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ANALYTICAL CONSIDERATIONS AND NUMERICAL 
SIMULATIONS FOR SURFACE PLASMON RESONANCE IN 

FOUR LAYERS PLASMONIC STRUCTURES WHICH 
CONTAIN HIGH REFRACTIVE INDEX WAVEGUIDE 

Aurelian A. POPESCU1, Laurenţiu BASCHIR1C, Dan SAVASTRU1, Mihai 
STAFE2C, Georgiana C. VASILE2C, Sorin MICLOS1, Constantin NEGUŢU2, 

Mona MIHĂILESCU2, Niculae N. PUŞCAŞ2 

 The Insulator-Metal-Insulator-Insulator (IMII) plasmonic structures present 
a great interest for the optical photonics devices. In this paper we present an 
analyze for coupling of light into plasmonic structures which contains a dielectric 
waveguide. We obtained the characteristic equation for the wave guides in the IMII 
structure by solving the Helmholtz equations in four homogeneous media. The 
characteristic equations for three and four layers have similar forms as established. 
Subsequently, the numerical simulations for TM waveguide modes and the coupling 
by a prism with the refractive index lower then waveguide were done. It was showed 
that, the TM0 mode is confined to the metal interface and can’t be exited. Resonance 
coupling into higher waveguide modes may be realized for some film thicknesses.  

Keywords: plasmonic waveguides, dispersion equation, amorphous chalcogenide 
films. 

1. Introduction  

Plasmonics forms a major part of the fascinating field of nanophotonics, 
which explores how electromagnetic fields can be confined over dimensions of 
the order of or smaller than the wavelength. It is based on interaction processes 
between electromagnetic radiation and conduction electrons at metallic interfaces, 
or in small metallic nanostructures, leading to an enhanced optical near field of 
sub-wavelength dimension. Research in this area demonstrates how a distinct and 
often unexpected behavior can occur if discontinuities or sub-wavelength 
structure is imposed. Another beauty of this field is that it is firmly grounded on 
classical physics. There is a very large interest for metal-insulator structures, 
because they support surface plasmon-polariton resonance which may confine the 
light near surface at shorter dimensions than the wavelength. 
___________ 
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The prism coupling [1] led very soon to the development of plasmonic 
sensors [2-4], the results being particularly impressive in the case of the biological 
selective sensors [5-7], the chalcogenide glasses being used for the determination 
of blood group and others type of sensors [6-9]. Fundamentals of plasmons can be 
acquired from Maier’s book [10]. Davis [11] proposed the matrix method. The 
matrix method was used [12-14] by other to determine the resonance 
characteristics of four layer structure with finite thickness dielectric film by 
considering the metal film thick. Economou [15] and Burke et al. [16] derived and 
analyzed the dispersion relation for different multilayers structures with a special 
symmetry. Opolski [17] deals with investigations concerning numerical 
simulations of the plasmon resonances in optical planar structures without finding 
the analytical solutions. However this method can’t calculate the electromagnetic 
field distribution in each layer.  

The aim of our paper is to develop the characteristic equation in general 
form for the four-layer structure first. And second, drawing the appropriate 
numerical simulations for the structure comprising prism with low refractive 
index ( 51.1=n ) made from BK7 which may couple the light into higher 
refractive index ( 45.2=n ) films, As2S3 for instance. The structure make sense as 
allows the use of commercially available plates with 50 nm gold film designed for 
applications in plasmonic biosensors. 

2. The dispersion equation for the simplest plasmon-polariton 
configuration 

From the Maxwell’s equations and assuming a harmonic time dependence 
of the form ( ) ( ) tierEtrE ω−⋅=,  and homogeneous media, the Helmholtz type 
wave equation can be obtained for the electric field [8]: 
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where ( ) 2nx =ε  is the dielectric constant which depends only on x  - spatial 
coordinate. For the magnetic field, the equation is similar. 

Assuming the one-dimensional case and the waves propagating in the z  
direction [10] we can write the following wave equation for TE modes: 
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where cko ω=  is the wave vector of the propagating wave in vacuum. The 
complex parameter zk=β  is called the propagation constant of the traveling 
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waves. The same equation can be written for the magnetic field. Being a vector 
equation, a system of 3 equations must be solved in general case.  

The general analysis of the solutions of equation (2.2) is done in [18] . The 
concept consists in a definition of TM and TE modes in which the system may be 
reduced to one single differential equation. Then, the wave equation for TM 
modes will be: 
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The simplest geometry which sustains surface plasmon polaritons (SPPs) 
is that of a single flat interface between a dielectric and a metal. Then, the solution 
of equation (2.3) leads to the dispersion equation which has the form:  
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Here, 2,1ε  are the dielectric constants of the adjacent media. To be mention that 
this is the only case when the dispersion equation ( )ωβ  can be obtained in the 
explicit form [10], as ( )ωε  are usually known values. 

In practical cases which use the excitation of surface plasmons by 
attenuated total reflection1, the three layers configuration which contains a thin 
metallic film is used. The dispersion equation corresponding to this case can be 
written in the form [10]: 
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In Eq. 5 the metal film thickness is denoted a2  and ik  are the so called 
“transversal” wave vectors: 

ioi kk εβ 22 −= , 4,3,2,1=i .            (6) 
A practical analysis of the Eq. (5) involves performing numerical 

calculations for modified equation named “characteristic equation” which can be 
deduced from eq. (5). Of course, once for the metal film ε  is complex number, all 

ik  have to be imaginaries, too. The aim is to find the propagation 
constant imaginaryreal iβββ +=  whose real part describes the phase velocity and 
imaginary part describes the wave attenuation.  

3. Four Layers Plasmonic Configuration - The Solution For The 
Electromagnetic Field 

Multilayers structures have additional functionalities related to the 
confinement of the electromagnetic field. Among others, such structure provides 
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the coupling of light into planar waveguides structures that can support both TM 
and TE modes. The plasmonic waveguides contain at least one metallic medium 
which has a complex dielectric constant. As a result, the propagation waveguide 
constants are complex numbers. Finding the numerical solutions for the wave 
equation within these structures become more cumbersome so that finding of a 
suitable analytical form for the dispersion equation appears to be a necessity. 

Fig. 1 presents a typical IMII (insulator- metal- insulator/ chalcogenide - 
insulator) structure. Layer ‘1’ is a metallic film of thickness a, the layer ‘2’ is the 
chalcogenide film of thickness d, whereas ‘3’ and ‘4’ are the semi-infinite 
dielectric media.  

 
Fig. 1. Schematic picture of the 4-layers IMII structure that can support light confinement. The 

two finite thickness media have the thickness a (metal) and d (chalcogenide). 
 

We will seek for the solutions of Eq. (3) as a sum of exponential functions 
for each medium which is considered homogeneous. By denoting the propagation 
constant with β , which is the same in all media due to the boundary conditions, 
the solutions of the wave equation for the TM modes (i.e. the magnetic yH  and 

electric zE  field components) can be written as follows: 
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3.1. Dispersion equation  

Using the notation iii kr ε= , jiij rrr = , jiij kkk /=  and taking in the 
account the continuity conditions for the TM modes we obtained the following 
equations: 
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The system of six equations can be solved in general form using the 
determinants. However this way  is rather voluminous. The following 
observations quickly lead to results. From Eqs. (11) and (12) one can obtain the 
ratio CB . Similarly, from Eqs. (15) and (16) it results the ratio ED :  
From Eq. (13) it results CE , whereas from Eq. (14) one can obtain CE  again. 

The solution is obtained equating rightmost sides:  
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For TE modes we simply replace ir  by ik . In order to get the general case 
we introduce the next notations: 
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Eq. (17) becomes: 
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Terms containing dke 22  can be separated from those containing ake ⋅− 12 . After 
separation it finally results: 

( ) ( )
( ) ( )
( ) ( )
( ) ( ) ⎟

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

⋅+⋅⋅⋅+
⋅−⋅⋅⋅−

+

⋅+⋅⋅⋅−
⋅−⋅⋅⋅+

+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅+
⋅−

⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅−
⋅+

=
−

−

ak

ak

dk

e
kRkPkPk
kRkPkPk

e
kRkPkPk
kRkPkPk

kPk
kPk

kQk
kQke

1

1

2

2

4112

4112

2

4112

4112

12

12

32

322

1

1
.      (20) 

3.2 Fields distribution 

We may find the amplitudes B-F of the magnetic/ electric fields within the 
IMII structure by applying boundary conditions and considering the amplitude of 
the incident field as unit ( 1=A ). Thus, for the TM modes we obtain: 
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Similarly, for the TE-modes we obtain:  
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Since ik  appearing in these relations are functions of propagation 
constants β  (see eq. (6)), we must first solve numerically the dispersion equation. 

3.3. Characteristic equation  

In order to obtain a more suitable form for numerical calculations of the 
propagation constant, we may take into account that 2k  and 2r  are complex 
quantities. A good idea is therefore to replace 2k  and 2r  with imaginary ones: 

22 kik ⋅=  and 22 rir ⋅= . Taking into account that: 
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where is easily seen that uf = . This means that 
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The characteristic equations for the four-layer structure have the same 
form as the equation obtained earlier by Marcuse19 for the three-layer lossless 
structure. The difference consists of more general value for the coefficients f and 
g. The simulations have been done in the field of complex numbers. Some 
practical remarks are considered: 

First: we normalized all the parameters dividing or multiplying them to 
λπ /20 =k . We obtained ( )20/ kB β= , ak0=α  and dk0=δ . Also, we 

introduced the following notations:  
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Eq. (26) becomes: 
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where f  and g  can be determined as: 
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Second: solving Eq. (28) means finding zeroes of a complex function. 

This can be achieved by using Newton algorithm, for instance. Attention should 
be paid to the sense of the iterative process because, at large values of d, 

0/ kB β=  has a horizontal asymptote and the algorithm will fail. Also, the 
starting guess for B should be a complex value, even if the imaginary part is very 
small. Else the algorithm will work only in the real domain, rather finding 
complex solutions.  
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4. Numerical simulations for the 4 layer plasmonic structure with 
As2S3 waveguide 

The characteristic equation (26) was solved numerically in MATLAB to 
find the propagation constant. The propagation constant was inserted in eq. (6) to 
calculate ik  and, subsequently, the electric and magnetic fields of the TM and TE 
modes. The incident laser wavelength is 632.8 nm and the four layers of the IMII 
structure are as follows (see Fig. 1): layer 4-BK7, layer -Au, layer 2-As2S3 and 
layer 3-Air. The thickness of the Au film is considered nma 50=  and the 
chalcogenide film thickness ( d ) is varied between 200 and 1600 nm. In our 
simulations we consider for chalcogenide film 45.22 =n . The gold optical 
constant is taken from Rakic [20]. We find for the wavelength 632.8 nm the 
following refractive index value: 256.3196.0 iN −= . 

First, let us present the results regarding the TM modes. The real part of 
the effective refractive index oeff kN β=  as a function of chalcogenide film 
thickness d  for the TM modes is presented in Fig. 2a. 
 

 
Fig. 2. The real part (a) and imaginary part (b) of the propagation constant for the TM modes. The 

simulation parameters were: a = 50 nm, λ = 632.8 nm. 
 

In the prism, the wave vector component parallel to the interface is 
( θsin0 pnk ) and must be equal to propagation constant β . The maximum value is 

obtained for 090=θ , were θ  is the angle of incidence and 51.1=pn . The 
effective refractive index of the multilayer structure is containing in the range [1, 
1.51] for some As2S3 film thicknesses and depends on the mode number. The 
higher values of the effective refractive indices could not really be excited due to 
synchronization conditions. The resonant angle θ corresponds to the condition: 

effp Nn =θsin . 
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The following conclusions can be drawn proceeding from Fig. 2: a) the 
mode TM0 never can be excited with a prism made from BK7 glass as the 
effective refractive index always is higher than two. b) For each, special selected 
thickness, only one mode can be coupled. For example, for the film thickness of 
600 nm, only the TM4 mode can be coupled. c) the TM0 mode has the highest 
attenuation coefficient. Fig. 3 presents the magnetic field within the four regions 
of the structure for different TM modes, calculated using the above presented 
formula.  

 

Fig. 3. The magnetic field distribution within the structure for different TM modes. The simulation 
parameters are: d = 600 nm, a = 50 nm, λ = 632.8 nm. 

 
The light intensity distributions within layers are presented in Fig. 4. 
 
 

 
Fig. 4. The light intensity distribution within the As2S3 waveguide (left) and within the metal film 

(right). The value x=0 corresponds to the metal-chalcogenide film interface. 
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6. Conclusions 

The characteristic equation for the case of four layers plasmonic structure 
was derived by solving the equations for the electromagnetic field. The 
characteristic equation is similar to the one designed for the three layers 
configuration, the difference being only in the form of the involved parameters. 
By solving numerically the characteristic equation we determined the effective 
refractive index ( 0kβ ), attenuation and field distributions as a function of 
chalcogenide film thickness for BK7-Au-As2S3-Air IMII plasmonic structure. The 
four layers structure becomes similar to three layers MII structure when 
increasing the metallic layer thickness above 100 nm.  

The plasmonic structure containing a finite thick metal film and a finite 
thick dielectric film supports several waveguides modes. For some well-defined 
thicknesses, the light can be coupled into plasmonic waveguide modes from a 
BK7 prism ( 51.1=n ) with the refractive index lower than the refractive index of 
As2S3 chalcogenide film ( 45.2=n ). The practical significance of provided 
analyze is represented by the possibility of using commercially glass slides with 
already deposited gold film. The attractivity of using chalcogenide As2S3 
amorphous films is that they are light sensitive optical material which supports 
photoinduced changes of the refractive index. The structure presents a high 
interest for the development of the optical switches, 2D memories or sensing 
elements that use optical active materials such as amorphous chalcogenides. 
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