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NEW CLASSES OF EXPONENTIALLY GENERAL CONVEX
FUNCTIONS
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In this paper, we define and introduce some new classes of the exponentially
convex functions involving an arbitrary function. We investigate several properties of the
exponentially general convex functions and discuss their relations with convexr functions.
Optimality conditions are characterized by a class of variational inequalities, which is
called the exponentially general variational inequality. Several new results characterizing
the exponentially general convexr functions are obtained. The results obtained in this
paper can be viewed as significant improvement of previously known results.
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1. Introduction

Convexity theory describes a broad spectrum of very interesting developments involv-
ing a link among various fields of mathematics, physics, economics and engineering sciences.
The development of convexity theory can be viewed as the simultaneous pursuit of two dif-
ferent lines of research. On the one hand, it is related to integral inequalities. It has been
shown that a function is a convex function, if and only if, it satisfies the Hermite-Hadamard
type inequality [9, 10]. These inequalities help us to derive the upper and lower bounds of
the integrals. On the other hand, the minimum of the differentiable convex functions on the
convex set can be characterized by the variational inequalities. Variational inequalities [37],
the origin of which can be traced back to Bernoullis brothers, Euler and Lagrange. Varia-
tional inequalities provide us a powerful tool to discuss the behaviour of solutions (regarding
its existence, uniqueness and regularity) to important classes of problems. Variational in-
equality theory also enables us to develop highly efficient powerful new numerical methods
to solve nonlinear problems, see [11, 12, 13, 14, 15, 16, 17, 21, 24, 29, 30, 31, 37].

In recent years, various extensions and generalizations of convex functions and convex sets
have been considered and studied using innovative ideas and techniques. It is known that
more accurate and inequalities can be obtained using the logarithmically convex functions
than the convex functions. Closely related to the log-convex functions, we have the concept of
exponentially convex(concave) functions, which have important applications in information
theory, big data analysis, machine learning and statistic. Exponentially convex functions
have appeared significant generalization of the convex functions, the origin of which can be
traced back to Bernstein [6]. Avriel[3, 4] introduced the concept of r-convex functions, from
which one can deduce the exponentially convex functions. Antczak [2] considered the (r,p)
convex functions and discussed their applications in mathematical programming and opti-
mization theory. Awan et al [5] and Pecaric et al.[26, 27, 28]also investigated some classes of
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exponentially convex functions. It is worth mentioning that all these classes of exponentially
convex functions have important applications in information sciences, data mining and sta-
tistics, see, for example,[1, 2, 3, 4, 5, 6, 7, 15, 25, 26, 27, 28] and the references therein.

It is known that a set may not be convex set. However, a set can be made convex set with
respect to an arbitrary function. Motivated by this fact, Youness [38] introduced the concept
of general convex set involving an arbitrary function. Noor [15] proved that the minimum
of the differentiable general convex function on the general convex set can be characterized
by the general variational inequalities, which were introduced by Noor [13, 14] in 1988. The
technique of the general variational inequalities can be used to consider the nonsymmetric,
odd-order obstacle boundary values problems, which can not studied by the variational in-
equalities. For the formulation, applications, numerical methods, sensitivity analysis and
other aspects of general variational inequalities, see [13, 14, 15, 15, 17, 24, 29, 30, 31, 34]
and the references therein.

We would like to point out that the general convex functions and exponentially general
convex functions are two distinct generalizations of the convex functions, which have played
a crucial and significant role in the development of various branches of pure and applied
sciences. It is natural to unify these concepts. Motivated by these facts and observations,
we now introduce a new class of convex functions, which is called exponentially general
convex functions in involving an arbitrary function. We discuss the basic properties of the
exponentially general convex functions. It is has been shown that the exponentially general
convex(concave) have nice properties which convex functions enjoy. Several new concepts
have been introduced and investigated. We prove that the local minimum of the exponen-
tially general convex functions is also the global minimum. The optimal conditions of the
differentiable exponentially convex functions can be characterized by a class of variational
inequalities, called the exponentially general variational inequality, which is itself an inter-
esting problem. The ideas and techniques of this paper may be starting point for further
research in these diversified areas

2. Preliminary Results

Let K be a nonempty closed set in a real Hilbert space H. We denote by (-,-) and
I - || be the inner product and norm, respectively.

We recall the well known facts and basic concepts.
Definition 2.1. [12].The set K in H is said to be a convex set, if
u+t(v—u) €K, Yu,v € K,t € [0,1].
Definition 2.2. [12] A function F is said to be convez function, if
F(1-tu+tv) <(1—-8)F(u)+tF(v), VYu,ve K, tel0,1]. (1)

It is well known that a function F' is a convex functions, if and only if, it satisfies the
inequality

b
F(50) <525 [ 1@ < IO e r— ?

which is known as the Hermite-Hadamard type inequality. Such type of the inequalities
provide us with the upper and lower bounds for the mean value integral.

If the convex function F is differentiable, then v € K is the minimum of the F| if and only
if, u € K satisfies the inequality

(F'(u),v—u) >0, YveK. (3)
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The inequalities of the type (3) are called the variational inequalities, which were introduced
and studied by Stampacchia [37] in 1964. For the applications, formulation, sensitivity,
dynamical systems, generalizations, and other aspects of the variational inequalities, see
[4, 5,6, 7, 8,11, 12, 13, 14, 15, 16, 24] and the references therein.

We now define the exponentially convex functions, which are mainly due to Noor and Noor

[18, 19, 20, 21, 22, 23].

Definition 2.3. [18, 19, 20, 21] A function F is said to be exponentially convex function, if
eF(A=utto) < (1 _ )l L 4P vy v e K, te0,1].

It is worth mentioning that Avriel [3, 4] and Antczak [2] introduced the following
concept.

Definition 2.4. [3, 4] A function F is said to be exponentially convex function, if
F((1—t)a+tb) <log[(1 —t)ef @ 4 1eF®)) Vabe K, te]0,1], (4)

Avriel [3, 4] and Antczak [2] discussed the application of the 1-convex functions in
the mathematical programming. We note that the Definitions 2.3 and 2.4 are equivalent.
A function is called the exponentially concave function f, if —f is exponentially convex
function. For the properties, generalizations and applications of the exponentially convex
functions, see [1, 2, 3, 4, 5, 18, 19, 20, 21, 22, 23, 25, 28, 29, 30, 31, 32, 33, 34, 35, 30]

Definition 2.5. [38].The set K, in H is said to be general convex set, if there exists an
arbitrary function g, such that

g(u) +t(g(v) —g(uw) € K4, Yu,v € H:g(u),g(v) € K,,t €[0,1].

Note that, if ¢ = I, the identity operator, then general convex set reduces to the clas-
sical convex set. Clearly every convex set is a general convex set, but the converse is not true.

For the sake of simplicity, we always assume that Yu,v € H : g(u),g(v) € K,, unless
otherwise.

Definition 2.6. [38] A function F is said to be general convex(g-convez) function, if there
exists an arbitrary non-negative function g, such that

F((1 = D)g(u) + tg(0)) < (1 — OF(g(w)) + tF(g(v), Ya(u),g(v) € Kpt € 0,1, (5)

Remark 2.1. 1t is known that the function f(u) = e* is a general convex function, but it is
not a convex function. See also [38] for other examples for the importance of the arbitrary
Sfunction g.

Note that, if ¢ = I, the identity operator, then the general convex function reduces
to the classical convex function. Clearly every convex function is a general convex function,
but the converse is not true, see [7].

Noor [15, 16] has shown that the minimum v € H : g(u) € K, of the differentiable general
convex functions F' can be characterized by the class of variational inequalities of the type:

(F'(g(u)),g(v) = g(u)) >0, Yue H:gv) € K, (6)

which is known as general variational inequalities. For the applications of the general vari-
ational inequalities in various branches of pure and applied sciences, see [13, 14, 15, 16, 34]
and the references therein.

We note that the exponentially convex functions and general convex functions are two dis-
tinct generalizations of the convex functions. It is natural to unify these concepts. Motivated
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by this fact, we now introduce some new concepts of exponentially general convex functions,
which is the main motivation of this paper.

Definition 2.7. A function F' is said to be exponentially general convex function with respect
to an arbitrary non-negative function g, if
eF((1=t)g(u)+tg(v)) < (1- 75)6F(9(u)) + tef (), Yg(u),g(v) € Kyt € [0,1]. (7)
or equivalently

Definition 2.8. A function F' is said to be exponentially general convex function with respect
to an arbitrary non-negative function g, if,

F((1— D)g(u) + tg(v)) < log(1 — )"0 4 PO vg(u),g(v) € Kyt € [0,1]. (8)

A function is called the exponentially general concave function f, if —f is exponen-
tially general convex function.

Definition 2.9. A function F is said to be exponentially general affine convex function with
respect to an arbitrary non-negative function g, if

(=) g(w)+tg(v)) _ (1-— t)eF(g(u)) + tef (), Vg(u), g(v) € Kyt €[0,1]. (9)

If g = I, the identity operator, then exponentially general convex functions reduce to
the exponentially convex functions.

Definition 2.10. The function ' on the general convex set K, is said to be exponentially
general quasi convez, if

eFla+tlg()=9(W)) < max{eF @) FONL " vg(u), g(v) € Kyt e[0,1].

Definition 2.11. The function F' on the general convex set K, is said to be exponentially
general log-convex, if

eFla)+tg()=g(w)) < (FgyI=t(F 9 g (u), g(v) e K,,t€0,1],
where F(-) > 0.

From the above definitions, we have

eF(g(w)+t(g(v)—g(w)) (eF(g(U)))l—t(eF(g(v)))t

(1 _ t)eF(g(u)) + teF(!](U)))

max{eF(g(“)), eF((v))}.

This shows that every exponentially general log-convex function is a exponentially general
convex function and every exponentially general convex function is a exponentially general
quasi-convex function. However, the converse is not true.

Let K, = I, = [g(a), g(b)] be the interval. We now define the exponentially general convex
functions on I,.

VAN VANVAN

Definition 2.12. Let I, = [g(a), g(b)]. Then F is exponentially general convex function, if
and only if,
1 1 1
g9(a) g9(z) g(b) | >0; gla) <g(x) < g(b).
eFl9(a))  oF(g(z))  oF(g(b))
One can easily show that the following are equivalent:
(1) F is exponentially general convex function.
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CF(a() _gF(g(a))

(2) eFle) < eFlola) 4 ezt (g(z) — g(a))-

g) FUED_ F@) (P ZeFlala)

@) @ = T e@

(4) (g(z) — g(b))eF @ @) + (g(b) — g(a))er9@) + (g(a) — g(x))ef" D) > 0.

F(q(a)) F(Q(ﬂ")) F(q(b)
G) GE—s@E@=E) T TE O E@ =@ T GO=g)EE@ @) = O

where g(z) = (1 —t)g(a) +tg(b) € [g(a), g(b)].

3. Main Results

In this section, we consider some basic properties of exponentially general convex
functions.

Theorem 3.1. Let F be a strictly exponentially general convexr function. Then any local
minimum of F is a global minimum.

Proof. Let the strictly exponentially convex function F' have a local minimum at g(u) € K.
Assume the contrary, that is, F(g(v)) < F(g(u)) for some g(v) € K,. Since F is strictly
exponentially general convex function, so

PO ~0(w) 4 FOW) | (1 — )P for 0 <t< 1,

Thus
e (g(u)+t(g(v0—g(w))) _ F(9(w)) _t[eF(g(v)) _ eF(g(U))] <0,

from which it follows that
eFla(w)+t(g(v)—g(u0)) o Fla(w))
for arbitrary small ¢ > 0, contradicting the local minimum. (|

Theorem 3.2. If the function F' on the general convex set K, is exponentially general
convez, then the level set

Lo ={g(u) e K,:eF0W) <o aeR}
is a general conver set.

Proof. Let g(u),g(v) € Ly. Then
eFw) < o and eF'9) < . Now, Vt € (0,1), g(w) = g(v) + t(g(u) — g(v)) € K, since
K, is a convex set. Thus, by the exponentially general convexity of F, we have

Fels®+t(e@ =) < (1 4)eF@®) 4 4eF o)
< (1I-ta+ta=a,
from which it follows that g(v) 4+ t(g(u) — g(v)) € Lo Hence L, is a general convex set. [
Theorem 3.3. The function F is exponentially general convex function, if and only if
epi(F) = {(g(u),a) : g(u) € K, : F0W) <o a € R}
is a general convez set.
Proof. Assume thatF is exponentially general convex function. Let
(9(u),a), (g(v),B) € epi(F).
Then it follows that ef'9(4) < o and e (@) < 3. Hence, we have
P o) +tla()=9(w) < (1 — 4)eF @) 4 £ 0®) < (1 — t)o + 1,

which implies that
(L =t)g(u) +tg(v), (1 — ) + 1) € epi(F).
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Thus epi(F') is a general convex set. Conversely, let epi(F) be a general convex set. Let
g(u), g(v) € K,. Then (g(u),e"9) € epi(F) and (g(v, e 9)) € epi(F). Since epi(F) is
a general convex set, we must have
(90u) + t{g(0) = g(u), (1 = )T 170D € epi(F),
which implies that
eF((A=D)g(uw)+tg(v)) < (1-— t)eF(g(“)) + tef (o),

This shows that F is an exponentially general convex function. O

Theorem 3.4. The function F is exponentially general quasi convex, if and only if, the
level set

Lo ={g(u) € Kj,a € R: "W < 0}
is a general convez set.
Proof. Let g(u),g(v) € Lq. Then g(u),g(v) € K, and max(ef"(9(W) eFa)) < q.
Now for ¢t € (0,1), g(w) = g(u) +t(g9(v) — g()u) € K4. We have to prove that g(u)+t(g(v) —
g(u)) € L. By the exponentially general convexity of F, we have

eFla+tlg()=9(w) < max (F9(W) Iy < ¢

which implies that g(u) + t(g(v) — g(u)) € L, showing that the level set L, is indeed a
general convex set.

Conversely, assume that L, is a general convex set. Then, V g¢(u),g(v) € La,t €
[0, 1], g(u) +t(g(v) — g(u)) € La. Let g(u), g(v) € Lo for
o = map(eF@0) (FEO)) and FO0) < Flat)

Then, from the definition of the level set L., it follows that
eF ol +ta()=9(w) < max (eF(W) (Fl)) < o,

Thus F' is an exponentially general quasi convex function. This completes the proof. |

Theorem 3.5. Let F' be an exponentially general convex function. Let p = inf,ecx F(u).
Then the set
E={g(u) € K,:e0®) =}

is a general convex set of Ky. If F' is strictly exponentially general convex function , then E
s a singleton.

Proof. Let g(u),g(v) € E. For 0 < t < 1, let g(w) = g(u) + t(g(v) — g(u)). Since F is a
exponentially general convex function, then
F(g(w)) = eF(g(u)+t(g(v)—g(u))

< (1- t)eF(g(u)) +tef ) = ¢ 4 (1=t =p,

which implies g(w) € F. and hence FE is a general convex set. For the second part, assume
to the contrary that F(g(u)) = F(g(v)) = p. Since K is a general convex set, then for
0 <t < 1g(u) +tlglv) —g(u) € Ky Since F is strictly exponentially general convex
function, so

eFla+tlg()=g(w)) < (1 — 1)) 4 490D = (1 — )y + tp = p.
This contradicts the fact that y = infy,)ecx, F'(u) and hence the result follows. O
Theorem 3.6. If the function F is exponentially general convex such that
e (9(®) ~ eF(g(“)),Vg(u),g(v) € K,,

then F' is a strictly exponentially general quasi function.
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Proof. By the exponentially general convexity of the function F, we have
eFlo+tlg(=g(w)) < (1 — 1)l W) 1 490 yg(u), g(v) € K, t€[0,1]
< ef(g(w),

since eF'(9(") < F9(¥) " which shows that the function F is strictly exponentially general
quasi convex. O

We now show that the difference of exponentially convex function and exponentially
affine convex function is again an exponentially general convex function.

Theorem 3.7.  Let f be a exponentially general affine convex function. Then F is a
exponentially general convexr function, if and only if, H = F— is a exponentially convex
function.

Proof. Let f be exponentially general affine convex function. Then
ef(A=t)g(u)+tg(v)) — (1— t)ef(g(u)) + tef9() Vg(u), g(v) € Kyt € [0,1]. (10)
From the exponentially general convexity of F, we have
e ((A=t)g(u)+tg(v)) < (1- t)eF(g(u)) + tef'9() Vg(u), g(v) € Kyt € [0,1]. (11)
From (10 ) and (11), we have
eF((=t)g(u)+tg(v)) _ f((1-t)g(u)+tg(v))
<(1- t)(eF(g(u)) — ef(g(u))) + t(eF(g(v)) — ef(g(v)))7 (12)
from which it follows that
eH((A=t)g(u)+tg(v))  _—  JF((A-)g(w)+tg(v))) _ of((A=1)f(g(u))+tf(g(v))
< (1 —t)(eFlw) — f gDy 4 (P o)) _ ofg()))

which show that H = F — f is an exponentially general convex function.
The inverse implication is obvious. O

Definition 3.1. A function F is said to be a exponentially general pseudo convex function,
if there exists a strictly positive bifunction B(.,.), such that

eF9(v) ~ oFlg(w)

=

ot T o) =900 < PO 14t — 1) B(g(v), g(u)),  VYg(u),g(v) € Kyt € [0,1].

Theorem 3.8.  If the function F is exponentially general convex function such that
eF9) < eFla(w)),

then the function F is an exponentially general pseudo convex function.

Proof.  Since ef(9() < ¢F(w) and F is exponentially general convex function, then
Vg(u), g(v) € K4, t€]0,1], we have

eFa+A=0(g()=g(w)) < Fla(w) 4 y(F9()) _ Fla(w))
< eFlgw) +t(1—t)(e F(g(v) _ F(g(u)))
= ef'le(w) 4 t(t —1)(ef (g(w) _ F(g(v))))

< OO it~ 1)Bg(w), 9(0)),

where B(g(u), g(v)) = eF9(W) —¢F9()) > 0. This shows that the function F is exponentially
general pseudo convex function. |
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We now study some properties of the differentiable exponentially general convex func-

tions.

Theorem 3.9. Let F be a differentiable function on the general convex set K,. Then the

function F is exponentially general convex function, if and only if,
eF9) _ oFlg(w) > <6F(g(u))F/(g(u))7g(v) — g(u))

Proof. Let F be a exponentially general convex function. Then

Fla (a9 < (1 — )@@ 4 1o FGW)  yg(u), g(v) € K,

which can be written as
eF(g(u)+t(g(v)—g(w))) _ oF(g(w))

t
Taking the limit in the above inequality as ¢ — 0 , we have

F ) — () > (PO B (g(a), g(v) — g(u)
which is (13), the required result.

eFa) _ oFlo(w)) > ¢

)

Conversely, let (13) hold. Then Vg(u), g(v) € Kg4,t € [0,1],
9(ve) = g(u) +t(g(v) — g(u)) € Ky,
we have
eFlW) _ oFlaa)) > (o F ) B/ (g(v,)), g(v) — g(vy)))
= (1= t)(e"DF (g(v)), g(v) — g(u).
In a similar way, we have

Flo(w) _ JFlg(ve)

v

(WD E (g(v)), 9(u) = g(v0)))
—t(e"IDF (g(v,)), 9(0) = g(u)).-
Multiplying (14) by ¢t and (15) by (1 —¢) and adding the resultant, we have
el (9 +tg()=9(w) < (1 — )P @) 4 ¢eF9(v))
showing that F' is a exponentially general convex function.
Remark 3.1. From (13), we have
M EN=FE) -1 > (F'(g(u)), g(v) — g(w), Vg(v),g(u) € Ky,

which can be written as

F(g(v)) — F(g(u)) > log{1 + (F'(g(u)), g(v) — g(u)),} Vg(v),g(u) € Ky,

Changing the role of u and v in (16), we also

F(g(u)) — F(g(v)) > log{1 4 (F'(g(v)), g(u) — g(v)),} Vg(v),g(u) € K,

Adding (16) and (17), we have

(F'(g(u) = F'(g(v)), g(u) — g(v)) = ((F'(g(w)), g(u) = g(v)))(F'(9(v)), g(u) — g(v)))

) v.g(v)mg(u) GKQ'

(13)

(15)

(16)

(17)

which express the monotonicity of the differential F'(.) of the exponentially general convex

function.

Theorem 3.9 enables us to introduce the concept of the exponentially monotone op-

erators, which appears to be new ones.
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Definition 3.2. The differential F'(.) is said to be exponentially general monotone, if
(WD F (g(u)) = "IN (g(v)), g(u) = g(v)) >0, Vu,v € H.

Definition 3.3. The differential F'(.) is said to be exponentially general pseudo-monotone,

if

(" F (g(u)), g(v) — g(u)) > 0,
=
("D F (g(v)), g(v) — g(u)) >0, Vu,ve H.

From these definitions, it follows that exponentially general monotonicity implies
exponentially general pseudo-monotonicity, but the converse is not true.

Theorem 3.10. Let F be differentiable exponentially general convex function. Then, (13)
holds, if and only if, F'(.) satisfies

("W F (g(u)) — "I F (g(v)), g(u) — g(v)) 20, Vg(u),9(v) € K. (18)
Proof. Let F be a exponentially general convex function. Then, from Theorem 3.9, we have

) — P9t > (PN F (g(u)), g(v) — g(u)),  Vg(u),9(v) € K. (19)
Changing the role of u and v in (19), we have

() — PO > (PO FY (g(v)), g(u) = 9(0))),  Vg(u), 9(v) € K. (20)

Adding (19) and (20), we have
("W F (g(u)) — "I F (g(v)), g(u) — g(v)) > 0,

which shows that F’ is exponentially general monotone.

Conversely, from (18), we have
(IO (g(v)), g(u) = g(v)) < ("D F(g(w)), g(u) — g(v))). (21)
Since K, is a general convex set, Yg(u),g(v) € K,, t€0,1],
9(ve) = g(u) +t(g(v) — g(u)) € K.
Taking g(v) = g(vy) in (21), we have
(D (g(ur)), g(u) = g(vr)) < (D F (g(u)), g(u) — g(vr))
—t(e" W (g(u)), g(v) — g(u)),

A

which implies that

(WD E (g(v)), g(v) — g(u)) = ("D F (g(w)), g(v) — g(w)). (22)
Consider the auxiliary function

£(t) = eFla(w)+t(g(v)—g(w))
from which, we have
£(1) = eF(g(v))’ £(0) = eFla(w)
Then, from (22), we have
gty = ("D (g(vr)), g(v) — g(u))
> (FUODF (g(u), g(v) — g(u)). (23)
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Integrating (23) between 0 and 1, we have

§(1) - £(0) = /Olg’(t)dt > ("D F (g(u)), g(v) — g(u)).
Thus it follows that
@) _ oFlg(w) > <eF(g(“))F/(g(u)),g(v) —g(u)),
which is the required (13). O
We now give a necessary condition for exponentially general pseudo-convex function.

Theorem 3.11. Let F'(.) be exponentially general pseudomonotone. Then F is a exponen-
tially general pseudo-conver function.

Proof. Let F' be a exponentially general pseudomonotone. Then, Vg(u), g(v) € K,

("9 E (g(w)), g(v) — g(u)) > 0.
implies that

("I E (g(v)), g(v) — g(u)) > (24)

Since K, is a general convex set, Vg(u), g(v) € K,, t € [0, ]

g9(vr) = g(u) +t(g(v) — g(u)) €
Taking g(v) = g(vy) in (24), we have

(eF D F (g(wr)), g(v) = g(u)) > 0. (25)
S

Consider the auxiliary function &(t) = ef(9W+tla()=g(w)) — Flg(ve)) = vg(u), g(v)
Kg,t € [0,1], which is differentiable, since F' is differentiable function. Then, using (25), we
have £'(t) = (e (g(vt))F’( (v )) g(v) —g(u))) > 0. Integrating the above relation between 0

to 1, we have £(1 fo t)dt > 0, that is, e(9(*)) — ¢F(9(w) > 0, showing that F is
a exponentlally general pseudo convex function. O

Definition 3.4. The function F is said to be sharply exponentially general pseudo convexz,

if

(D F (g(u)), 9(v) = g(u)) = 0= F(g(v)) = 0H=90D) vg(u), g(v) € Kyt € [0,1].
Theorem 3.12. Let F' be a sharply exponentially general pseudo convex function. Then

("W F (g(v)), g(v) — g(w)) >0, Vg(u),g(v) € K.

Proof. Let F be a sharply exponentially general pseudo convex function. Then ef(9(¥) >
eFla+tla(W=9()) = vg(u), g(v) € K,,t € [0,1], from which we have
F(g(v)+t(g(u)—g(v))) _ oF(g(v))
e e
0 < lim{ : = (P F/(g(0), g(v) — 9(w),

the required result. O

We now discuss the optimality condition for the differentiable exponentially convex
functions, which is the main motivation of our next result.

Theorem 3.13.  Let F be a differentiable general exponentially conver function. Then
uwe H:g(u) € Ky is the minimum of the function F, if and only if, w € H : g(u) € K,
satisfies the inequality

(P9 E (g(u)), g(v) — g(u)) >0, Vg(u),g(v) € K,. (26)
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Proof. Let u € H : g(u) € K4 be a minimum of the function F. Then F(g(u)) <
F(g(v)),Yv € H : g(v) € K,. from which, we have

eFlaW) < P yy(v) € K, (27)

Since K, is a general convex set, so, Vg(u), g(v) € K4, t€[0,1], g(vi) = (1—t)g(w)+tg(v) €
K,. Taking g(v) = g(v;) in (27), we have

F(g(u)+t(a(v)—a(w) _ oF(g(u))

0 < :
= ("I F (g(w)), g(v) = g(u). (28)

Since F is an exponentially general convex function, so e (9(w+t(g(v)=g(w))) < Flg(w) 4
t(eF ) — eF (W) g(u), g(v) € K,,t € [0,1], from which, using (28), we have
eFlg(w)+t(g(v)—g(u))) _ oF(g(u))

D) — P > i t } = (D P (g(w), g(v) - g(u)) > 0.
I

This implies that e (9(")) —F(9(W) > 0 from which, we have F(g(u)) < F(g(v)). This shows
that u € H : g(u) € K, is the minimum of the differentiable exponentially general convex

function, the required result. O
Remark 3.2. Findu € H : g(u) € Ky, such that
(eI F! (g(u)), 9(v) = g(u)) > 0,Yg(v(€ K, (29)

1s called the exponentially general variational inequality and appears to be a new one. Using
the technique and ideas of Noor [15, 16] and Noor et al. [24], one can develop some iterative
methods for solving the exponentially general variational inequalities of the type (29). It is
an open problem to study the applications in various fields of pure and applied sciences.

Conclusion

In this paper, we have introduced and studied a new class of convex functions which
is called the exponentially general convex function. It have been shown that exponentially
general convex functions enjoy several properties which convex functions have. We have
shown that the minimum of the expedientially differentiable general convex functions can
be characterized by a new class of variational inequalities, which is called the exponentially
general variational inequality. To develop the numerical methods for solving exponentially
strongly general variational inequalities need further efforts. This is an interesting problem
for future research. This may stimulate further research.
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