inequalities are satisfied if y5 > l%d or equivalent,
ag < 0.

A1Ay — Az = anraizas + axeasaze + a12a23a31 — arnazz(ai + age) (10)

Note also that Ag > 0 iff the condition f’(ys) > 0 holds, or equivalently h/(y5) < 0,
where f and h are given by (4) and (7), respectivelly. So we proved the following
result:

Theorem 2.3. If the system (8) admits an interior equilibrium ( for d > dgy, the
condition is By > (33), then Es(x5,ys,25) is locally asymptotically stable iff Ay > 0,
R (ys) < 0 and A1Ag — As given by (10) is strictly positive. A suficient condition
for its local attractivity is ys > %d and B (y5) < 0.
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3. The bifurcation analysis

We consider 2, the maximum growth rate of the parasite as a control parame-
ter. First, we determine its values for static bifurcation, i.e. when s passes through
these values, the number of equilibria and their stability properties change. In
R3 x {B2 > 0}, the branches of equilibria E» and Ejy intersect for 82 = 89 = (d+1)pu.
For 32 < 83, E5 has Oy = W* the stable manifold and for £y > 39, W* is of dimen-
sion 1. So in B2 = B9 there is a change of stability and this is a static bifurcation.
For 32 = 32, the branches of the boundary equilibrium Ej3 and the interior equili-
brium Ej intersect. F3 changes from a stable node for 82 < (2, into a saddle with
dimW?$ = 2 for B2 > 35, where as Ej is physical only for B2 > 3. We find the
second point of static bifurcation.

We return to the characteristic equation for an interior equilibrium (9).

Theorem 3.1. If there exist y € (0,1) and B2 > B3 such that

B2 = h(y), (11)
W(y) =0, Aj,As#0,

then for these values of (2, saddle-node bifurcations take place. If (Es,(33) is such
a point in Ri x {8y > 0} with ys =y, the branches of the interior equilibria in the
vicinity of this point remain on one side of B2 = 3, and no interior equilibria on
the other side. (see fig. 5 with the bifurcation diagram for a numerical simulation)

Proof. An interior equilibrium FEs has its second coordinate ys which verifies equa-
tion (4) or equivalently (7), B2 = h(ys). If h/(y5) = 0, we saw in the proposition
(2.2) that 2 = h(y) has a double solution and one, distinct. On the other hand,
I (ys) = 0<= Az = 0 from the characteristic equation, hence the jacobian matrix
evaluated at E5 has one eigenvalue, Ay = 0. Since Aj, Ay # 0, there is no other
eigenvalue with zero real part. Let (ys,33) be a solution of the system (11). We
write the system (3) in the form v' = F(v, 82), v = (z,y, z). The matrix

aip a2 ais 0
(I;F SF> = 0 a2 a2 0 (12)
v /82 (Esﬁg) azlr as2 0 %
dp

has the rank 3 because a11 # 0, since y5 > Fh

Hence rank (%|g—§;) for E5 at the critical parameter value, is different from the

rank of the Jacobian matrix. This is the nondegeneracy condition for the saddle-node
bifurcation.(see [7], pg.71) O

We investigate also the bifurcation from an equilibrium of a limit cycle, i.e.
the appearance of a periodic solution. Only the equilibria F4 and E5 may experience
Hopf bifurcation, because these are the equilibrium points that can have a pair of
purely imaginary eigenvalues.

Let us consider again the characteristic equation for an interior equilibrium
Es(zs5,ys5, 25) and its coefficients given by (9),(10).

Theorem 3.2. The point (Es5, 837) is a Hopf bifurcation point for an interior equi-
librium iff the pair (ys, B2 = BA1) verifies the system

AjAy — A3 =0; B =h(ys) (13)
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together with the conditions

b(d +ys)° dpit r(1—d— 2ys)
P1ys i ys(B3" — p) — dp ~ 6(1 —ys) (14)
0
87&[141142 — As] |g,—prr # 0 (15)
e 0(1 — d — 0
Sd:fﬁzg_ ( Tys)+( +y5)r(;: y5)#0 (16)

The bifurcation takes place on a 2-dimensional manifold, namely the center manifold.
If s > 0, the manifold is attracting and if s < 0, the center manifold is repelling. If
d > dy, then 52H > (3.

Proof. The characteristic equation (9) for an interior equilibrium FEs has the roots
A2 = Fiw iff AjAy = Az and Ay > 0. The inequality takes the form (14).
Suppose A1 2(f2) = v(B2) £ iw(B2) is the analytic continuation of the imaginary
eigenvalues near the critical parameter value o = BQH .

The nondegeneracy condition for Hopf bifurcation is A3(84) # 0. We get

A3(B4) = — Ay and sgn(s) = sgn(A1), so the condition is written in the form (16).
For the transversality condition v/(B4) # 0, simple algebra gives that v(32) verifies
the equation

83 + 802 A1 +2(As + Ay + Aj Ay — A3 =0
on a small neighborhood of By = Bf . We obtain

/o nH 9 1
vi(By) = 95, [As _A1A2]2(A2 a7 A
so the transversality condition is equivalent to (15). From [4] theorems 5.2 and 5.4,
we deduce that there exists a parameter dependent, local 2-dimensional invariant
manifold (the center manifold) where a limit cycle bifurcates from the interior equi-
librium, for B2 near B4’. Due to the sign of A3 at 84, the manifold is attracting for
the system, iff s > 0 . O

The direction and type of bifurcation will be investigated with numerical me-
thods.

Remark 3.1. Ifd < 1, the pair (E4, B%) 1s also a Hopf bifurcation point because the

characteristic polynomial for Eq has Ao 3 = Fiw iff B2 = % def By and d < 1.

For f in a neighborhood of 3, let the analytic continuation of the pair of

imaginary eigenvalues be A2 3(82) = v(f2) &+ iw(B2). The transversality condition is
V' (83) # 0 and we get /(B3) = 1 (A2 + A3)/(83) = (18—‘:3)3 > 0.
Note that Ay > 0 at the critical parameter value, so the central manifold where the
bifurcation takes place is repelling for the system. Numerical simulations in the next
section will show that this manifold where the bifurcation takes place is the plane
z=0.
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4. Numerical simulations

We considered 2 as a control parameter.

First, the fixed parameters are a = 0.6;6 = 0.8;¢ = 0.5;d = 0.1; 0 = 0.2;0 =
0.4; 81 = 0.3;r = 2. It verifies d > dg = 0.0329 and d < dy = 0.7058.

We plot the curve 2 = h(y) given by (7) for y € (0,1) and we find that for
each value of P2, the equation has only one solution (proposition 2.2, when h is
strictly decreasing on (0,1)). The values of S5 when the topological structure of the
phase portrait changes are the static bifurcation values 59 = 0.22; 35 = 0.748 and we
found also Hopf bifurcation point for the equilibrium FEj4 at the critical parameter
value B3 = 0.244. For the interior equilibrium Es5, we applied theorem 3.2. We
solved numerically the system (13) which gives the pair (ys, 87) = (0.34104; 1.0393)
and the nondegeneracy and the transversality conditions are verified.

Then we represented the phase portrait for each stratum in the control pa-
rameter’s space to illustrate our theoretical findings.

For 3y € (89, 3), we took By = 0.23 and with a programe in MATLAB, we
obtained representative orbits.

FIGURE 1. The phase portrait for a = 0.6;6 = 0.8;¢ = 0.5;d =
0.1, = 0.2,0 = 04;6; = 0.3;7 = 2. The control parameter is
B2 = 0.23 € (B9, 33). There is no interior equilibrium. The equili-
brium F3(1.2;1;0) is globally asymptotically stable for (Ri)S where
the red orbits initiate. FE;(1,0,0) has y = 0 its stable manifold.
E4(0;0.6666;0.8518) captures for ¢ — oo all trajectories from the
plane z = 0.

More than the statement of the theorem 2.2, 5), the numerical simulations
which we performed, lead to the idea that the parasit-free equilibrium Fs5(1.2;1;0)
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is globally asymptotically stable for the interior of the first octant, so any trajectory
which starts with x(0),y(0) # 0, tends to Es3 for t — co. (see fig. 1 the red orbits)

We also depicted trajectories with x(0) = 0 and verified that the commen-
sal-free equilibrium FE4 has the stable manifold x = 0, where as solutions with
x(0) > 0 very small have a fast growth on the x(¢)-component. Thus, the commensal-
population, even if it is small at the begining, it multiplies in time.

FIGURE 2. Two limit cycles, one of them (the w-limit of the blue
trajectories) with W% = {x = 0}, the other one is globally asympto-
tically stable for the interior of the first octant. The fixed parameters
are the same, 3 = 1.1 > BiI.

L L L L L
0 50 100 150 200 250 300

1 T T T T T

0 50 100 150 200 250 300

0 50 100 150 200 250 300
Time

F1GURE 3. The time evolution of one of the solutions from the pre-
vious phase portrait, which approaches the interior limit cycle for
t — oo. The initial conditions are (0.2;0.52;2.098).
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For B2 > B for example 32 = 1.1, we depicted trajectories (see figure 2-the
blue ones) which start with z(0) = 0 and tend to a limit cycle (see remark 3.1
for the Hopf bifurcation from the equilibrium FEj). We have 82 > 8i. Numerical
simulations showed that the stable manifold for this limit cycle is the plane z = 0.

Also, any trajectory which begins with x(0) # 0 very small or greater than 1
and y(0) # 0, it comes in the vicinity of the saddle connection F; — E3 and tends
to a stable limit cycle. (theorem 3.2 with s = 1.077 > 0) One orbit initiated in a
neighborhood of the interior equilibrium Ej5(1.4421;0.2404;0.8619) spirals towards
the limit cycle, so F5 is unstable. For a wide range of initial conditions, it appears
that this limit cycle is globally asymptotically stable for the interior of R‘i.

For 3, € (B3, ,6’5{ ), for instance o = 0.9, there is a unique interior equilibrium
E5(1.478;0.727;0.751) and it verifies the condition for local stability (theorem 2.3).
Numerical simulations for a wide range of initial conditions suggests that Fjy is
globaly asymptotically stable for (R*)3. In consequance, (Es,35) is a point of
supercritical Hopf bifurcation, because when (5o varies and passes the critical value,
from a stable equilibrium FEj5 for Sy < ﬂf , a unique and stable limit cycle appears
for each 3y > 81!, while Ej5 losses its stability.

Furthermore, the fixed parameters are a = 0.6;b = 0.6;¢c = 0.6;d = 0.1; p =
0.2;0 =0.4; 1 = 0.04;r = 0.8. It verifies d > dy = 0.0114.

For By > ,6’22 = 0.8662, we are in the conditions of theorem 3.1. We solve
numerically the system (11) and we find two values for the control parameter where
a saddle-node bifurcation takes place, ﬁg’ = 3.7119 and 551 = 3.736, so the values

FIGURE 4. The phase portrait when a = 0.6;b = 0.6;¢c = 0.6;
d=0.1;1=0.2;0 =0.4; 4 = 0.04;7 = 0.8 and B = 3.72 € (533, B3).
There are three interior equilibria FE}(5.4727;0.1795;5.7333),
E2(6.1484;0.2507; 6.5698), E3(6.8945;0.388;7.4665). The blue tra-
jectories tend to E51 for ¢ — oo, the red ones to Eg’ One trajectory
comes close to Eg and then tends to Eg’
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of By from proposition 2.2 which ensures the existence of three interior equilibria
(EL,i = 1,3) are the interval (83, /33). For all other values of 32, there exists a
unique E5. Numerical explorations for different sets of fixed parameters showed
that {52]B2 = h(y), h'(y) > 0} is one interval.

We took B2 = 3.72 € (53, 33). In the phase space, we performed simulations
and we found that this a situation of bistability, namely E51 and Eg’ are asympto-
tically stable and the only attractors for the interior of the first octant. (see fig. 4)
Indeed, only these equilibria verify theorem 2.3 of stability.

The blue trajectories tend to E51 for t — o0, the red ones to Eg

For the same fixed parameters, plot of the projection of the bifurcation diagram
into the plane (32, y) for B2 > B2 is showen in fig. 5.

The branch of the equilibrium E'52 is from A to B. While 32 crosses for example
the value (33 from right to left, the branches E} and E2 collide, forming at 82 = 33 an
equilibrium with A = 0 and then dissapear. The solid and broken lines correspond to
the stable and unstable equilibria. The interval (33, 33) is an interval of bistability.

0.5
g 3
0,4 E5 h
03] E2 |
y 0,4 Bf\_Lig
0,11 -
E, v
S LN R o e o o ot i L
33 36 EHTG T 38
)B 2 P 2

FIGURE 5. Plot of the projection of the bifurcation diagram into
the plane (fa,y) for B2 > B2. a = 0.6;b = 0.6;c = 0.6;d = 0.1;
w = 0.2;0 = 04;8; = 0.04;7 = 0.8. The curve B2 = h(y)
represents the interior equilibria. (33,y) = (3.7119,0.2087) and
(B3,y) = (3.736,0.3279) are saddle-node bifurcation points.

5. Conclusions

Our analysis of the model, the study of local bifurcations of codimension 1
under the variation of one parameter and the numerical simulations, lead us to
establish the important types of dynamics. The control parameter that we take is
B2, the maximum growth rate of the parasite.

If B2 € (B9, max(p3,5)) and d > dy (i.e. the half saturation rate d of the
parasite is not too low), then for any initial conditions with z(0) # 0 (i.e. there
exists initially a commensal population even very small) and y(0) # 0, the system
evolves to the parasite-free state FEs3 for ¢ — oco. Notice that when the system
tends to this state, x(t) — x3 and x3 > 1, meaning that the commensal population
advances to a number greater than its environmental carrying capacity k; in the
absence of y and z-populations. Also, y(t) — 1 for t — oo, i.e. the host population
tends to its carrying capacity ko. Our analysis revealed that the system with initial
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populations not zero can’t evoluate to the extinction of any population, other than
the parasite’s.

If o > ﬂ%, in the conditions of theorem 2.3 and proposition 2.2, the system
tends to an interior equilibrium Es5 and all the populations coexist in a stable state,
namely z(t) — x5 for ¢t — oo and x5 is greater than its environmental carrying
capacity ki, while y(t) — y5 and ys5 is less than ks.

If we are in the hypothesis of proposition 2.2, for 8y € (83, 83), interval found
in the numerical simulations, solutions may converge to one interior equilibrium E51
or to the interior equilibrium E2, depending on the initial population levels, so there
are two possible states of coexistence.

We detected numerically a point of Hopf bifurcation, more precisely for
B2 > BH and mnear this value B4 (theorem 3.2), a stable limit cycle appears, so
the populations of the system will start to oscillate, evolving in time to a periodic
solution which is also a stable state of coexistence. Investigation of codimension 2
bifurcations can improve the study of all possible dynamics of the system.
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