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DEEP LEARNING COMBINED WITH ATTENTION 

MECHANISM FOR MULTI-TIME-STEP RUNOFF 

PREDICTION MODELING 

Jie LI1, Linli JIANG2,*, Xing ZHANG3, Rongchuang YU4, Liqiang ZHANG5, 

Jiansheng WU6 

Accurate runoff forecasting is crucial for flood prevention, drought 

management, and overall water resources management. To enhance the 

understanding of complex relationships within runoff data and improve forecasting 

accuracy, we introduce a multi-time-step attention mechanism for the hidden layer 

output of Long Short-Term Memory (LSTM) networks. This addresses the limitation 

of traditional LSTM models, which cannot allocate weights based on the importance 

of different time steps. Our proposed model, LSTM-TIMESTEP-ATT, is designed to 

predict the daily runoff process for the next year. Using daily runoff and water level 

data from the Guangxi Liujiang Bridge Hydrological Station between 2001 and 2010, 

we compared our model with standard LSTM, multiple linear regression, and support 

vector machine (SVR) models with a radial basis kernel. The results indicate that the 

LSTM-TIMESTEP-ATT model exhibits superior explanatory power and predictive 

accuracy. Specifically, it achieved the highest number of days with a relative error 

within 20%, outperforming the other three models. These findings provide a valuable 

reference for runoff predictions in the Liujiang River Basin, Guangxi, supporting 

effective water resource management and flood forecasting efforts. 

Keywords: long short-term memory network (LSTM), attention mechanism, 

multi-step time series prediction, runoff forecasting 

1 Introduction 

Runoff forecasting is an important issue in hydrology, which is very 

important for flood prevention and control, drought and other water resources 
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management [1]. The runoff process is influenced by a variety of factors, such as 

precipitation patterns, basin characteristics, topography, and human activities, and 

is highly nonlinear and unstable. Traditional runoff forecast models often struggle 

to accurately capture the complex relationships and nonlinear features in time series 

data, leading to unstable forecast results or large errors [2,3]. 

Currently, runoff forecasting models are mainly categorized into process-

driven models and data-driven models [4]. The former possess certain tangible 

significance, but the practical application is sometimes limited by the lack of 

understanding of the hydrological process mechanism and the high data 

requirements of the model [5]. The latter does not need to consider the actual 

physical significance of the runoff process, however, they rely solely on examining 

the correlation between input variables and output data to achieve runoff prediction, 

research shows that the machine learning model and the deep learning model have 

better results for runoff prediction [6-8]. Among them, Recurrent Neural Networks 

(RNNs) [9] exhibit specific advantages in dealing with temporal sequence 

prediction problems, but the relationship between the data before and after the day-

by-day runoff process tends to have a strong correlation, and there is a certain level 

of association with the runoff of the present day and  influencing factors of runoff 

before the multi-day runoff, and the traditional RNN was found to be unable to store 

the data for a long period of time during the actual training process, and it was also 

found that the traditional RNN could not store the data for a long period of time. 

for long-term preservation, and it is also found that the traditional RNNs are prone 

to issues of gradient vanishing and explosion phenomena, which limits use of long-

term memory in practical applications [10]. In recent years, the proposed Long 

Short- Term Memory (LSTM) neural network changes neural structure of 

traditional recurrent neural network and solves the problems of long-term memory 

loss and gradient instability of traditional RNN, thus, LSTM is adaptable to deal 

with runoff forecasting and has received attention in hydrological forecasting [11-

13]. 

Due to the shortcomings of the LSTM model in dealing with long sequential 

data forgetfulness and the inability to assign weights according to the importance 

during the training process, an optimized LSTM incorporating attention mechanism 

was constructed [14]. Attention mechanisms can selectively weigh the inputs 

according to their different degrees of attention to effectively identify significant 

features within inputs. Therefore, the incorporation of the attention mechanism in 

runoff forecasting modeling can improve the model's attention to important time 

steps and further enhance characterization ability and prediction performance of 

this model. 

Utilizing the daily water level and flow data measured at the Liujiang River 

Bridge hydrological station, we have constructed a predictive model using a multi-

time step attention mechanism and LSTM deep learning neural network method, 
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which is applied to the one-year daily runoff prediction of the Liujiang River in 

Guangxi. This model, by incorporating the multi-time step attention mechanism to 

highlight significant time steps, can better capture the long-term dependencies and 

important features within time series data, thereby enhancing the accuracy and 

reliability of runoff forecasting. It provides reference significance for the runoff 

prediction of the Liujiang River in Guangxi. 

2 Deep Learning Model Principles and Methods  

2.1 Basic principles of the model 

Recurrent Neural Networks (RNNs) is a mathematical model born 

stemming from way of connection between neurons in human brain, which is very 

good at processing sequence data. Although theoretically RNN is able to deal with 

infinite long sequence information, in practice, due to problems such as gradient 

vanishing and gradient explosion, it usually can only capture the information of the 

last few time steps in the actual operation process, and this limitation makes the 

RNN's effectiveness in dealing with long sequences limited. 

 
Fig. 1. Internal structure of LSTM cell 

 

LSTM is a neural network modeling technique rooted in further 

development of RNNs. LSTM controls the information by changing the hidden 

layer structure, adding a conveyor belt"-like cellular unit state design, and allowing 

the information to selectively pass through a "gate" design. LSTM adeptly 

addresses prevalent issues of gradient vanishing and explosion encountered in 

RNNs, ensuring model stability and accuracy when handling extensive temporal 

sequences. Its proficiency in capturing long-term dependencies within sequential 

data renders it an optimal modeling instrument for time series analysis, particularly 
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in applications like hydrological series prediction. Fig. 1 shows the internal 

structure of the LSTM cell unit. 

The LSTM structure consists of three core gates, namely the forgetting gate, 

input gate and output gate, in which forgetting gate reads the preceding output and 

current input, Sigmoid activation function is applied to output a forgetting factor 

ranging from 0 to 1. In this context, 0 represents 'fully discarded' while 1 represents 

'fully retained'. This forgetting factor is utilized to regulate the extent of forgetting 

the unit's state from the preceding moment [15, 16]. 

Forgetting gate formula is present in equation (1): 

                   (1) 

Where  is weight matrix input,  is offset, and  is sigmoid activation 

function. 

Equation (2) represents input gate calculation:  

                  (2) 

Where controls current input's effect on cell state. 

The candidate memory cell calculation formula is displayed in equation (3):  

                    (3) 

Activation function takes charge in formulating a list of new, tentative 

memory constructs tailored for this precise moment. 

The formula for updating cell state at the current time is detailed in equation 

(4): 

                                          (4) 

New cell state at this juncture, multiply immediately beforehand cell state 

point by point by forgetting factor, if the point-by-point value is a value close to 0, 

it means that the latest information is excluded from cell state's content. Current 

new cell state value is obtained by obtaining the input gate output for point-by-point 

summation. 

Output gate supervises output of this cell state value and is calculated as 

presented in equation (5): 

                                     (5) 

Current yielded data is calculated by an activation function (Sigmoid) and 

then transformed by a function (tanh), hidden layer's ultimate output is forwarded 

to next LSTM layer as its initial input. 

As seen in Fig. 1 and the LSTM formulation, LSTM is designed to be more 

adept at dealing with the problem of exploding or vanishing gradients. Although 

LSTM has some advantages in areas such as time series prediction, LSTM may still 

face the challenge of vanishing or exploding gradients when dealing with very long 
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sequence data, which may sometimes exist insufficient to capture short-term 

dependencies. 

2.2 Time-step attention mechanisms 

Attention mechanism serves as a useful tool in the domains of machine 

learning and natural language processing, which simulates the process of human 

attention and permits selective attention allocation to input segments by model [17]. 

In machine learning, if input series extends over a considerable length, it is difficult 

for model to directly capture the important information at each position. By 

introducing attention mechanism, this model is able to dynamically adjust the 

attention according to different parts of input sequence with the intention of better 

represent important content [18]. 

The time step attention mechanism is a method to enhance the attention to 

different parts of the time series in a sequence model, and its core principle is to 

acquire the importance or weight of every time step so that essential time steps for 

prediction accuracy receive greater emphasis from the model. The introduction of 

time-step attention mechanism allows for a more flexible and targeted approach to 

capturing dynamic changes and trends in the time series. There are three key steps 

in the model[19]: first, the model needs to calculate the relationship between each 

time step and other time steps in the sequence, and use the score to indicate the 

importance of the time step for the current prediction result; next, attention weights 

for all time steps are normalized through the application of Softmax function, 

ensuring their sum equals 1, indicating that different attention is assigned to 

different time steps; finally, the model allocates different attention to different time 

steps based on the calculated attention weights are weighted and summed to input 

sequence to get ultimate output, so as to find out more attention to those time steps 

that affect the prediction results to a greater extent. Fig. 2 illustrates the fundamental 

principle of the time-step attention mechanism. 
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Fig. 2. Time step attention mechanism 

 

The formula for calculating the time step attention weights is shown in 

equation (6). 

                                 (6) 

The calculation formula of the attention weight coefficient is shown in 

equation (7): 

                                   (7) 

The output value calculation formula is shown in equation (8): 

                         (8) 

Where, quantifies the extent to which current input is related to hidden 

layer's previous output, , ,  is the weight and bias of the attention mechanism, 

indicates to enhance or weaken the input time-step data, is the current 

moment of the multiple time-step inputs, is the value of the attention time-step 

data obtained by multiplying the weights with the corresponding time-step values, 

indicates the degree of influence of the adaptive optimization of the various input 

time-steps. 
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3 LSTM-TIMESTEP-ATT Forecasting Model 

 
Fig. 3. LSTM-TIMESTEP-ATT network model structure 

 

In this research, LSTM model combined with a multiple time step attention 

mechanism is employed to construct Guangxi Liujiang River runoff prediction 

model, referred to as the LSTM-TIMESTEP-ATT prediction model, which mainly 

contains an input layer, a time step attention layer, a hidden layer of LSTM network, 

and a fully connected output layer. The model first performs a sliding-window data 

transformation on the original time series, and takes the first four time-step 

sequence values as model inputs. Subsequently, the input multi-step time series 

values are fused with the LSTM network's preceding hidden state output, enabling 

the time-step attention layer to derive weight coefficients for each time step relevant 

to the current prediction, and then the optimized inputs combined with the improved 

multi-step attention are used to calculate LSTM hidden layer output. Conclusively, 

It is then passed through to fully connected layer for deriving ultimate prediction 

outcomes. LSTM-TIMESTEP-ATT can adaptively adjust the weights of different 

time steps in the input runoff sequence data through certain training, to ascertain 

relative importance of different temporal factors within input multi-time step 
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dataset that affect runoff volume, the model is employed. The schematic 

representation of the LSTM-TIMESTEP-ATT network model is depicted in Fig. 3. 

4 LSTM-TIMESTEP-ATT Model Experiment and Performance 

Analysis 

4.1. Experimental data 

The daily water level and flow data of Liujiang Bridge measured by 

hydrological stations were obtained from the observation files of Liuzhou 

Hydrological Management Information System. A total of ten years and 3650 data 

points from the period of January 1, 2001 to December 31, 2010 were accumulated. 

The data were divided into two parts; The cumulative number of data points is 3285, 

spanning from January, 2001 to December, 2009, were utilized for model training. 

The remaining 365 samples, covering period from January, 2010 to December, 2010, 

were employed for model testing to forecast the runoff for the entire year of 2010. 

4.2. Prediction model performance metrics 

In using the established LSTM-TIMESTEP-ATT Guangxi Liujiang River 

runoff forecasting model for forecasting test and forecasting accuracy computation 

and analysis process, the evaluation index calculation formulas used in this paper 

are presented below. 

(1) Mean Square Error (MSE): 

                    (9) 

(2) Root Mean Square Error (RMSE).  

                   (10) 

(3) Mean Absolute Error (MAE): 

                   (11) 

(4) Relative Error Percent (REP), Which quantifies the extent of divergence 

of each predicted value from the corresponding observation, is given by the formula: 

                   (12) 

(5) Mean Absolute Percent Error (MAPE), which assesses overall degree of 

divergence between forecasted values and actual values Eq(13): 
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                                     (13) 

Where m stands for total count of samples that are predicted, signifies 

actual observations, and indicates predicted value. 

(6) coefficient of determination (R2), R2 is used to measure the ability of 

the model to explain the dependent variable, R2 is closer to 1, indicating that a 

superior model clarifies alterations in observation more effectively, yielding a better 

overall effect. The formula is: 

                                             (14) 

Where, m denotes the count of predicted instances,  signifies factual 

observation from original dataset, while  represents mean value,
 

 represents 

predicted value. 

4.3 Forecasting model forecast test and error analysis 

In this paper, LSTM is used for multiple time series forecasting. 

Considering that the runoff of the day may not be solely related to the runoff of the 

previous day, and that the single time-step prediction has certain defects, this paper 

conducts a multiple time-step prediction experiment. The model utilized runoff 

values from preceding four days as input to forecast the runoff for the subsequent 

day. Simultaneously, with the aim of analyzing the importance of different time-

step runoff values to the forecast volume, further add the attention mechanism to 

calculate and analyze to be diverse crucial factors are assigned varying weighting 

coefficients for the forecasting experiment's computations. 

The prediction model employs deep neural network architecture for each 

layer, utilizing MSE as the optimization objective. The experiments involve 

selecting a combination of hyperparameters, including a time step of 4, 4 hidden 

nodes, a batch size of 1, a learning rate set at 0.001, and 100 training epochs, to 

evaluate the model's performance. 

This experiment examines the variation of MAE for different number of 

training rounds. When taking the number of training rounds Epoch tends to 100, the 

mean absolute error MAE basically tends to be stable, therefore, it is determined 

that the Epoch is 100.The error curves of the network model learning and training 

under above hyperparameter combinations and the change curves of forecasting 

model for predicted and actual runoff volume of the training samples from 2001 to 

2009 are given in Figs. 4 and 5, respectively. 
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Fig. 5 displays the prediction model's performance on 2001-2009 samples, 

comparing predicted runoff volumes with actual changes. The trend is more similar, 

and the average absolute percentage error of its training runoff is 17.9%. 

 
Fig. 4. Model training error curve 

 

 
Fig. 5. Comparison of runoff prediction results with observations for a total of 10 years (training 

set) from 2001 to 2009 

 

Fig. 6 gives the different average weight coefficients given by the model to 

the four time steps when incorporating the time step attention mechanism into 

LSTM.  

 
Fig. 6. Average Attention coefficient distribution histogram for the sequence of four time steps for 

forecasting 365 days in 2010 
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In Fig. 6, this model achieved a peak average attention weight coefficient at 

0.6607 for the last time step with the highest average attention in the prediction of 

the 365 days of this experiment, followed by the second time step with an average 

attention weight coefficient of 0.3106, and the lowest average attention for the first 

time step with only 0.01. Attention coefficients vary daily, influenced by correlation 

between past outputs and current inputs across time steps. 

4.4 Comparative analysis of LSTM-TIMESTEP-ATT forecast model 

with other models 

For improved experimental result comparison, a comparative analysis of the 

forecasting performance of the established LSTM-TIMESTEP-ATT forecasting 

model is conducted, with respect to other nonlinear and linear forecasting models., 

such as with three models: multivariate linear regression forecasting model, LSTM 

forecasting model, and Support Vector Machines SVR (Radial Basis Kernel). 

The experiment uses identical training and prediction data, while searching 

for optimal hyperparameters for the LSTM model under the same TensorFlow fixed 

seed values for training; Compare the predicted results of the LSTM-TIMESTEP-

ATT forecasting model and the LSTM forecasting model without time step attention 

with the actual observed values. 

Multiple linear regression forecasting model, for the four time steps of the 

prediction, establishes the equation of the quadratic linear regression forecasting: 

 (15) 

Similarly, support vector machine SVR (radial basis kernel) is used for 

modeling prediction and comparison with observed values. 

A comparison was made between the results of the four models when the 

modeling sample was from 2001 to 2009 and the prediction sample was also from 

2010. The comparison chart of multiple models is shown in Figure 7. 

 

 
Fig. 7. Comparison of Prediction Results of Four Models 

 

1 2 3 4
0. 034 0. 29 0. 62 1. 234 153. 91

st ep st ep st ep st ep
Y y y y y= − + − + +



320            Jie Li, Linli Jiang, Xing Zhang, Rongchuang Yu, Liqiang Zhang, Jiansheng Wu 

From Figure 7, it can be seen that in the 365 day prediction, the four models 

basically overlap in the case of flatter values, with little difference. However, in the 

peak area where there is a sudden change in water level, there is a slightly greater 

difference. 

Table 1 compares prediction outcomes across four models. It is obviously 

discovered that prediction results of LSTM-TIMESTEP-ATT model have the 

smallest values of the three evaluation indexes of MAPE, MAE, and RMSE, and 

the value of the coefficient of determination is closer to 1. This suggests LSTM-

TIMESTEP-ATT can focus on more important timing steps more efficiently, and 

the model's generalization performance is the best. 
Table 1 

Comparison of runoff prediction results between LSTM-TIMESTEP-ATT and various 

models. 

Forecasting model MAPE (%) MAE (m3/s) 
RMSE) 

(m3/s) 
R2 

Multiple-Linear- Regression 37.4 267.5 655.5 0.86 

SVR (Radial basis kernel) 32.1 252.7 671.0 0.85 

LSTM 23.9 245.8 650.1 0.86 

LSTM-TIMESTEP-ATT 18.8 223.3 596.5 0.88 

To improve analysis of prediction accuracy, focusing on divergence between 

forecasted and observations across models., this paper also compares the relative 

error percentage (REP). Table 2 gives the number of days for each of the three 

scenarios: |REP| greater than or equal to 20%, |REP| between 20% and 50%, and 

|REP| greater than 50% for the 365-day runoff forecasts of the four models. 
Table 2 

Comparison of different REP value ranges and days for 365 day runoff prediction results of 

four models. 

Absolute range 

of REP values 

Multiple-

Linear- 

Regression 

SVR (Radial 

basis kernel) 
LSTM LSTM-TIMESTEP-ATT 

|REP|<=20% 130 154 196 233 

|REP|>20% and 

|REP|<=50% 
136 136 131 109 

|REP|>50% 99 75 38 23 

Total days 365 365 365 365 

 

Table 2 shown that the number of days in which the relative error of the 

LSTM-TIMESTEP-ATT model is within 20% reaches 233 days in the 365-day 

runoff prediction, which is the highest among the four models. And the number of 

days with relative errors exceeding 50% is only 23 days, which is the smallest of 

the four models. Compared with the other three models, the LSTM-TIMESTEP-

ATT model shows better prediction results. 
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5. Conclusion 

In this paper, the LSTM model is optimized by using multiple time-step 

attention mechanism, and LSTM model with multiple time-step attention 

mechanism is established to be applied to day-by-day runoff forecasting of Liujiang 

River in Guangxi, and experimental comparisons are carried out with the LSTM 

without attention mechanism, multiple linear regression, and Support Vector 

Machine SVR (Radial Basis Kernel), etc., and the primary conclusions can be 

summarized as follows: 

The LSTM-TIMESTEP-ATT model has effectively enhanced the prediction 

accuracy of runoff time series by incorporating a temporal attention mechanism. 

This model is capable of assigning different weight coefficients to various time 

steps, thereby more flexibly capturing the dynamic changes and trends within the 

time series. In the runoff prediction of the Liujiang River Basin in Guangxi, the 

model has demonstrated a high level of predictive accuracy, providing an important 

reference for water resource management. 

Accurate runoff prediction holds significant practical importance for water 

resource management, including flood control and drought prevention. By 

forecasting the timing and peak of floods, it is possible to arrange defensive 

measures in advance, reducing the losses caused by floods. Moreover, Accurate 

runoff prediction also contributes to the comprehensive development and 

management of water resources, scientific management, and optimized scheduling, 

playing a pivotal role in guaranteeing the sustainable utilization of regional water 

resources.  

Although LSTM-TIMESTEP-ATT model has shown high predictive 

accuracy, its generalization capability still requires further validation. Future 

research could consider integrating this model with other machine learning models 

to enhance the robustness and accuracy of predictions. Additionally, optimizing 

model and adjusting its parameters are also important avenues for enhancing 

predictive performance. 
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