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CAUCHY SPLIT-BREAK PROCESS: ASYMPTOTIC
PROPERTIES AND APPLICATION IN SECURITIES
MARKET ANALYSIS

Eugen LJAJKO'?, Vladica STOJANOVIC?, Marina TOSIC'®, Ivan BOZOVIC?

The paper presents a novel kind of nonlinear and non-stationary stochastic
process, that can be applicable in the analysis of time series with accentuated and
persistent fluctuations. Using Cauchy distributed innovations, the resulting model,
named the Cauchy Split-BREAK (CSB) process, was examined in terms of its basic
stochastic properties and asymptotic behaviour. To estimate the unknown parameters
of the CSB process, an estimation procedure based on empirical characteristic
functions is proposed, along with numerical simulations of thus obtained estimators.
1t is also shown that the CSB process can be a suitable stochastic model for analysing
the dynamics of the securities market.

Keywords: nonlinear time series; pronounced and permanent fluctuations; non-
stationarity; Cauchy distribution; parameters estimation; simulations.

1. Introduction

Stochastic modelling of time series with accentuated and persistent
fluctuations is one of the important topics in contemporary research. To this end,
various stochastic models are proposed, primarily devoted to application in social
sciences and econometrics [1,16]. A particular problem arises when the observed
time series have nonlinear and non-stationary dynamics, which usually reflects in
increasing the complexity of their stochastic structure [7,13]. To solve this problem,
Engle and Smith [6] proposed the so-called stochastic permanent break
(STOPBREAK) process, later investigated by numerous authors, especially in the
domain of structural and permanent changes in real-world data fluctuations [5,8].
Besides that, Stojanovi¢ et al. [21] introduce the so-called Split-BREAK process,
also applied in modelling different time series with constant and pronounced
fluctuations. Recently, some more general forms of the Split-BREAK process, the
so-called General (that is, Gaussian) Split-BREAK (GSB) process, were introduced
and discussed in Stojanovi¢ et al. [20,22,23], as well as Jovanovi¢ et al. [9].

Using a similar idea, the Split-BREAK model with Cauchy distributed
innovations, named Cauchy Split-BREAK (CSB) process, is introduced here. The
main motive is the fact that the Cauchy distribution is infinitely divisible and stable,
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which, as will be seen, will be important features for determining stochastic
distributions of the basic series in the CSB model. In addition, since the Cauchy
distribution does not have finite moments, it can be used in modelling the dynamics
of non-stationary time series with large fluctuations and long tails, i.e., with a wide
range of data. The following section presents the definition and key stochastic
properties of the CSB process, applying the characteristic functions (CFs) method.
The CSB process parameter estimation procedure, based on empirical characteristic
functions (ECFs), is described in Section 3. Thereafter, Section 4 is devoted to
Monte Carlo simulations of the proposed estimators, as well as the application of
the CSB process in dynamic analysis of the total trading values of QUALCOMM
Incorporated Common (QCOM) stocks. Finally, in Section 5 some concluding
remarks are given.

2. CSB process. Definition and key properties

The main assumptions about the CSB process can be made based on its
corresponding time series as given in the following:

Definition 2.1. Let (2, F, P) the probability space, expanded with filtration
F = (F;),wheret = 0,1,...,T is the set of time indices. The Cauchy Split-BREAK
(CSB) process represents the following time series, defined on expanded basis
(2,F,P,F):
i) (&) is an innovation series, that is, the independent identical distributed
(IID) random variables (RVs) with zero-centred Cauchy(0, 1) distribution,
whose probability distribution function (PDF) is:

A
w(x% + 22)’
and A > 0 is the scale parameter.
ii) (mg) is a series of martingale means given by recurrence relation:

fe(x) = x €R, ey

t—1

My =Mp_q + Q1 &1 = Mo + Z q;&, (2)
=0

where is almost surely (as) m, = u (const), e_; = &, = 0, and

1 g>c
=1(et,>c)=1{" -1 3
4 (et-1 ) {0' 2. <c 3)
is the Noise-Indicator with the parameter (critical value) ¢ > 0.
iii) (y;) is a basic CSB series defined by the adaptive decomposition:
Ye =me + &. 4)

Now, we give some practical interpretations of the concepts introduced in
Definition 2.1. First, filtration (F;) is a set of “information” about some (actual)
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time series at time t, so the RVs (g;) are F,-adaptive, for each t =0,1,...,T.
Moreover, according to the well-known fact about the Cauchy distribution, the

cumulative distribution function (CDF) of the RVs (&;) is:
x 1 1 X
F.(x) == P{e, < x} = j_wfg(z)dz =3 + ;arctan (z),
x€ER, (5)

as well as the characteristic function ¢@.(u) =e %, u € R. Thus, Cauchy
distribution can be viewed as the Fourier transform of the Laplace distribution.
Also, Cauchy distribution does not have moment generating function, that is, the
finite moments of order greater than or equal to one. Then, assumption of the
Cauchy distributed innovations (&;) is motivated by the fact that it, compared to
other distributions, such as the Gaussian, can more adequately fit empirical
distributions with long tails and pronounced peaks (see Section 4). Besides, (m;)
is F;_1 measurable series which represents the predictive and stability component,
contrary to the innovations (&;) that make the deviation (noise) component of the
of the CSB process. Finally, the parameter ¢ > 0 is the critical value of reaction,
which indicates significance of earlier realizations of series (g;), in order to include
its current values in Eq. (2). More precisely, when q;_; = 0, the martingale mean
m, 1s equal to its previous value m;_;, and the main CSB series (y;), given by Eq.
(4), is then realized with ‘low’ fluctuation. Otherwise, the case q; = 1 indicates a
pronounced fluctuation of the series (y;). Having in mind that the series(m;) and
(y:) depend on the time moment t € T they are observed in, it is obviousely that
they are non-stationary. Moreover, their basic distributional properties can be
shown as follows:

Theorem 2.1. Let (m;) and (y;) be the CSB series defined by Eqs. (2) and (4),

respectively, where m, = u (const). Then, for any x € Randt =0, 1,...,T, the
CDFs of (m;) and (y;) are:

E,(x,t) == P{m; < x}
= [acE? () + (1 - a) Fo)| @K, 00, (6)

B (x,0) = Ply; < x}
= [acE () + (1 - a)Fo(0)| ®F: (), )

where “®" is the convolution operator, F:g(j )(x) and Fy(x) are the CDFs of the RVs
& and I, =0, respectively, Fc(x) = F,(x) ® F;(x) is the CDF of the RV j + &
with Cauchy (u, A) distribution, and a, = P{q, = 1} = P{e? > c}. Additionally,
for T = +oo, the following convergences (in distribution) hold:
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1 d
Tme — Cauchy(0,a.A),

1 d
?yt — Cauchy(0,a 1), t - +oo. (8)

Proof. Let us define the RVs {; = q;&, t = 0,1, ..., T, which are easily
shown to represent a mutually uncorrelated RVs. Applying the conditional
probabilities, the CDF of ({;) is:

Fr(x) = P{{; < x}
= P{{; < x|q; = 1} P{q; = 1} + P{{; < x|q, = 0} - P{q, = 0}
= P{e; < x}-P{q; = 1} + P{x > 0} - P{q; = 0}
= a.F(x) + (1 — a)Fy(x).

where @,(u) = 1is the CF of the RV I, Z 0. Based on that, the CF of the RVs (¢)
is as follows:

oW = f e Fy (dx) = j e [a F, + (1 — a,)Fy](dx)

= a,0.(w) + (1 — a) po(w)
=1+ ac(e"l'”' — 1).

By applying Eq. (2), for the CFs of the series (m;) one obtains:
t

om0 = 9, | [ 030 = e (14 a (e - 1)) ©)
j=0

where @, (u) = ™ is the CF of the RV m, = u. Thus, according to Eq. (9) and
Lévy’s correspondence theorem, Eq. (6) immediately follows. In a similar way,
using Eq. (4), for the CFs of the series (y;) one obtains:

Py (W) = P (Wpe(w) = e (1 4 g (e — 1)) (10)

Applying again Levy's correspondence theorem to the last expression, Eq. (7)
immediately follows.

To prove the convergences in Egs. (8), let us notice that according to Egs.
(9) and (10), the CFs of RVs m;/t and y;/t, when t > 0, are as follows:

u tup _Alu| ‘
(pm(?,t)zet : 1+ac<e t —1) ,
u up—2Alu| _Alu] ‘
<Py(?;t)=e t ' 1+ac(e t —1) .

Taking the limit values, when t = +o0 and u € R is a fixed (but an arbitrary)
value, it is obtained:

t
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i om (226) = tim oy (426) = tim (14 (e 21))
dimon (56) = im0y (.0) = Jim (14 ac e

t
— lim (1 _ acllu|> _ e_ac/uu"

t—>+oo t

The last expression represents the CF of the Cauchy (0, a.4) distribution, and both
convergences in Eq. (8) are confirmed. m

Remark 2.1. The uncorrelated series ({;) can be interpreted as a ‘new’ innovation
series with ‘occasional’ zero values. Their corresponding CDF:

Fz(x) = acFe(x) + (1 — ac)Fo(x)

is obviously continuous almost everywhere, with the sole exception at x = 0, where
the jump of size 1 — a. occurs (see, e.g. Stojanovi¢ et al. [19]). This CDF is the
mixture of Cauchy and discrete distribution concentrated at zero, which we call the
Contaminated Cauchy Distribution (CCD). Also, the asymptotic relations in Eq. (8)
indicate that series (m;/t) and (y;/t), generated by non-stationary time series
(m;) and (y;), converge to the Cauchy distribution, when t — +o0. These can be
easily observed by the convergence of CFs ¢,,(u/t,t) and ¢, (u/t,t), as shown

imFig. 1. m

)

Fig. 1. Modulus convergences for CFs ¢,,,(u/t, t) and ¢, (u/t,t), t = 1,2, ...,500.

In the following are presented the asymptotic properties of some other linear
transformations of the non-stationary CSB series (m;) and (y;), also related to the
Cauchy distribution.

Theorem 2.2. Let us define, for an arbitrary a = 1, the a-mean time series.

t t
_ 1 — 1
Mow =iz ) myr Foa =2 )00
j=1 j=1

where (m;) and (y;) are the non-stationary time series given by Eqs. (2) and (4),
respectively. Then, the following statements are valid:
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i) When 1<a <2, the series My, and Y., are asymptotically Cauchy
distributed, i.e., the following relations hold, when t — +oo:

_ aAt? @
M., ~Cauchy <ut1‘“,cT>,

_ a.At*"«
Yi.q~Cauchy (utl_“,ﬁtl"“ +— 5 > (11)
i) When a > 2, the series My,q and Yy.q vanish asymptotically, i.e.,
_ 4 _ a
Mt;a' - IO' Yt;a - IO; t > +oo. (12)

Proof. Firstly we prove the convergence in Eq. (11) for the series M;.,. Using the
definition of series (m;), given by Eq. (2), it is obtained:

t

1 1 t Jj—1 1 t—-1
Mg =t_azmj =t_"‘z mO+ZQk£k =tz tmo"‘z(t_j)quj
k=0 j=0

j=1 j=1

t
— tl—am + Z i(
k=1

Therefore, M,., is the sum of mutually uncorrelated RVs {;_, when k = 1, ..., t.
According to the well-known theoretical facts about the CFs, for the CFs of the RVs
M., one obtains:

t

u : ku - _ Aklul
ont0 = O] T () e T o )
k=1

k=1

Now, let us denote the function:

t
Yy, t,a) = negq,(ut) = uptt=% + z filu, t, ), (13)
k=1

Ak|u|
wherein f, (u,t, @) == In [1 +a, <e_ i — 1)] Using the asymptotic relations:
In(1+x)=x+c(x), e*—1=x+ o), x -0,
for t - +o0 and fixed (but an arbitrary) u € R, we get:

- Akl L aMklul
fk(u't;a)=ac<e G —1)+m<(t w) =-——7

where ¢(z) — 0 and ¢4 (z) - 0, when z — 0. Substituting the last expression in
Eq. (13) follows:

+ 0, (t™ %),
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)

Yu(u,t,a) = iuut!™®

a; A
= juutt~% — ﬁ t(t+1)|u|+cr(t1 “u),

and taking t — +o0, one obtains:
{iu,utl‘“ —aAt* ™ *ul/2, 1<a<?2
0, a > 2.

wM (u, t, a)~

Thus, replacing them into CFs @jz.,(u, t), the first asymptotic relation in Eq. (11)
is easily obtained.
A similar procedure can be conducted for the series Y.,. Using the
previously proven facts and Eq. (4), we find that:
t t k t—1 e
Yia = Z(m] + s]) M., + =t1"%m t—a{t_k + z ;;k

]:1 k=1 k=0

_ tl-a _t
=t m0+t“+

Since &_g, k =0,1,...,t, are mutually independent RVs, the CFs of Y, are
obtained as follows:

u (k + Du
ot =on o ) ][0 -0 () o (412
upet-a_Aul _Alu _Ak+D)ul
= eluutl @ | | [(1 — ac)e " fa.e ——T ]

i A|u| t+l _Aklu|
e () [ ()
k=

Applying the same procedure as above, for the function ¥y (u, t, a) = In @p.,(u, t)
we have:

t
At + D|u _Ak|u|
Yy(u, t,a) = iupt*~* — A+ Diul + Z In [1 +a, <e 7 — 1)]

ta
k=1

e _ACH 1)|u|

= iuu

Z(klul + 0 (t)

A(t+1)|u| aCA £+ Dlul + o (8.

t® 2t
Taking t — +o0 in the last expression, one obtains:

= juut!~% —
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uutt=% — A1 %u| — a At> %ul/2, 1<a<?2
wY(u; tl a)~

0, a>2,
and replacing this expression into CFs @y, (u, t) the theorem is completely proven.

Remark 2.2. The previous theorem gives important features of the non-stationary
CSB series, that is, shows that series (m;) and (y,) are asymptotically closed for
the Cauchy distribution under some linear transformations. The case of a = 2
should be especially emphasized as an interesting one, since relations in Eq. (11) in

that case give:
1 - d a:A 1 - d a:A
t—Zij—>Cauchy(O, 5 ), t—ZZyj —>Cauchy<0, > ),
j=1 j=1

j
t > +oo. (14)

This is a generalized version of the central limit theorem for the so-called stable
distributions (see, e.g. Campbell et al. [2, pp. 778]). m

At last part of this section, let us define another CSB series, the so-called
increments:

Xt =YVt — Yt—-1, t = 1,...,T. (15)
In accordance with Egs. (1), (2) and (6), we can represent this series as:
Xe=¢6 — 0181, (16)

where 8, =1 —q, = I(¢%, < ¢). Obviously, the series (X,) is a stationary
stochastic process with a random coefficient 8;, and it operates in two modes:
a) Emphasized fluctuations of the series (&) in the previous time moment
implicate 6;_; = 0, and Eq. (16) becomes X; = &;.
b) If €% ; do not overdraw the critical value c, it follows 8,_; = 1 and X, is
given as a linear, integrated MA(1) process X; = & — €_1.
For these reasons, one can consider the series (X;) to be an ‘optional” moving
average (MA) stochastic process and, therefore, express its key stochastic
properties in the following way:

Theorem 2.3. Let (X;) be the CSB series defined by Eqs. (15) and (16). Then, for
anyx € Randt =0, 1,...,T, the CDF of the RVs (X,) is given by:

Fx(x) = P{X; <x} = (1 = bo)Fe(x) + b F(x), (17)
where b, = E(8,) = P{e?>.; < c} =1—a,, and F.(x), F,.(x) are, respectively,
the CDFs of the Cauchy (0, A) and Cauchy (0,22) distributions.

Proof. Similarly as above, let us define the series of uncorrelated RVs n, = 6, ¢,
t =0,1,...,T. Using the conditional probabilities, for the CDF of the RVs (&;) one
obtains:
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Fn(x) = P{T’t < .X,'}
= P{n, <x|6, = 1}- P{6, = 1} + P{n, < x|6, = 0} - P{6, = 0}
= P{e; < x}-P{6, = 1} + P{x > 0} - P{6, = 0}
= bcFe(x) + (1 — b)Fy(x).

According to this, the CF of the RVs (1;) is obtained as follows:

+0o0 +00
@ = [ e = | e b+ (1= bR
= bc(pe(u) + (1 - bc)(Po(u)
=1
+ b, (e~
- 1). (18)
According to Eq. (18), for the CF of the series (X;), given by Eq. (16), we get:
ox (W) = @(w) - o, (—u) = (1 — b e Ul + p =220, (19)

Thus, Eq. (17) immediately follows by applying the Levy correspondence theorem
to Eq. (19). m

Remark 2.3. Note that by differentiating Eq. (17), we obtain the PDF of the
series(X;) as follows:
(l—bc 4 2b, )'.

x2 + A2 x2 +4)2

dF,(x) +h dFpe(x) A
dx  dx

fx(x) = (1—-b.)

3. Parameters estimation. Empirical characteristic function method

In this part, we estimate the unknown parameters of the CSB process, that
is, the critical value (c) and the scale parameter (1). For that cause, we denote
further 8 = (b, A1)’ and use the increments (X;), which, as already mentioned, are
the only observable and stationary series of the CSB processes. Also, this series has
a similar structure to linear MA processes, but with Cauchy distributed innovations
(). The Cauchy distribution is peculiar purpose of its heavy tail and the difficulty
in estimating its parameters (see, e.g. [12]). For instance, the moment-based
estimation procedures cannot be applied because the mean and variance of the
Cauchy distribution do not exist, while the maximum likelihood estimators (MLEs)
require complex calculations. Therefore, here we propose the empirical
characteristic function (ECF) method, based on matching the ECF with the
theoretical CF of the stationary series (X;).

The ECF method was implemented in time series analysis by the pioneering
work of Knight and Satchell [10], and later examined in detail by Knight and Yu
[11] and Yu [24]. Thereafter, some extensions of CF-based estimators are
discussed, e.g., in Meintanis [14] or Carrasco and Kotchoni [3]. Following these
ideas, an ECF procedure similar to those in Stojanovi¢ et al. [18,20] is described
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here. It is worth pointing out that the main preeminence of the ECF method is the
fact that the theoretical CFs are uniformly bounded, which implies the numerical
stability of the estimators obtained in this manner. Furthermore, in accordance with
the bijective correspondence between the CFs and their corresponding CDFs, the
ECFs retain all the 'information' present in the sample. In that sense, the general
definition of the CF of order r > 1 can be given as follows:

Definition 3.1. Let u= (uq,..,u,) €ER" and Xgr): = Xs) o, Xpyr1)', t=
0,1,..,T —r+ 1, be the overlapping blocks of the series (X;). The r-dimensional
CF of vector X gr) is given as follows:

<P)((r)(u; 0):=E [exp(iu’XET))] =
Elexp(i Xj— wiXerjo1)] (20)

An explicit expression for the CFs of increments (X;) is given by the following
statement:

Theorem 3.1. Let (X,) be the series introduced by Eqs. (15) and (16). Then, the
CFs of order v € N of the r-dimensional stochastics process (X Er)) are given by:

r—1

0 @;0) = el | [[(1 = e Al 4 poe~Huvinl], 21)
j=0

where uy = 0 and b, = P{e?_; < c}.

Proof. Note first that, according to Eq. (19), the statement is obviously valid in the
case when r = 1 and u; = u. Now, suppose that r > 1 and denote:

r—1
L(u;0) = exp(iu’Xgr)) = exp iz Ui Xey
7=0
r—1
= exp iz uj+1(5t+j - 9t+j—15t+j—1)
7=0
r—1

= exp || UrEeyr—1 T Z(uj - 9t+j—1uj+1)€t+j—1
j=0
According to the last expression and Egs. (18) and (20), the r-dimensional CF of
the series (X Er)) is obtained as (p)((r) (u; 0): = E[£L(u; 0)], and Eq. (21) immediately
follows. m

Further, let us denote X;: = {X;, ..., X1} as some realization of length T €
N of the increments (X;), as well as r-dimensional ECF matching them as:
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1 T-r+1
~ (1) — .1y (T)
Pr (w) '_—T—r+1 Z exp(LuXt )

As previously stated, the main objective of the ECF method is to minimize the
‘distance’ between the theoretical CF and its corresponding ECF. The appropriate
ECF estimators are then obtained by a minimization the following objective
function:

2

PO = [ g@lel’we) - o] du (22)
RT

with respect to the parameter 8 = (b, 1)’. Here, (p)((r) (u; 0) is the CF of the order

r =1, defined by Eq. (20), du := du, ---du,, and g: R" - R* is some weight

function. Therefore, the ECF estimates are solutions to the following minimization

equation:

67 = argmin s7”(6),

where © = (0,1) X (0, +0) is a non-trivial parameter space. According to some
general results of ECF-asymptotic theory (see, e.g., Knight and Yu [11] or
Stojanovi¢ et al. [18]), strong consistency and asymptotic normality (AN) of the
ECF estimators, under some regulatory conditions, can be proved. Moreover, the
above procedure holds if CF is of order r > 1 at least equal to the number of its
parameters. For that purpose, we base the estimation procedure on the two-

dimensional CF of the vector series X §2) = (Xt, X¢4+1)'. The objective function S;z)
then represents a double integral with weight g: R - R*, and it can be numerically
calculated by using some cubature formulas. Let us notice that, according to Eq.
(21), the two-dimensional CF of the series (X;) can be expressed in an explicit form
as follows:

0P (uy, uy; 0) = ezl [1 4 b (e~ Mal — 1)][(1 — be)e Al
+ be M), (23)

and the appropriate ECF is the real-valued function:
- 1 _
P12 (uy, 13 0) = =TT cos(uiX, +upXeir)]. (23)

As an illustration, in Fig. 2 are shown 3D plots of the two-dimensional CF and the
corresponding ECF of increments (X;), when T = 1500, b, = 0.5, and A = 1.
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CF ECF

L

s

V1

Fig. 2. 3D plots of the two-dimensional CF (left) and the corresponding ECF (right) of the series
XEZ) = (X, Xeq1)"-

4. Numerical simulations & application

In this part, we present the implementation of the previously mentioned ECF
procedure for estimating the parameters 8 = (b.,A)" of the increment series (X,).
Thereby, according to Eq. (5), estimates ¢ of the critical value can be easily obtained
by solving the following equation (with respect to ¢ > 0):

b, +1 2 7h
P{e? <c}=bh, & é=lF;1<CZ )l =,1tg<26>. (24)

Using the aforementioned results, primarily Egs. (22) and (23), ECF estimates can
be calculated by minimizing the following double integral:

2

sP0) = | gl wo) - 60| du. (25)
R

Here, g(u) = g(uy,u,) = exp(—(u? +u)) is the exponential weight, which

places more weights around the origin, in accordance with the fact that the CF at

this point contains the most information about the PDF of the estimated model. In

order to solve integral in Eq. (25), the following numerical approximation is used,

based on the N-point Gauss-Hermitian cubature formula:
N
16,9 = || g u)f G w) durduy = ) s (v15,0:). 26)
R .
j=1

Here, (v1 nz ]-) are the cubature nodes, and w; are the appropriate weight
coefficients, obtained using the package “Orthogonal polynomials” [4] in
WOLFRAM MATHEMATICA software. In our case, the objective function in Eq. (25)
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1s minimized using the cubature formulas in Eq. (26), with N = 81 nodes and using
the R-function "nlminb".

Further, two sample sizes T = 250 and T = 1500 have been considered,
and N = 500 independent realizations {Xj, ..., X7} of the series (X;) with Cauchy
innovations (&;) were generated for both of them. True parameters values are b, =
0.5 and ¢ = A =1, and their initial estimates were taken randomly from the
uniform distributions U(0,1) and U(0,2), respectively. Table 1 shows the obtained
numerical results, that is, the mean values (Mean), minimums (Min.), maximums
(Max.), the mean-squared estimation error (MSEE), along with the values of the

objective function Sf)(e). It is evident that ECF estimates converge, because the
MSEE and 57(12) (6) values decrease as the sample size increases. In addition, notice

that the estimates of the critical value ¢ > 0 have a slightly higher MSEE, as a
consequence of the two-step estimation procedure, based on Eq. (24).

Table 1.

Estimated parameters obtained from Monte Carlo simulations of the CSB process. (True
parameters are: b, = 0.5, c =41=1)

Sample size T =250 T = 1500

Parameters b, c A Séz) b, c A S;Z)
Min. 0.3006 0.6956 0.7019 2.63E-06| 0.3255 0.7274  0.7257 1.84E-06
Mean 0.4974  1.0710  1.0059 3.21E-05| 0.4989 1.0582 1.0054 2.67E-05
Max. 0.6995 1.3652 13140 1.39E-04| 0.6743 1.2987 1.2744 9.00E-05
MSEE 0.0136  0.0403  0.0290 - 0.0100  0.0303  0.0248 -

Thereafter, in order to display the practical application of the CSB process,
the fitting of the dynamics of the total trading values of QUALCOMM Incorporated
Common (QCOM) stocks is described. The sample data set is taken on the basis of
official stock market quotations from the National Association of Securities Dealers
Automated Quotations (NASDAQ) [15]. In this way, five-year historical data, from
May 29, 2018. until May 24, 2023. are considered as univariate time series of the
length T = 1257. In addition, the so-called log-volumes, obtained as the natural
logarithm of the total monetary value of the trading volume, are observed as the
basic time series:

v =InP-Vy), t=0,1,..,T,

where (P;) and (V}) are, respectively, price and trading volumes of QCOM stocks.
The use of log-volume, as pointed out in [17], changes the interpretation of activity
shocks, because the growth trend does not affect unexpected values in their
dynamics. Additionally, the increments of CSB process can be expressed as
follows:

Vi

Py
X, =y, —vy,_ ;1 =ln——+ In——, t=1,..,T,
t =Yt — Ve-1 nPt—l th_l
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that is, they represent the sum of the log-returns of stock prices and trading volumes.
Thereafter, by using Eqgs. (2)—(4), the series (m;) and (&;) can be obtained by the
following recurrence procedure:

{ & = Ye — My,

) @27
my = my_q + &_11{e?, = ¢}.

Here, ¢ is the estimated critical value, obtained according to Eq. (24), and starting
values for the iterative procedure in Eq. (24) are g5 = €_; = 0. Using the well-
known facts about the Cauchy distribution (see, e.g. [12]), the median i of the series
(v:) 1s used as an estimate of the parameter u. At the same time, using the modelled
values (&), given by Eq. (27), the mean absolute deviation (MAD):

T
~ 1 .
/1=? E le — Al
t=1

is taken as the initial estimate of the scale parameter A. The ECF procedure
mentioned above is then applied and thus obtained estimated parameters values,
along with the key statistical indicators of the CSB series, are shown in Table 2.

Table 2.
Estimated parameters and key statistical indicators of the QCOM stocks data
Parameters | Estimates .StaFlsncal CSB series
indicators () (my) (Xt) (0)
b, 1.31E-03 | Min. 19.115 19.115 -1.5517 -1.5517
c 6.79E—04 | Max. 23.236 23.235 2.2832 3.0026
A 0.3033 | Median 20.632 20.231 -0.0212 -0.0186
S;Z) 9.89E—05 | MAD 0.4169 0.3327 0.3306 0.4067

Based on these results, it can be noted that the estimates of the log-volumes
(v¢) and the martingale means (m;) are quite ‘close to each other’. Also, the
increments (X;) and the innovation series (&;) have similar estimated values. Note
that this is a consequence of previous theoretical results given in Theorems 2.1. and
2.3. Finally, a ‘small’ estimated values of parameters b, (and c) indicate that their
true values are b, = ¢ = 0. Therefore, the series (X;) and (g;) become equal, which
means that (X;) have a Cauchy (g, 1) distribution. This implies:

Xe =YVt =Vt-1=& & Ye=Ye-1t &
that is, the series (y;) has independent increments. Thus, according to Eq. (1) it
follows y;_; = m;, and all of the 'past information' is contained into previous
realization of (y;). It makes the overall statistical analysis simpler, because
according to Theorem 2.2, RVs (y,) then have a Cauchy (y, At) distribution. As an
illustration, the empirical PDFs (given by histograms) and the theoretical PDFs
(given by lines) of the CSB series (y;) and (X;), respectively, are shown in Fig. 3.
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Fig. 3. Empirical distributions of real-world data (histograms) and their corresponding PDFs fitted
with Cauchy distributions (lines).

5. Conclusions

The manuscript presents a new nonlinear stochastic model, named the
Cauchy Split-BREAK (CSB) process, convenient for empirical analysis of time
series with persistent and pronounced fluctuations. Stochastic characteristics of the
CSB process are investigated, with special emphasis on its asymptotic properties.
We implemented a procedure based on the ECF method for the CSB model
parameters estimation. Thus obtained results were applied in modelling the
dynamics of the total value of the trading volume of QCOM shares. It is worth
noting that, with certain modifications, similar stochastic models as well as
estimation techniques can be used to fit some related non-linear time series.
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