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DEEP LEARNING COMBINED WITH ATTENTION
MECHANISM FOR MULTI-TIME-STEP RUNOFF
PREDICTION MODELING

Jie LI}, Linli JIANG?®, Xing ZHANG?, Rongchuang YU*, Ligiang ZHANG?®,
Jiansheng WU®

Accurate runoff forecasting is crucial for flood prevention, drought
management, and overall water resources management. To enhance the
understanding of complex relationships within runoff data and improve forecasting
accuracy, we introduce a multi-time-step attention mechanism for the hidden layer
output of Long Short-Term Memory (LSTM) networks. This addresses the limitation
of traditional LSTM models, which cannot allocate weights based on the importance
of different time steps. Our proposed model, LSTM-TIMESTEP-ATT, is designed to
predict the daily runoff process for the next year. Using daily runoff and water level
data from the Guangxi Liujiang Bridge Hydrological Station between 2001 and 2010,
we compared our model with standard LSTM, multiple linear regression, and support
vector machine (SVR) models with a radial basis kernel. The results indicate that the
LSTM-TIMESTEP-ATT model exhibits superior explanatory power and predictive
accuracy. Specifically, it achieved the highest number of days with a relative error
within 20%, outperforming the other three models. These findings provide a valuable
reference for runoff predictions in the Liujiang River Basin, Guangxi, supporting
effective water resource management and flood forecasting efforts.

Keywords: long short-term memory network (LSTM), attention mechanism,
multi-step time series prediction, runoff forecasting

1 Introduction

Runoff forecasting is an important issue in hydrology, which is very
important for flood prevention and control, drought and other water resources
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management [1]. The runoff process is influenced by a variety of factors, such as
precipitation patterns, basin characteristics, topography, and human activities, and
is highly nonlinear and unstable. Traditional runoff forecast models often struggle
to accurately capture the complex relationships and nonlinear features in time series
data, leading to unstable forecast results or large errors [2,3].

Currently, runoff forecasting models are mainly categorized into process-
driven models and data-driven models [4]. The former possess certain tangible
significance, but the practical application is sometimes limited by the lack of
understanding of the hydrological process mechanism and the high data
requirements of the model [5]. The latter does not need to consider the actual
physical significance of the runoff process, however, they rely solely on examining
the correlation between input variables and output data to achieve runoff prediction,
research shows that the machine learning model and the deep learning model have
better results for runoff prediction [6-8]. Among them, Recurrent Neural Networks
(RNNs) [9] exhibit specific advantages in dealing with temporal sequence
prediction problems, but the relationship between the data before and after the day-
by-day runoff process tends to have a strong correlation, and there is a certain level
of association with the runoff of the present day and influencing factors of runoff
before the multi-day runoff, and the traditional RNN was found to be unable to store
the data for a long period of time during the actual training process, and it was also
found that the traditional RNN could not store the data for a long period of time.
for long-term preservation, and it is also found that the traditional RNNs are prone
to issues of gradient vanishing and explosion phenomena, which limits use of long-
term memory in practical applications [10]. In recent years, the proposed Long
Short- Term Memory (LSTM) neural network changes neural structure of
traditional recurrent neural network and solves the problems of long-term memory
loss and gradient instability of traditional RNN, thus, LSTM is adaptable to deal
with runoff forecasting and has received attention in hydrological forecasting [11-
13].

Due to the shortcomings of the LSTM model in dealing with long sequential
data forgetfulness and the inability to assign weights according to the importance
during the training process, an optimized LSTM incorporating attention mechanism
was constructed [14]. Attention mechanisms can selectively weigh the inputs
according to their different degrees of attention to effectively identify significant
features within inputs. Therefore, the incorporation of the attention mechanism in
runoff forecasting modeling can improve the model's attention to important time
steps and further enhance characterization ability and prediction performance of
this model.

Utilizing the daily water level and flow data measured at the Liujiang River
Bridge hydrological station, we have constructed a predictive model using a multi-
time step attention mechanism and LSTM deep learning neural network method,
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which is applied to the one-year daily runoff prediction of the Liujiang River in
Guangxi. This model, by incorporating the multi-time step attention mechanism to
highlight significant time steps, can better capture the long-term dependencies and
important features within time series data, thereby enhancing the accuracy and
reliability of runoff forecasting. It provides reference significance for the runoff
prediction of the Liujiang River in Guangxi.

2 Deep Learning Model Principles and Methods
2.1 Basic principles of the model

Recurrent Neural Networks (RNNs) is a mathematical model born
stemming from way of connection between neurons in human brain, which is very
good at processing sequence data. Although theoretically RNN is able to deal with
infinite long sequence information, in practice, due to problems such as gradient
vanishing and gradient explosion, it usually can only capture the information of the
last few time steps in the actual operation process, and this limitation makes the
RNN's effectiveness in dealing with long sequences limited.

A

Cer/ N\ G

@nh

ft it X CLN X

4
o [0 tanh (0]
_ twe twe fwe 0 -
h 1 \\\ 4 ht
N _
Xt

Fig. 1. Internal structure of LSTM cell

LSTM is a neural network modeling technique rooted in further
development of RNNs. LSTM controls the information by changing the hidden
layer structure, adding a conveyor belt"-like cellular unit state design, and allowing
the information to selectively pass through a "gate" design. LSTM adeptly
addresses prevalent issues of gradient vanishing and explosion encountered in
RNNS, ensuring model stability and accuracy when handling extensive temporal
sequences. Its proficiency in capturing long-term dependencies within sequential
data renders it an optimal modeling instrument for time series analysis, particularly
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in applications like hydrological series prediction. Fig. 1 shows the internal
structure of the LSTM cell unit.

The LSTM structure consists of three core gates, namely the forgetting gate,
input gate and output gate, in which forgetting gate reads the preceding output and
current input, Sigmoid activation function is applied to output a forgetting factor
ranging from 0 to 1. In this context, 0 represents 'fully discarded' while 1 represents
'fully retained'. This forgetting factor is utilized to regulate the extent of forgetting
the unit's state from the preceding moment [15, 16].

Forgetting gate formula is present in equation (1):

f, =O-(Wi°[ht—1ixt]+bf) (D

WhereW, is weight matrix input, b, is offset, and o is sigmoid activation

function.
Equation (2) represents input gate calculation:
I, = O-(Wi ® [ht—l’ X, ]+ bi) (2)

Where b, controls current input's effect on cell state.

The candidate memory cell calculation formula is displayed in equation (3):
6t :tanh(Wc .[ht—l'xt]+bc) 3)

Activation function takes charge in formulating a list of new, tentative
memory constructs tailored for this precise moment.

The formula for updating cell state at the current time is detailed in equation
(4): B

C,=f eC  +i *C, 4)

New cell state at this juncture, multiply immediately beforehand cell state
point by point by forgetting factor, if the point-by-point value is a value close to 0,
it means that the latest information is excluded from cell state's content. Current
new cell state value is obtained by obtaining the input gate output for point-by-point
summation.

Output gate supervises output of this cell state value and is calculated as
presented in equation (5):

O, =O'(W0 .[ht—l’xt]+b0) (5)
h, =0, e tanh(C,)

Current yielded data is calculated by an activation function (Sigmoid) and
then transformed by a function (tanh), hidden layer's ultimate output is forwarded
to next LSTM layer as its initial input.

As seen in Fig. 1 and the LSTM formulation, LSTM is designed to be more
adept at dealing with the problem of exploding or vanishing gradients. Although
LSTM has some advantages in areas such as time series prediction, LSTM may still
face the challenge of vanishing or exploding gradients when dealing with very long
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sequence data, which may sometimes exist insufficient to capture short-term
dependencies.

2.2 Time-step attention mechanisms

Attention mechanism serves as a useful tool in the domains of machine
learning and natural language processing, which simulates the process of human
attention and permits selective attention allocation to input segments by model [17].
In machine learning, if input series extends over a considerable length, it is difficult
for model to directly capture the important information at each position. By
introducing attention mechanism, this model is able to dynamically adjust the
attention according to different parts of input sequence with the intention of better
represent important content [18].

The time step attention mechanism is a method to enhance the attention to
different parts of the time series in a sequence model, and its core principle is to
acquire the importance or weight of every time step so that essential time steps for
prediction accuracy receive greater emphasis from the model. The introduction of
time-step attention mechanism allows for a more flexible and targeted approach to
capturing dynamic changes and trends in the time series. There are three key steps
in the model[19]: first, the model needs to calculate the relationship between each
time step and other time steps in the sequence, and use the score to indicate the
importance of the time step for the current prediction result; next, attention weights
for all time steps are normalized through the application of Softmax function,
ensuring their sum equals 1, indicating that different attention is assigned to
different time steps; finally, the model allocates different attention to different time
steps based on the calculated attention weights are weighted and summed to input
sequence to get ultimate output, so as to find out more attention to those time steps
that affect the prediction results to a greater extent. Fig. 2 illustrates the fundamental
principle of the time-step attention mechanism.
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Fig. 2. Time step attention mechanism

The formula for calculating the time step attention weights is shown in
equation (6).
e/ = tanh (\/Ve h, +U.y + be) (6)

The calculation formula of the attention weight coefficient is shown in
equation (7):
exp(e") (7)

M .
> exple)
i=1
The output value calculation formula is shown in equation (8):
Yt = (atl yt—l’atz Yior atM Yim ) (8)

Where, e[mquantiﬁes the extent to which current input is related to hidden

a;" = softmax (e{“ )=

layer's previous output, W, U, ,b, is the weight and bias of the attention mechanism,
o : : Mo,
OCtmlndlcates to enhance or weaken the input time-step data, {yt 7m} is the current
m=1

moment of the multiple time-step inputs, Y is the value of the attention time-step

data obtained by multiplying the weights with the corresponding time-step values,
indicates the degree of influence of the adaptive optimization of the various input
time-steps.
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3 LSTM-TIMESTEP-ATT Forecasting Model
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Fig. 3. LSTM-TIMESTEP-ATT network model structure
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In this research, LSTM model combined with a multiple time step attention
mechanism is employed to construct Guangxi Liujiang River runoff prediction
model, referred to as the LSTM-TIMESTEP-ATT prediction model, which mainly
contains an input layer, a time step attention layer, a hidden layer of LSTM network,
and a fully connected output layer. The model first performs a sliding-window data
transformation on the original time series, and takes the first four time-step
sequence values as model inputs. Subsequently, the input multi-step time series
values are fused with the LSTM network's preceding hidden state output, enabling
the time-step attention layer to derive weight coefficients for each time step relevant
to the current prediction, and then the optimized inputs combined with the improved
multi-step attention are used to calculate LSTM hidden layer output. Conclusively,
It is then passed through to fully connected layer for deriving ultimate prediction
outcomes. LSTM-TIMESTEP-ATT can adaptively adjust the weights of different
time steps in the input runoff sequence data through certain training, to ascertain
relative importance of different temporal factors within input multi-time step
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dataset that affect runoff volume, the model is employed. The schematic
representation of the LSTM-TIMESTEP-ATT network model is depicted in Fig. 3.

4 LSTM-TIMESTEP-ATT Model Experiment and Performance
Analysis

4.1. Experimental data

The daily water level and flow data of Liujiang Bridge measured by
hydrological stations were obtained from the observation files of Liuzhou
Hydrological Management Information System. A total of ten years and 3650 data
points from the period of January 1, 2001 to December 31, 2010 were accumulated.
The data were divided into two parts; The cumulative number of data points is 3285,
spanning from January, 2001 to December, 2009, were utilized for model training.
The remaining 365 samples, covering period from January, 2010 to December, 2010,
were employed for model testing to forecast the runoff for the entire year of 2010.

4.2. Prediction model performance metrics

In using the established LSTM-TIMESTEP-ATT Guangxi Liujiang River
runoff forecasting model for forecasting test and forecasting accuracy computation
and analysis process, the evaluation index calculation formulas used in this paper
are presented below.

(1) Mean Square Error (MSE):
18 A N2
ME=—D (v, ~¥)) ©)

i=1

(2) Root Mean Square Error (RMSE).

RMSE = li(yi - 9.)
M (10)
(3) Mean Absolute Error (MAE):

1 "
MRE = — Z |yi -, |
mi= (11)

(4) Relative Error Percent (REP), Which quantifies the extent of divergence
of each predicted value from the corresponding observation, is given by the formula:
Rep = XY . 100% (12)

Yi
(5) Mean Absolute Percent Error (MAPE), which assesses overall degree of
divergence between forecasted values and actual values Eq(13):
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yi _yi

Yi

M&PE=12 x 100%
mi=

(13)

Where m stands for total count of samples that are predicted, Y, signifies
actual observations, and ¥, indicates predicted value.

(6) coefficient of determination (R2), R2 is used to measure the ability of
the model to explain the dependent variable, R2 is closer to 1, indicating that a
superior model clarifies alterations in observation more effectively, yielding a better
overall effect. The formula is:

M

(yi _yi )2 (14)
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Where, m denotes the count of predicted instances, ° signifies factual

y

observation from original dataset, while 7i represents mean value, Y, represents

predicted value.
4.3 Forecasting model forecast test and error analysis

In this paper, LSTM 1is used for multiple time series forecasting.
Considering that the runoft of the day may not be solely related to the runoff of the
previous day, and that the single time-step prediction has certain defects, this paper
conducts a multiple time-step prediction experiment. The model utilized runoff
values from preceding four days as input to forecast the runoff for the subsequent
day. Simultaneously, with the aim of analyzing the importance of different time-
step runoff values to the forecast volume, further add the attention mechanism to
calculate and analyze to be diverse crucial factors are assigned varying weighting
coefficients for the forecasting experiment's computations.

The prediction model employs deep neural network architecture for each
layer, utilizing MSE as the optimization objective. The experiments involve
selecting a combination of hyperparameters, including a time step of 4, 4 hidden
nodes, a batch size of 1, a learning rate set at 0.001, and 100 training epochs, to
evaluate the model's performance.

This experiment examines the variation of MAE for different number of
training rounds. When taking the number of training rounds Epoch tends to 100, the
mean absolute error MAE basically tends to be stable, therefore, it is determined
that the Epoch is 100.The error curves of the network model learning and training
under above hyperparameter combinations and the change curves of forecasting
model for predicted and actual runoff volume of the training samples from 2001 to
2009 are given in Figs. 4 and 5, respectively.
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Fig. 5 displays the prediction model's performance on 2001-2009 samples,
comparing predicted runoff volumes with actual changes. The trend is more similar,
and the average absolute percentage error of its training runoff is 17.9%.
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Fig. 5. Comparison of runoff prediction results with observations for a total of 10 years (training
set) from 2001 to 2009

Fig. 6 gives the different average weight coefficients given by the model to
the four time steps when incorporating the time step attention mechanism into
LSTM.
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Fig. 6. Average Attention coefficient distribution histogram for the sequence of four time steps for
forecasting 365 days in 2010
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In Fig. 6, this model achieved a peak average attention weight coefficient at
0.6607 for the last time step with the highest average attention in the prediction of
the 365 days of this experiment, followed by the second time step with an average
attention weight coefficient of 0.3106, and the lowest average attention for the first
time step with only 0.01. Attention coefficients vary daily, influenced by correlation
between past outputs and current inputs across time steps.

4.4 Comparative analysis of LSTM-TIMESTEP-ATT forecast model
with other models

For improved experimental result comparison, a comparative analysis of the
forecasting performance of the established LSTM-TIMESTEP-ATT forecasting
model is conducted, with respect to other nonlinear and linear forecasting models.,
such as with three models: multivariate linear regression forecasting model, LSTM
forecasting model, and Support Vector Machines SVR (Radial Basis Kernel).

The experiment uses identical training and prediction data, while searching
for optimal hyperparameters for the LSTM model under the same TensorFlow fixed
seed values for training; Compare the predicted results of the LSTM-TIMESTEP-
ATT forecasting model and the LSTM forecasting model without time step attention
with the actual observed values.

Multiple linear regression forecasting model, for the four time steps of the
prediction, establishes the equation of the quadratic linear regression forecasting:

Y = -0.034y,, +0.29, , - 0.6y, +1.234y _, +153 91 (15)

Similarly, support vector machine SVR (radial basis kernel) is used for
modeling prediction and comparison with observed values.

A comparison was made between the results of the four models when the
modeling sample was from 2001 to 2009 and the prediction sample was also from
2010. The comparison chart of multiple models is shown in Figure 7.
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Fig. 7. Comparison of Prediction Results of Four Models
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From Figure 7, it can be seen that in the 365 day prediction, the four models
basically overlap in the case of flatter values, with little difference. However, in the
peak area where there is a sudden change in water level, there is a slightly greater
difference.

Table 1 compares prediction outcomes across four models. It is obviously
discovered that prediction results of LSTM-TIMESTEP-ATT model have the
smallest values of the three evaluation indexes of MAPE, MAE, and RMSE, and
the value of the coefficient of determination is closer to 1. This suggests LSTM-
TIMESTEP-ATT can focus on more important timing steps more efficiently, and
the model's generalization performance is the best.

Table 1
Comparison of runoff prediction results between LSTM-TIMESTEP-ATT and various
models.

Forecasting model MAPE (%) | MAE (m3/s) ?X;SE)) R2
Multiple-Linear- Regression 37.4 267.5 655.5 0.86
SVR (Radial basis kernel) 32.1 252.7 671.0 0.85
LSTM 23.9 245.8 650.1 0.86
LSTM-TIMESTEP-ATT 18.8 223.3 596.5 0.88

To improve analysis of prediction accuracy, focusing on divergence between
forecasted and observations across models., this paper also compares the relative
error percentage (REP). Table 2 gives the number of days for each of the three
scenarios: [REP| greater than or equal to 20%, |REP| between 20% and 50%, and
[REP| greater than 50% for the 365-day runoff forecasts of the four models.

Table 2
Comparison of different REP value ranges and days for 365 day runoff prediction results of
four models.
Multiple- .
Absolute range Linear- SVR (Radial |\ g1 | LSTM-TIMESTEP-ATT
of REP values . basis kernel)
Regression
|REP|<=20% 130 154 196 233
|REP|>20% and
IREP|<=50% 136 136 131 109
|REP|>50% 99 75 38 23
Total days 365 365 365 365

Table 2 shown that the number of days in which the relative error of the
LSTM-TIMESTEP-ATT model is within 20% reaches 233 days in the 365-day
runoff prediction, which is the highest among the four models. And the number of
days with relative errors exceeding 50% is only 23 days, which is the smallest of
the four models. Compared with the other three models, the LSTM-TIMESTEP-
ATT model shows better prediction results.
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5. Conclusion

In this paper, the LSTM model is optimized by using multiple time-step
attention mechanism, and LSTM model with multiple time-step attention
mechanism is established to be applied to day-by-day runoff forecasting of Liujiang
River in Guangxi, and experimental comparisons are carried out with the LSTM
without attention mechanism, multiple linear regression, and Support Vector
Machine SVR (Radial Basis Kernel), etc., and the primary conclusions can be
summarized as follows:

The LSTM-TIMESTEP-ATT model has effectively enhanced the prediction
accuracy of runoff time series by incorporating a temporal attention mechanism.
This model is capable of assigning different weight coefficients to various time
steps, thereby more flexibly capturing the dynamic changes and trends within the
time series. In the runoff prediction of the Liujiang River Basin in Guangxi, the
model has demonstrated a high level of predictive accuracy, providing an important
reference for water resource management.

Accurate runoff prediction holds significant practical importance for water
resource management, including flood control and drought prevention. By
forecasting the timing and peak of floods, it is possible to arrange defensive
measures in advance, reducing the losses caused by floods. Moreover, Accurate
runoff prediction also contributes to the comprehensive development and
management of water resources, scientific management, and optimized scheduling,
playing a pivotal role in guaranteeing the sustainable utilization of regional water
resources.

Although LSTM-TIMESTEP-ATT model has shown high predictive
accuracy, its generalization capability still requires further validation. Future
research could consider integrating this model with other machine learning models
to enhance the robustness and accuracy of predictions. Additionally, optimizing
model and adjusting its parameters are also important avenues for enhancing
predictive performance.
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