
U.P.B. Sci. Bull., Series C, Vol. 75, Iss. 1, 2013 ISSN 1454-234x

ADAPTIVE SOFTWARE INTEGRATION MODULE USING
NEURAL NETWORKS

Vasile CORNIŢĂ1, Rodica STRUNGARU2, Sever PAŞCA3

Articolul prezintă un modul software avansat de integrare între două sisteme
proprietare utilizând tabele temporare şi reţele neuronale în scopul optimizării
interogărilor SQL de integrare. Modulul software de integrare propus primeşte
interogări SQL, le analizează şi încearcă să optimizeze timpul de execuţie al
acestora. Un prim aspect important de luat în considerare la realizarea unei soluţii
software de integrare între două sau mai multe sisteme îl reprezintă modalitatea de
transmisie a datelor şi entităţilor(obiectele de business) necesare integrării efective,
ţinând cont de aspecte specifice sistemelor de intregrat cum ar fi: organizarea
structurilor de date, modalităţi de extragere a datelor, interogări dinamice. La nivel
de companie, atunci când deja există soluţii software proprietare deja achiziţionate
pentru anumite domenii specifice, dar care nu funcţionează unitar; integrarea între
sistemele deja existente este o soluţie viabilă atunci când costurile achiziţionării
sau dezvoltării unui sistem proprietar cu toate funcţionalităţile incluse sunt mult mai
mari, comparativ cu dezvoltarea unui modul de integrare specific.

This paper presents an advanced software integration module between two
proprietary systems using temporary tables and neural networks for SQL integration
requests optimization purpose. The proposed software integration module receives
SQL queries, analyzes them and tries to optimize execution time if necessary. One
important aspect to consider when realizing the integration component between two
or more systems is the data structure passing technique, taking into account specific
system implementation issues like: data structures organization, storage, retrieval
and dynamic requests. Nowadays there are many dedicated applications for specific
business to take into account, but when there is no such software application with
all required functionalities; integration between existing proprietary software
applications is to be considered, especially when the cost of development or
purchasing of a new system with all required functionalities is significantly higher
than developing a necessary software integration module.

Keywords: enterprise application integration, SQL query optimization, database

management system kernel, neural networks

1 PhD. Student, The Department of Applied Electronics and Information Engineering, University

POLITEHNICA of Bucharest, Romania, e-mail: cornita_vasile@yahoo.com
2 Prof., The Department of Applied Electronics and Information Engineering, University

POLITEHNICA of Bucharest, Romania, e-mail: rodica.strungaru@elmed.pub.ro
3 Prof., The Department of Applied Electronics and Information Engineering, University

POLITEHNICA of Bucharest, Romania, e-mail: pasca@elmed.pub.ro

102 Vasile Corniţă, Rodica Strungaru, Sever Paşca

1. Introduction

Nowadays, specific businesses has acquired production software
applications, mostly when necessary and targeting a set of particular requests. As
a business expands, it appears the need for connecting together geographically
separated departments and their associated business processes.

As corporate dependence on technology has grown more complex and far
reaching, the need for a method of integration disparate applications into a unified
set of business process has emerged as a priority. After creating islands of
automation through generations of technology, users and business managers are
demanding that seamless bridges be built to join them. In effect they are
demanding that ways be found to bind these applications into a single, unified
enterprise application. The development of Enterprise Application
Integration(EAI), which allow many of the stovepipe applications that exist today
to share both processes and data, allow for an answer to this demand. [1]

From practice, when considering the integration between two software
applications, let’s denote these applications AppA and AppB, good results are
obtained when the integration is carried out by the software company that
produced either, AppA or AppB, because only one application data details are to be
learned from scratch.

In order to integrate two software applications, two important aspects are
to be taken into account:

• The data model: The exchanged data are in fact business documents and
not simple character strings. It is highly probable that these documents
(the two application documents) will contain lots of identical data, but it
will not necessary be in the same format. A conversion job from one
model to another is therefore needed.

• The communication system: In this context it is very important the
communication protocol used to exchange data. Here will come to the
role of middleware. A large part of software application integration is
about the different technologies and techniques implementing this
exchange. [2]

Typically, in internet contexts, the protocol used is HTTP (Hypertext
Transfer Protocol).

Also data availability and data security policies have to be taken into
account when integrating software applications.

The main purpose of the proposed software integration module(SIM) is to
provide with real time data from a production application that formulates a
considerable number of SQL queries per second to a relational database, to the
proprietary business management reporting tool application.

Adaptive software integration module using neural networks 103

The integration module can be configured to start manually or
automatically, and, in case of a system failure the module is configured to start
automatically.

The module comprises functions for giving real time data to reporting part
of the management application as well as commands formulated by the
management application for the production system to execute.

The production system logic is controlled by either the business
management application (external control via the integration module) or by its
own logic module if activated.

The integration module uses temporary tables as buffers in order to
exchange data between production application and business management tools.
Reading and writing from/into these tables is done with access rights for both of
the applications. The software integration module is a part of a database system
kernel server which works in a conjunction with a client application that connects
to the mentioned server and formulates requests.

2. Database Management System Kernel (DBMSK)

The database management system kernel represents the general server
which incorporates the software application connection-integration configurable
module.

The server uses a typical architecture. The remote client sends a request to
the Database Server. For a particular request, the server decides on and takes the
appropriate action.

This can be represented graphically as below:

Fig. 1. DBMSK general architecture

The main functions of each block are explained below:

• Request processor takes as input a request expressed in structured
query language and interprets it. After all request characteristics
have been determined, it is up to the execution block to act
appropriately.

Request

Response

 Database

Request
processor

Execution
block

104 Vasile Corniţă, Rodica Strungaru, Sever Paşca

• Execution block communicates with both the request processor and
the Database layers in order to execute the client request. It must
be mentioned that this layer executes when the request
characteristics have been determined by the request processor layer
and only then.

Both, requests and responses can take message or file transfer forms,
depending on the specific context.

A simplified graphical representation of the Client application architecture
is depicted below:

Fig. 2. Client general architecture

As it can be easily seen, all that happens is driven by user commands,

making use of a well-designed graphical user interface.
The command processor is a logical entity that transforms client requests

into an appropriate format for the server to understand and process.
Request can take the following two forms:
• structured query language requests
• standard requests

All these requests are transported between client and the server
encapsulated in a general request type, this ensuring both, flexibility and
extensibility for the request transport level. The communication mechanism
between client and server uses both messages and files. The data interchange
operation is realized via file transfer making use of standard XML language.

For implementing the Server and Client software applications general
programming books [4] [11], C++ programming books [3] [5] [8] [12], database
books systems [6] [7] [8] and socket programming books [9] [10] have been used.

3. Database software integration module

The demand of the enterprise is to share data and processes without having
to make sweeping changes to the applications or data structures. Only by creating
a method of accomplishing this integration can Enterprise Application Integration
be both functional and cost effective. [1]

In general, software application integration must take into account all
application specific aspects, communication protocol and various ways of storing

reply

command

GUI

Comman
d

 Processorresponse

request

Adaptive software integration module using neural networks 105

data structure (proprietary methods for manipulating data or general relational
databases like Oracle, Microsoft SQL Server).

We present in Fig.3 the general architecture of a production system.
Generally, the integration must be accomplished in order to give a reporting
system or management software application with real data from the production
system.

Fig. 3. Production System – General Architecture

Some important aspects considering figure above worth to be mentioned:
• The DBMSK kernel(server) and associated client application

described in previous section performs the Real Time Integration
Service task via contained software integration module (SIM).

• The Real Time Reporting Service represents the management
application tool that monitors, triggers commands and receives
feedback from production applications Production App1 … Production
Appn.

In considered integration, production system uses a relational database to
which several production applications formulate continuously SQL requests.
These requests are general request made by production application like: insert,
select, update, delete. It is well known the fact that every relational database
management system kernel achieves lock database operations on some specific
table when executing specific SQL requests.

In this context, appears the problem of generating data for management
applications via a real time software integration module component of the
proposed database management system kernel.

A very important aspect is that management data is needed on a constant
base for decision purposes. The client application sets the DBMSK kernel
configuration such as business data representations, integration workflow,
representing mainly a configuration interface for the DBMSK kernel.

106 Vasile Corniţă, Rodica Strungaru, Sever Paşca

Proposed software integration module (SIM) is capable to connect to
various proprietary database management systems (DBMS) like Oracle, MSSQL
and MySQL, using database specific ODBC drivers (Open Database Connectivity
- a standard database access method developed by SQL Access group in 1992
which create the possibility to access any data from any application regardless of
which DBMS is handling the data). The main advantage of using ODBC is that
after connection realization the main focus is on the actual business logic of the
software application to be developed, not on specific DBMS commands syntax.
As database connection method, proposed SIM is using specific DBMS
connection string. When specific SQL Queries are formulated to SIM, is its
responsibility to execute mentioned queries in a reasonable amount of time.

The module’s integration part main responsibility is to get the desired data
from the production system taking into account specific data format and
production business logic and provide the management software application with
necessary data in required format and according to management application’s
logic. To execute this function the kernel server formulates SQL queries to
production relational database. The problem to solve is that due SQL requests
generated by production software application: App1 …Appn, the production
relational database is overloaded and kernel server SQL requests can not be
executed in a specific, fixed period of time set by kernel server at query setup
phase. To solve the problem, dynamic values for that timeout period of time,
depending on production relational database overload are to be determined for
specific periods of time.

The integration SQL has to get required data from tables pertaining to
proprietary software production application:

Select [Field1, Field2, Field3, Field4 … Fieldn]
From
 T1
 Inner join T2 on [specific fields]
 Left join T3 on [specific fields]
 …
 Inner join Tm on [specific fields]
 Where [Integration condition]
where:
• T1, T2, … Tm represent specific tables associated with production

application.
• [Field1, Field2, Field3, Field4 … Fieldn] represent required integration

fields from production application.
• [specific fields] represent fields on which join between tables is carried

out.

Adaptive software integration module using neural networks 107

• [Integration condition] represents specific SQL integration condition,
used to select integration data.

The integration SQL is set via the DBMSK kernel client, and is executed
in the SIM module of the DBMSK kernel. Its main task is to provide feedback to
the proprietary management application on production application system run.
Those fields: Field1, Field2, Field3, Field4 … Fieldn, returned by the integration
SQL does not change over time. These fields represent data/business objects that
are provided to the management application in order to track and manage the
proprietary production system.

The data generated using integration SQL is used to populate the tables of
management application. Production application usually writes specific data to its
associated tables.

As production applications generated a considerable amount of data as a
daily basis, which is reflected in the data composition of the associated tables (the
number of records in production application’s tables is growing faster),
integration SQL execution time does not satisfy integration time requirement.
Proper index structure was considered when executing integration SQL.

A solution would be to change significantly database structure associated
to production application, but this is not applicable in the case of proprietary
software system. Also, the cost to design and build from scratch the whole softwar

Thereby, a timestamp field will be added to large tables pertaining to
production application. Let us denote this field TS. This is a field used only by
software integration module. After the integration for a particular set of data is
achieved, the corresponding TS field will be updated with the integration moment
of time (this is a mark that tells us that a particular row of data has been
integrated, feedback has been given to management application on that particular
row of data). We also need an index associated to this field in the database.

The modified integration SQL takes into account the TS field. The extra
condition is as follows:

• TS > T1
• TS > T1 and TS <=T2

where T1 and T2 are specific moments of time(time stamps) for which the
integration will be carried out.

Depending on the database load, we must adjust integration SQL query
time and T1, respectively T2 when necessary in order to successfully execute
integration SQL in a reasonable amount of time (the target SQL execution time is
at least 12 seconds).

The proposed strategy concerning the whole integration process is to
execute the integration SQL in a maximum amount of time of 12 seconds via
using previous SQL execution times, timestamp limits(T1 and T2) and timeouts in
order to determine new timeout and timestamp limits for current integration SQL

108 Vasile Corniţă, Rodica Strungaru, Sever Paşca

execution. In order to achieve this, a typical back-propagation neural network
[13][14], capable of solving the problem in order to constantly adjust query
timeout at setup phase and T1, respectively T2 timestamps, based on previous SQL
execution time on the production database, is used.

The neural network will have as input T1 and T2 corresponding to the

integration moment of time, previous SQL query execution times, previous SQL
query timeouts (the time interval for which the kernel server will wait for a
response from production relational database for a specific query). The output
layer will be used to adjust timeout interval for the integration module, T1 moment
of time and T2 moment of time when necessary. New T1 and T2 values are used to
modify Where [Integration condition], in order to reduce the integration SQL
execution time.

6. Results and discussion

Results obtained without the SQL parameters adjustment described above

are presented in the following table:
Table 1

Integration static SQL execution time from production system
No. Days 4 11 18 21 31 44 51 60

Seconds 2 5 13 18 21 32 44 >56

As it can be seen from this table, after a production system run for 60

days, the integration SQL(without the SQL adjustments with corresponding time
stamps T1,T2) does not execute in proper time, with negative impact on
management system whose decision rely on reporting services for which the
integration is realized. The unadjusted SQL execution time increases due to the
fact that the number of rows of associated tables (those necessary to give feedback
to management application) increases (due to large number of inserts performed
by proprietary production applications). Technically, with that dynamic SQL, a
limitation in the number of rows in the associated tables on which integration
SQL is performed, is achieved, which translated in a small execution time of the
integration SQL.

Prev Exec Time

New Time Out

New T2

New T1

Prev Time Out

Prev T2

Prev T1

Adaptive software integration module using neural networks 109

A significant impact concerns the production system’s tasks execution
time, because the execution of an SQL instruction implies specific tables locks
and the production system is slowed.

With the proposed adjustment, SQL execution time is between 2-10
seconds, depending on the database load, allowing in this way a reasonable
amount of time for tracking the production system (which translates in feedback
provided to management application) and taking required decisions if necessary.

7. Conclusions

Presented application pertains to software application integration class.
Proposed method for SQL optimization is useful when one (or more) proprietary
system table comprises a large amount or records and the actual integration is
realized using temporary tables acting as buffers. Using SQL parameters
modification via proposed neural network the integration SQL successfully
executed in a period of time 3-10 seconds. This execution time compared with
static integration SQL execution time is much lower.

The neural network, the server kernel and client as well as the described
connection-integration module were implemented in C++. As compared to other
proprietary integration systems (IBM, Oracle, SAP) proposed solution, besides
implementation cost has the advantage of having less middleware levels which
translates in smaller execution times, but has not many configuration and
connection options like proprietary systems mentioned above.

The Database Kernel, which contains the software applications integration
module, was designed with futuristic thoughts. Therefore, it is suitable for any
kind of application that involves custom data storage, retrieval and processing. In
addition, the file transfer component of the server can be used in remote backup
applications.

R E F E R E N C E S

[1] D.S. Linthicum, Enterprise Application Integration, Addison-Wesley Professional; first edition,
1999

[2] D.Serain, Middleware and Enterprise Application Integration: The Architecture of e-Business
Solutions, Springer; 2nd ed. Edition, 2002

[3] S. Salleh, Y. Albert Zomaya, A. Sakhinah Bakar, Computing for Numerical Methods Using
Visual C++, 1st edition, 2007

[4] H. Thomas Cormen, E. Charles Leiserson, R. Ronald Rivest, Introduction to algorithms, 2nd
edition, The MIT Press, 2001

[5] B. Stroustrup, The C++ Programming Language, 3rd Edition, 2000
[6].A. Richard Bassler, J. Jimmie Logan, The Technology of Data Base Management Systems

College Readings, 3rd ed edition, 1976
[7] P. Rob, C. Coronel, Database Systems: Design, Implementation, and Management, Eighth

Edition, 2007

110 Vasile Corniţă, Rodica Strungaru, Sever Paşca

[8]. L. Robison, K. David White, Database Programming with Visual C++ in 21 Days , Pap/Cdr
edition, 1998

[9]. D. Roberts, Developing for the Internet with WinSock, Bk&CD-Rom edition, Coriolis
Group Books, 1995

[10]. J. Richter, C. Nasarre, Windows via C/C++ (Pro - Developer), 1st edition, 2007
[11]. A. Jones, J. Ohlund, Network Programming for Microsoft Windows, Microsoft Press, 2002
[12]. C. Douglas Schmidt, D. Stephen Huston, C++ network programming, 1st edition, Addison-

Wesley Professional, 2001
[13]. T. Munakata, Fundamentals of the New Artificial Intelligence: Neural, Evolutionary, Fuzzy

and More (Texts in Computer Science), 2008
[14]. J.Hawkins, S. Blakeslee, On Intelligence, Numenta Inc, 2005

