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REGULARIZED ALGORITHM FOR THE
PROXIMAL SPLIT FEASIBILITY PROBLEMS

by Ajay Kumar1, Balwant Singh Thakur2, Teodor Turcanu3 and Hemant Kumar Sharma4

The purpose of this paper is to propose a regularized algorithm to find find common solution
of proximal split feasibility problem and fixed point problems for the case of convex and nonconvex
functions in real Hilbert spaces. The algorithm is motivated by the inertial method and the split prox-
imal algorithm with self adaptive step size such that their implementation does not required any prior
information about the operator norm. In addition, we give a numerical example to verify the efficiency
and implementation of our scheme.
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1. Introduction

The split feasibility problem (SFP) was introduced by Censor and Elfving [9] in a finite
dimensional Hilbert space for modeling inverse problems in radiation therapy treatment planning
which arise from phase retrieval and in medical image reconstruction, especially in intensity modu-
lated therapy [11]. It plays key role in signal processing Byrne [8] and medical image reconstruction
Byrne [7]. A more general case is the proximal split feasibility problem.

Let H1 and H2 be real Hilbert space, f : H1 → R∪ {∞}, g : H2 → R∪ {∞} proper, lower
semicontinuous, convex functions. Let A : H1 → H2 be a bounded linear operator, then the proximal
split feasibility problem is defined as below:

find x∗ ∈ argmin f1 such that Ax∗ ∈ argmin f2, (1.1)

where
argmin f = {x ∈ H1 : f (x)≤ f (y),∀y ∈ H1},

and
argming = {x ∈ H2 : g(x)≤ g(y),∀y ∈ H2}.

Let C and Q be nonempty, closed and convex subsets of H1 and H2 respectively, f = iC
and g = iQ be indicator functions of C and Q, respectively, then the problem (1.1) reduces to the
following split feasibility problem:

find x∗ ∈C such that Ax∗ ∈ Q. (1.2)
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A classical method to solve the SFP is Byrne’s CQ algorithm ([7], [8]). Since then a num-
ber of numerical algorithms have been developed to solve the SFP; see([10, 15, 22, 23]) and the
references therein.

Concerning problem (1.1), based on an idea of Lopez et al. [15] and with a new way of
selecting the step-sizes, Moudafi and Thakur [18] introduced the following split proximal algorithm:

Set θ 2(x) := ∥A∗(I − proxλg)Ax∥2 + ∥(I − proxλ µn f )x∥2, h(x) := 1
2∥(I − proxλg)Ax∥2, and

l(x) := 1
2∥(I −proxλ µn f )x∥2.

For given an initial point x1 ∈ H1:

xn+1 = proxλ µn f (xn −µnA∗(I −proxλg)Axn), n ≥ 1, (1.3)

where the stepsize is chosen as µn := ρn
h(xn)+l(xn)

θ 2(xn)
with 0< ρn < 4 and proxλ µn f (y)= argminu∈H1{ f (u)

+ 1
2λ µn

∥u− y∥2} .

If θ(xn) = 0, then xn+1 = xn is a solution of (1.3) and the iterative process stops, otherwise,
set n := n+1 and go to (1.3).

Moreover, Moudafi and Thakur [18] also assumed f to be convex and allowed the function g
to be nonconvex and proved a weak convergence result in Hilbert spaces. They considered the more
general problem of finding a minimizer x̄ of f such that Ax̄ is a critical point of g, i.e.

0 ∈ ∂ f (x̄) such that 0 ∈ ∂Pg(Ax̄),

where ∂P stands for the proximal subdifferential of g.

Shehu and Ogbuisi [24] constructed the following iterative algorithm for approximating a
solution of proximal split feasibility problems for the case of convex and non-convex functions and
proved strong convergence in Hilbert spaces.

For given an initial point x1 ∈ H1 compute xn+1 via the following rule:
wn = (1−αn)xn,

yn = proxλ µn f (wn −µnA∗(I −proxλg)Awn),

xn+1 = (1−βn)xn +βnSyn,n ≥ 1,

(1.4)

where the stepsize µn := ρn
h(wn)+l(wn)
∥θ 2(wn)∥

with 0 < ρn < 4.

If θ(wn) = 0, then xn+1 = xn is a solution of (1.4) and the iterative process stops, otherwise
set n := n+1 and go to (1.4).

Khuangsatung et al. [14] introduced a regularized algorithm based on the viscosity method
for solving the proximal split feasibility problem and the fixed point problem in Hilbert spaces as
follows:

For a given initial point x1 ∈ H1, assume that xn has been constructed and

∥A∗(I −proxλg)Awn∥2 +∥(I −proxλ µn f )wn∥2 ̸= 0,

then compute xn+1 by the following iterative scheme:{
yn = proxλ µn f (αnψ(xn)+(1−αn)xn −µnA∗(I −proxλg)Axn),

xn+1 = (1−βn)xn +βnSyn,n ≥ 1,
(1.5)
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where the stepsize µn := ρn
h(wn)+l(wn)
∥θ 2(wn)∥

with 0 < ρn < 4 and ψ,S : H1 → H1 is contraction and non-
expansive mappings, respectively.

Some other algorithms for proximal split feasibility problem may be found in [1, 12, 14, 19,
25, 30] and references therein.

In the context of implementation, an algorithm with a higher rate of convergence is more use-
ful. A way to improve convergence rate is to add inertial term in the algorithm. It was first proposed
by Polyak [21] as an acceleration process to solve the smooth convex minimization problem. The
main feature of the inertial-type algorithms is that it uses two previous iterates to construct the next
one. In recent years several convergence results were obtained using inertial type algorithms; see,
for instance: [3, 4, 16, 23, 26, 28].

Inspired and motivated by the above mentioned works, in this paper propose an algorithm
with inertial method to solve the proximal split feasibility problems and establish strong conver-
gence result for by employing proposed algorithm in Hilbert spaces. We also provide a numerical
example to illustrate the effectiveness of the proposed algorithm.

2. Preliminaries

Let C be a nonempty closed, convex subset of Hilbert space H. A mapping T : C → H said
to be k-strictly pseudocontractive if

∥T x−Ty∥2 ≤ ∥x− y∥2 + k∥(I −T )x− (I −T )y∥2, (2.1)

holds, for 0 ≤ k < 1 and for all x,y ∈C.
It is said to be nonexpansive if k = 0, pseudo-contractive if k = 1, Strongly pseudo-contractive

if there exists a positive constant λ ∈ (0,1) such that T −λ I is pseudo-contractive. The class of k-
strict pseudo-contractions falls into the one between classes of nonexpansive mappings and pseudo-
contractions.

If z ∈ F(T ), where F(T ) denote the set of fixed points of T , then from (2.1), we have

(1− k)∥x−T x∥2 ≤ 2⟨x− z,x−T x⟩. (2.2)

We now recall some definitions and results:

An operator A is strong positive on H, if there exists a constant τ > 0 with the property:

⟨Ax,x⟩ ≥ τ∥x∥2, ∀x ∈ H.

The proximal operator proxλg : H → H is defined by,

proxλg(y) = argmin
u∈H

{g(u)+
1

2λ
∥u− y∥2}.

It is firmly nonexpansive [13], i.e.,

⟨proxλg(x)−proxλg(y),x− y⟩ ≥ ∥proxλg(x)−proxλg(y)∥2,

holds, for all x,y ∈ H.

Lemma 2.1 ([12]). In a real Hilbert space H, following hold:

(1) ∥αx+(1−α)y∥2 = α∥x∥2 +(1−α)∥y∥2 −α(1−α)∥x− y∥2,

(2) ∥x− y∥2 = ∥x∥2 −2⟨x,y⟩+∥y∥2,

(3) ∥x+ y∥2 ≤ ∥x∥2 +2⟨y,x+ y⟩,
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for all x,y ∈ H and α ∈ (0,1).

Lemma 2.2 ([27]). Given x ∈ H and y ∈C. Then, PCx = y if and only if

⟨x− y,y− z⟩ ≥ 0 ∀ z ∈C.

Lemma 2.3 ([6]). Let C be a nonempty closed, convex subset of a real Hilbert space H. If S : C →C
is a nonexpansive mapping, then I −S is demi-closed at zero.

Lemma 2.4 ([17]). Assume that A is a strong positive linear bounded operator on a Hilbert space
H with coefficient τ > 0 and 0 < ρ ≤ ∥A∥−1, then ∥I −ρA∥ ≤ 1−ρτ .

We now list some properties of strictly pseudo-contractive mappings from [2], [31].

Lemma 2.5. Let C be a closed convex subset of a Hilbert space H.

(i) Let T : C →C be a k-strictly psuedo-contractive mapping, then a mapping S : C →C defined
by Sx = λx+(1−λ )T x, x ∈C is nonexpansive for λ ∈ [k,1) also F(S) = F(T ).

(ii) For an integer N ≥ 1, assume for each 1 ≤ i ≤ N, Ti : C →C is a ki-strictly pseudo-contractive
mapping for some 0≤ ki ≤ 1. Assume that {ηi}n

i=1 is a positive sequence such that ∑
n
i=1 ηi = 1.

Then ∑
n
i=1 ηiTi is a non-self-k-strictly pseudo-contractive mapping with k = max{ki : 1 ≤ i ≤

n}
(iii) If {Ti}n

i=1 has a common fixed point in C. Then F(∑n
i=1 ηiTi) = ∩n

i=1F(Ti).

.

Lemma 2.6 ([29]). Let {sn} be a sequence of nonnegative real numbers satisfying:

sn+1 ≤ (1−αn)sn +αnσn + γn, ∀ n ≥ 1,

where

(1) {αn} ⊂ [0,1], ∑
∞
n=1 αn = ∞;

(2) limsupσn ≤ 0;
(3) γn ≥ 0 (n ≥ 1),∑∞

n=1 γn < ∞.

Then, limn→∞ sn = 0.

3. Main Results

For rest of the paper, let

• H1 and H2 be two real Hilbert spaces,
• f : H1 →R∪{+∞} and g : H2 →R∪{+∞} be two proper and lower semicontinuous convex

functions,
• B : H1 → H1 be a strong positive bounded linear operator with coefficient τ and A : H1 → H2

be a bounded linear operator.
• ψ : H1 → H1 be a contraction with δ ∈ (0,1) and 0 < γ < τ

δ
,

• S : H1 → H1 be a mapping defined as Sx = kx+(1− k)T x, where T : H1 → H1 be a k-strictly
pseudo-contractive mapping,

• {αn}∞
n=1, {βn}∞

n=1 ⊂ (0,1), and {θn}∞
n=1 ⊂ [0, θ̃)⊂ [0,1).

• the solution set of (1.1) and (1.2) is denoted by Ω and Γ, respectively.

Before describing our algorithm, the following conditions are required in convergence anal-
ysis.
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(C1) The solution set F(T )∩Ω ̸= /0;
(C2) ∑

∞
n=1 αn = ∞ and limn→∞ αn = 0;

(C3) Let {σn} ⊂ [0,σ) with σ > 0 such that limn→∞
σn
αn

= 0;

(C4) ε ≤ ρn ≤
4∥(I−proxλg)Awn∥2

∥(I−proxλg)Awn∥2+∥(I−proxλ µn f )Awn∥2 − ε for some ε > 0, where 0 < ρn < 4.

We now propose the a modified split proximal algorithm as follows:

Algorithm 3.1. Given an initial start x1,x0 ∈ H1, assume that xn has been constructed and ∥A∗(I−
proxλg)Awn∥2 +∥(I −proxλ µn f )wn∥2 ̸= 0. Then compute xn+1 by the following iterative scheme:

wn = xn +θn(xn − xn−1),

yn = proxλ µn f (wn −µnA∗(I −proxλg)Awn),

xn+1 = αnγψ(xn)+βnxn +[(1−βn)I −αnB]Syn, n ≥ 1,

where the stepsize µn := ρn

1
2∥(I −proxλg)Awn∥2 + 1

2∥(I −proxλ µn f )wn∥2

∥A∗(I −proxλg)Awn∥2 +∥(I −proxλ µn f )wn∥2 .

Remark 3.1. In Algorithm 3.1 the inertial parameter θn is chosen as,

θn =

min{ σn
∥xn−xn−1∥

, θ̃}, if xn ̸= xn−1,

θ̃ , otherwise.
(3.1)

Theorem 3.1. Let the conditions (C1)-(C4) hold. Then, the sequence {xn} generated by Algorithm
3.1 converges strongly to x∗ ∈ F(T )∩Ω, which also solves the variational inequality (VI)

⟨(B− γψ)x∗,x∗− x⟩ ≤ 0, ∀x ∈ F(T )∩Ω.

Proof. For a given λ > 0 and x ∈ H1, set

h(x) :=
1
2
∥(I −proxλg)Ax∥2,

l(x) :=
1
2
∥(I −proxλ µn f )x∥2,

θ
2(x) := ∥A∗(I −proxλg)Ax∥2 +∥(I −proxλ µn f )x∥2,

then,

µn = ρn
h(xn)+ l(xn)

θ 2(xn) .

Let x∗ ∈ F(T )∩Ω, then x∗ = proxλ µn f x∗ and Ax∗ = proxλgAx∗. Since I − proxλg is firmly
nonexpansive, we have

⟨A∗(I −proxλg)Axn,xn − x∗⟩= ⟨(I −proxλg)Axn,Axn −Ax∗⟩

= ⟨(I −proxλg)Axn − (I −proxλg)Ax∗,Axn −Ax∗⟩

≥ ∥(I −proxλg)Axn∥2

= 2h(xn).
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From the definition of yn and the nonexpansivity of proxλ µn f , we obtain

∥yn − x∗∥2 = ∥proxλ µn f (wn −µnA∗(I −proxλg)Awn)− x∗∥2

≤ ∥wn −µnA∗(I −proxλg)Awn − x∗∥2

≤ ∥wn − x∗∥2 +µ
2
n∥A∗(I −proxλg)Awn∥2 −2µn⟨A∗(I −proxλg)Awn,wn − x∗⟩

≤ ∥wn − x∗∥2 +µ
2
n∥A∗(I −proxλg)Awn∥2 −4µnh(wn)

≤ ∥wn − x∗∥2 +ρ
2
n
(h(wn)+ l(wn))

2

θ 4(wn)
∥A∗(I −proxλg)Awn∥2

−4ρn
(h(wn)+ l(wn))

θ 2(wn)
h(wn)

≤ ∥wn − x∗∥2 +ρ
2
n
(h(wn)+ l(wn))

2

θ 2(wn)
−4ρn

(h(wn)+ l(wn))
2

θ 2(wn)

h(wn)

(h(wn)+ l(wn))

≤ ∥wn − x∗∥2 −ρn

(
4h(wn)

(h(wn)+ l(wn))
−ρn

)
(h(wn)+ l(wn))

2

θ 2(wn)
. (3.2)

Using condition (C4), for all n ≥ 1 we get 4h(wn)
(h(wn)+l(wn))

−ρn ≥ 0, and hence from (3.2), we
have

∥yn − x∗∥2 ≤ ∥wn − x∗∥2. (3.3)

Let M2 = supn≥1{θn∥xn − xn−1∥,2∥xn − x∗∥}, then by the definition of wn,

∥wn − x∗∥2 = ∥xn +θn(xn − xn−1)− x∗∥2

= ∥xn − x∗∥2 +θ
2
n ∥xn − xn−1∥2 +2θn⟨xn − x∗,xn − xn−1⟩

≤ ∥xn − x∗∥2 +θ
2
n ∥xn − xn−1∥2 +2θn∥xn − x∗∥∥xn − xn−1∥

≤ ∥xn − x∗∥2 +2M2θn∥xn − xn−1∥. (3.4)

From (3.3) and (3.4), we get

∥yn − x∗∥2 ≤ ∥xn − x∗∥2 +2M2θn∥xn − xn−1∥. (3.5)

From Remark 3.1, we have θn∥xn − xn−1∥ ≤ σn for all n ≥ 1. This together with (C3), yield that

lim
n→∞

θn

αn
∥xn − xn−1∥ ≤ lim

n→∞

σn

αn
= 0. (3.6)

From (3.3), we get

∥yn − x∗∥ ≤ ∥wn − x∗∥= ∥xn +θn(xn − xn−1)− x∗∥

≤ ∥xn − x∗∥+θn∥xn − xn−1∥. (3.7)
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Using (3.7), Algorithm 3.1, and nonexpansivity of S, we have

∥xn+1 − x∗∥= ∥αnγψ(xn)+βnxn +[(1−βn)I −αnB]Syn − x∗∥

≤ ∥αnγψ(xn)−αnB(x∗)−βnx∗+βnxn +[(1−βn)I −αnB]Syn +αnBx∗+βnx∗− x∗∥

≤ ∥αn(γψ(xn)−B(x∗))−βn(xn − x∗)+((1−βn)I −αnB)Syn − ((1−βn)I −αnB)x∗∥

≤ αn∥γψ(xn)−B(x∗)∥+βn∥xn − x∗∥+((1−βn)I −αnτ)∥Syn − x∗∥

≤ αn∥γψ(xn)−B(x∗)∥+βn∥xn − x∗∥+(1−βn −αnτ)∥yn − x∗∥

≤ αn∥γψ(xn)−B(x∗)∥+βn∥xn − x∗∥+(1−βn −αnτ)
(
∥xn − x∗∥+θn∥xn − xn−1∥

)
≤ αn∥γψ(xn)−B(x∗)∥+(1−αnτ)∥xn − x∗∥+(1−βn −αnτ)θn∥xn − xn−1∥

≤ (1−αnτ)∥xn − x∗∥+αnγ∥ψ(xn)−ψ(x∗)∥+αn∥γψ(x∗)−B(x∗)∥

+(1−βn −αnτ)θn∥xn − xn−1∥

≤ (1−αnτ)∥xn − x∗∥+αnγδ∥xn − x∗∥+αn∥γψ(x∗)−B(x∗)∥

+θn∥xn − xn−1∥(1−βn −αnτ)

= (1−αn(τ − γδ ))∥xn − x∗∥+αn(τ − γδ )
(∥γψ(x∗)−B(x∗)∥

τ − γδ

+
θn∥xn − xn−1∥(1−βn −αnτ)

αn(τ − γδ )

)
≤ max

{
∥xn − x∗∥,

(
∥γψ(x∗)−B(x∗)∥

τ − γδ
+

θn∥xn − xn−1∥(1−βn −αnτ)

αn(τ − γδ )

)}
...

≤ max
{
∥x1 − x∗∥,

(
∥γψ(x∗)−B(x∗)∥

τ − γδ
+ sup

n∈N
φn

)}
,

where, φn =
θn∥xn−xn−1∥(1−βn−αnτ)

αn(τ−γδ ) and by (3.6) we get that limn→∞ φn = 0. Therefore φn is bounded,
which implies that the sequence {xn} is bounded, consequently {yn},{Syn} and {wn} are also
bounded.
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By Algorithm 3.1 and Lemma 2.1, we have

∥xn+1 − x∗∥2 = ∥αnγψ(xn)+βnxn +((1−βn)I −αnB)Syn − x∗∥2

= ∥αn(γψ(xn)−Bx∗)+βn(xn − x∗)+ [(1−βn)I −αnB]Syn

− [(1−βn)I −αnB]x∗∥2

= ∥αn(γψ(xn)−Bx∗)+βn(xn − x∗)+ [(1−βn)I −αnB](Syn − x∗)∥2

≤ 2αn⟨γψ(xn)−Bx∗,xn+1 − x∗⟩+

+∥βn(xn − x∗)+ [(1−βn)I −αnB](Syn − x∗)∥2

≤ 2αn⟨γψ(xn)−Bx∗,xn+1 − x∗⟩+2βn(1−βn −αnB)⟨Syn − x∗,xn − x∗⟩

+∥βn(xn − x∗)∥2 +∥[(1−βn)I −αnB](Syn − x∗)∥2

≤ 2αn⟨γψ(xn)−Bx∗,xn+1 − x∗⟩+2βn(1−βn −αnτ)⟨Syn − x∗,xn − x∗⟩

+β
2
n ∥xn − x∗∥2 +(1−βn −αnτ)2∥Syn − x∗∥2

≤ 2αn⟨γψ(xn)−Bx∗,xn+1 − x∗⟩+2βn(1−βn −αnτ)∥Syn − x∗∥∥xn − x∗∥

+β
2
n ∥xn − x∗∥2 +(1−βn −αnτ)2∥Syn − x∗∥2

≤ 2αn⟨γψ(xn)−Bx∗,xn+1 − x∗⟩+βn(1−βn −αnτ)
(

Syn − x∗∥2 +∥xn − x∗∥2)
+β

2
n ∥xn − x∗∥2 +(1−βn −αnτ)2∥Syn − x∗∥2

≤ 2αn⟨γψ(xn)−Bx∗,xn+1 − x∗⟩+βn∥xn − x∗∥2

+(1−βn −αnτ)∥Syn − x∗∥2 (3.8)

≤ 2αn⟨γψ(xn)− γψ(x∗),xn+1 − x∗⟩+2αn⟨γψ(x∗)−Bx∗,xn+1 − x∗⟩

+βn∥xn − x∗∥2 +∥(1−βn −αnτ)∥yn − x∗∥2

≤ 2αnγδ∥xn − x∗∥∥xn+1 − x∗∥+2αn⟨γψ(x∗)−Bx∗,xn+1 − x∗⟩

+βn∥xn − x∗∥2 +(1−βn −αnτ)(∥xn − x∗∥2 +2M2θn∥xn − xn−1∥)

≤ αnγδ (∥xn − x∗∥2 +∥xn+1 − x∗∥2)+2αn⟨γψ(x∗)−Bx∗,xn+1 − x∗⟩

+βn∥xn − x∗∥2 +(1−βn −αnτ)(∥xn − x∗∥2 +2M2θn∥xn − xn−1∥),

which implies that,

∥xn+1 − x∗∥2 ≤ 1−αn(τ − γδ )

1−αnγδ
∥xn − x∗∥2 +

2αn

1−αnγδ
⟨γψ(x∗)−Bx∗,xn+1 − x∗⟩

+
2M2(1−βn −αnτ)θn∥xn − xn−1∥

1−αnγδ

≤
(
1− αn(τ −2γδ )

1−αnγδ

)
∥xn − x∗∥2 +

αn(τ −2γδ )

1−αnγδ

{2⟨γψ(x∗)−Bx∗,xn+1 − x∗⟩
(τ −2γδ )

+
2M2σn(1−βn −αnτ)

αn(τ −2γδ )

}
= (1−δn)∥xn − x∗∥2 +δnζn, (3.9)

where δn =
αn(τ−2γδ )

1−αnγδ
and ζn =

2⟨γψ(x∗)−Bx∗,xn+1−x∗⟩
(τ−2γδ ) + 2M2σn(1−βn−αnτ)

αn(τ−2γδ ) .

We now divide our proof into two cases:
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Case 1: Suppose that there exists n0 ∈ N, such that {∥xn − x∗∥}∞
n=1 is nonincreasing. Then, {∥xn −

x∗∥}∞
n=1 converges and ∥xn − x∗∥2 −∥xn+1 − x∗∥2 → 0 as n → ∞.

From (3.2), (3.8) and condition (C4), we obtain

∥xn+1 − x∗∥2 ≤ 2αn⟨γψ(xn)−Bx∗,xn+1 − x∗⟩+βn∥xn − x∗∥2

+(1−βn −αnτ)∥yn − x∗∥2

≤ 2αn⟨γψ(xn)−Bx∗,xn+1 − x∗⟩+βn∥xn − x∗∥2 +(1−βn −αnτ)(
∥wn − x∗∥2 −ρn

(
4h(wn)

(h(wn)+ l(wn))
−ρn

)
(h(wn)+ l(wn))

2

θ 2(wn)

)
≤ 2αn⟨γψ(xn)−Bx∗,xn+1 − x∗⟩+βn∥xn − x∗∥2

+(1−βn −αnτ)
(
∥xn − x∗∥2 +2M2θn∥xn − xn−1∥

−ρn

(
4h(wn)

(h(wn)+ l(wn))
−ρn

)
(h(wn)+ l(wn))

2

θ 2(wn)

)
,

implies that

(1−βn −αnτ)ρn

(
4h(wn)

(h(wn)+ l(wn))
−ρn

)
(h(wn)+ l(wn))

2

θ 2(wn)

≤ ∥xn − x∗∥2 −∥xn+1 − x∗∥2 +2αn⟨γψ(xn)−Bx∗,xn+1 − x∗⟩

−αnτ∥xn − x∗∥2 +2M2θn(1−βn −αnτ)∥xn − xn−1∥

→ 0 as n → ∞.

Hence, we have
(h(wn)+ l(wn))

2

θ 2(wn)
→ 0 as n → ∞.

By the linearity and boundedness of A, we obtain that {θ 2(wn)} is bounded. It follows that

lim
n→∞

((h(wn)+ l(wn))
2) = 0,

which implies that
lim
n→∞

h(wn) = lim
n→∞

l(wn) = 0.

Since {wn} is bounded, there exists a subsequence {wn j} of {wn} satisfying wn j ⇀ w. By the
lower semicontinuity of h, we have

0 ≤ h(w)≤ liminf
j→∞

h(wn j) = lim
n→∞

h(wn) = 0.

Therefore, h(w) = 1
2∥(I −proxλg)Aw∥2 = 0. Hence, Aw is a fixed point of the proximal mapping of

g or equivalently, Aw is a minimizer of g. Similarily, from the lower semicontinuity of l, we obtain

0 ≤ l(w)≤ liminf
j→∞

l(wn j) = lim
n→∞

l(wn) = 0.

Therefore, l(w) = 1
2∥(I−proxλ µn f )w∥2 = 0, i.e. w is a fixed point of the proximal mapping of f . In

other word, w is a minimizer of f . Hence, w ∈ Ω. Since

0 < µn < 4
h(wn)+ l(wn)

θ 2(wn)
→ 0 as n → ∞,

and hence, µn → 0 as n → ∞.
From (2.2), we have
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∥Syn − x∗∥2 = ∥yn − x∗+Syn − yn∥2

= ∥yn − x∗∥2 −2⟨yn − z,yn −Syn⟩+∥Syn − yn∥2

≤ ∥yn − x∗∥2 − (1− k)∥Syn − yn∥2 +∥Syn − yn∥2

≤ ∥yn − x∗∥2 + k∥Syn − yn∥2. (3.10)

From (3.8) and (3.10), we have

∥xn+1 − x∗∥2 ≤ 2αn⟨γψ(xn)−Bx∗,xn+1 − x∗⟩+βn∥xn − x∗∥2

+(1−βn −αnτ)∥Syn − x∗∥2

≤ 2αn⟨γψ(xn)−Bx∗,xn+1 − x∗⟩+βn∥xn − x∗∥2

+(1−βn −αnτ)(∥yn − x∗∥2 + k∥Syn − yn∥2)

≤ 2αn⟨γψ(xn)−Bx∗,xn+1 − x∗⟩+βn∥xn − x∗∥2

+(1−βn −αnτ)(k∥Syn − yn∥2 +∥xn − x∗∥2

+2M2θn∥xn − xn−1∥),

(3.11)

implies that

−(1−βn −αnτ)k∥Syn − yn∥2

≤ 2αn⟨γψ(xn)−Bx∗,xn+1 − x∗⟩+βn∥xn − x∗∥2 −∥xn+1 − x∗∥2

+(1−βn −αnτ)(∥xn − x∗∥2 +2M2θn∥xn − xn−1∥)

≤ 2αn⟨γψ(xn)−Bx∗,xn+1 − x∗⟩+∥xn − x∗∥2 −∥xn+1 − x∗∥2

+2M2θn∥xn − xn−1∥(1−βn −αnτ),

by condition (C2) and (3.6), we have

lim
n→∞

∥Syn − yn∥= 0. (3.12)

Since limn→∞ l(wn) = limn→∞
1
2∥(I −proxλ µn f )wn∥2 = 0, we get

lim
n→∞

∥wn −proxλ µn f wn∥= 0. (3.13)

Since µn → 0 as n → ∞, by nonexpansiveness of proxλ µn f , we have

∥yn −proxλ µn f wn∥= ∥proxλ µn f (wn −µnA∗(I −proxλg)Awn)−proxλ µn f wn∥

≤ ∥wn −µnA∗(I −proxλg)Awn −wn∥

≤ µn∥A∗(I −proxλg)Awn∥→ 0 as n → ∞.

Therefore,

∥yn −wn∥ ≤ ∥yn −proxλ µn f wn∥+∥proxλ µn f wn −wn∥→ 0 as n → ∞. (3.14)

By definition of wn and using (3.6),

∥wn − xn∥= ∥xn +θn(xn − xn−1)− xn∥

= θn∥xn − xn−1∥→ 0 as n → ∞. (3.15)
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Since wn j ⇀ w ∈ H1, using (3.15) we conclude that xn j ⇀ w ∈ H1, similarly using (3.14)
we get that yn j ⇀ w ∈ H1. By Lemma 2.3, Lemma 2.5 and (3.12), we have w ∈ F(T ). Hence
w ∈ F(T )∩Ω.

Next, we show that limsupn→∞⟨(B−γψ)x∗,x∗−xn⟩ ≤ 0, where x∗ = PΩ∩F(T )(I−B+γψ)x∗.
Then we have

limsup
n→∞

⟨(B− γψ)x∗,x∗− xn⟩= lim
j→∞

⟨(B− γψ)x∗,x∗− xn j⟩

= ⟨(B− γψ)x∗,x∗−w⟩

≤ 0 , by Lemma 2.2. (3.16)

Now, we prove that xn converges strongly to x∗. From (3.9), we have

∥xn+1 − x∗∥2 ≤ (1−δn)∥xn − x∗∥2 +δnζn,

where

δn =
αn(τ −2γδ )

1−αnγδ
and ζn =

2⟨γψ(x∗)−Bx∗,xn+1 − x∗⟩
(τ −2γδ )

+
2M2σn(1−βn −αnτ)

αn(τ −2γδ )
.

Using (C2), (C3) and (3.16) we get, ∑
∞
n=1 δn = ∞ and limsupζn ≤ 0. Applying Lemma 2.6, we

conclude that limn→∞ ∥xn − x∗∥= 0.

Case 2: Assume that {∥xn − x∗∥}∞
n=1 is not monotonically decreasing sequence.

Set Γn = ∥xn − x∗∥, n ≥ 1 and let τ : N→ N be a mapping defined by

τ(n) := max{k ∈ N : k ≤ n,Γk ≤ Γk+1} ,n ≥ n0 (large enough).

Clearly, τ is a non decreasing sequence such that τ(n)→ ∞ as n → ∞ and

0 ≤ Γτ(n) ≤ Γτ(n)+1, ∀n ≥ n0.

After a similar arguments as in the Case 1, we can see that

lim
n→∞

∥Syτ(n)− yτ(n)∥= 0.

and
lim
n→∞

h(wτ(n)) = lim
n→∞

l(wτ(n)) = 0.

Similarly from (3.9), we have

∥xτ(n)+1 − x∗∥2 ≤ (1−δτ(n))∥xτ(n)− x∗∥2 +δτ(n)ζτ(n),

implies,
∥xτ(n)− x∗∥2 ≤ ζτ(n), as ∥xτ(n)− x∗∥2 ≤ ∥xτ(n)+1 − x∗∥2.

Since limsupn→∞ ζτ(n) ≤ 0, we get that

lim
n→∞

∥xτ(n)− x∗∥= 0.

Thus,
lim
n→∞

∥xτ(n)+1 − x∗∥= 0.

As a consequences, we obtain for all n ≥ n0.
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0 ≤ Γn ≤ max{Γτ(n),Γτ(n)+1}= Γτ(n)+1,

i.e,
0 ≤ ∥xn − x∗∥ ≤ ∥xτ(n)+1 − x∗∥ → 0 as n → ∞. Hence, lim∥xn − x∗∥ = 0, that is, {xn} con-

verges strongly to x∗. This completes the proof.

□

If we take f = iC and g = iQ in Algorithm 3.1, then proxλ µ f = PC and proxλg = PQ for all λ ,
where argmin f =C and argming = Q. As a direct consequence of Theorem 3.1, we state following
result for split feasibility problem.

Corollary 3.1. Let the conditions (C2)-(C4) hold and the solution set F(T )∩Γ ̸= /0. Then, the
sequence {xn} defined by Algorithm 3.1 converges strongly to a point x∗ ∈ F(T )∩Γ.

4. Finite family of pseudo-contractive mappings

Now, we propose following split proximal algorithm for finite family of pseudo-contractive
mappings:

Algorithm 4.1. Given an initial point x1,x0 ∈ H1, assume that xn has been constructed and ∥A∗(I−
proxλg)Awn∥2 +∥(I −proxλ µn f )wn∥2 ̸= 0, then compute xn+1 by the following iterative scheme:

wn = xn +θn(xn − xn−1),

yn = proxλ µn f (wn −µnA∗(I −proxλg)Awn),

xn+1 = αnγψ(xn)+βnxn +[(1−βn)I −αnB]Syn,n ≥ 1,

where S : H1 → H1 is a mapping defined by Sx = kx + (1 − k)∑
n
i=1 ηiTix and k = max{ki : i =

1,2, . . . ,n}, and the inertial parameter θn is chosen as Algorithm 3.1.

Theorem 4.1. Let {Ti}n
i=1 : H1 → H1 be finite family of ki-strictly pseudo-contractive mappings and

{ηi}n
i=1 be a positive sequence such that ∑

n
i=1 ηi = 1. Let F(Ti)

n
i=1 ∩Ω ̸= /0 and the conditions (C2)-

(C4) hold. Then, the sequence {xn} defined by Algorithm 4.1 converges strongly to a common fixed
point x∗, i.e x∗ ∈ F({Ti}n

i=1)∩Ω which also solves the variational inequality:

⟨(γψ −B)x∗,x− x∗⟩ ≤ 0, ∀x ∈ F({Ti}n
i=1)∩Ω.

Proof. Define T : H1 → H1 by T x = ∑
n
i=1 ηiTix. By Lemma 2.5, we conclude that T is k-strictly

pseudo-contractive mappings and F(T ) = F(∑n
i=1 ηiTi) = ∩n

i=1F(Ti). Then the conclusion follows
from the Theorem 3.1. This completes the proof. □

5. Nonconvex minimization problem

In this section, we propose an iterative algorithm and prove strong convergence theorem
for common solution to nonconvex minimization feasibility problem and fixed point problem of
k-strictly pseudocontractive mapping in real Hilbert spaces.

The nonconvex theory is of great practical interest, but is less developed as compared to the
convex one. Moudafi and Thakur [18], studies the convergence of split proximal algorithm in which
one function is allowed to be noconvex. They considered the following problem:

0 ∈ ∂ f (w̄) such that 0 ∈ ∂Pg(Aw̄) . (5.1)
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The solution set of Problem (5.1) is denoted by Ω1. The Problem (5.1) includes as special cases,
g convex and g lower-C2 function which itself is of great importance in variational analysis and
optimization [18].

Poliquin–Rockafellar [20] introduced the concept of a proximal subdifferential and also in-
vestigated the limiting proximal subdifferential. Let g : H2 → R∪ {+∞} and let w̄ ∈ domg, i.e.,
g(w̄)<+∞. The proximal subdifferential ∂Pg(w̄) is defined as follows:

Definition 5.1. A vector u is in ∂Pg(w̄) if there exist some r > 0 and ε > 0 such that for all w ∈
B(w̄,ε), then

⟨u,w− w̄⟩ ≤ g(w)−g(w̄)+
r
2
∥w− w̄∥2,

and ∂Pg(w̄) = /0 if g(w̄) = +∞.

We now recall that:

• g is locally lower semicontinuous at w̄ if its epigraph is closed relative to a neighborhood of
(w̄,g(w̄)),

• g is prox-bounded if g is minorized by a quadratic function,
• for ε > 0, the g-attentive ε-localisation of ∂Pg around (w̄, ū), the mapping Tε : H2 → 2H2 is

defined by

Tε(w) =

{
{u ∈ ∂Pg(w),∥u− ū∥< ε}, if ∥w− w̄∥< ε and |g(w)−g(w̄)|< ε,

/0, otherwise.

Definition 5.2 ([20]). A function g is said to be prox-regular at w̄ for ū ∈ ∂Pg(w̄) , if there exist some
r > 0 and ε > 0 such that for all w,w′ ∈ B(w̄,ε) with |g(w)− g(w′)| ≤ ε and all u ∈ B(ū;ε) with
u ∈ ∂Pg(w) one has

g(w′)≥ g(w)+ ⟨u,w′−w⟩− r
2
∥w′−w∥2 .

Lemma 5.1 ([18]). Suppose that g is locally lower semicontinuous at w̄ and prox-regular at w̄ for
ū = 0 with respect to r and ε . Let Tε be the g-attentive ε-localisation of ∂Pg around (w̄, ū). Then for
each λ ∈]0, 1

r [ and w1,w0 in a neighborhood Uλ of w̄,

⟨(I −proxλg)(w1)− (I −proxλg)(w2),w1 −w2⟩

≥ ∥(I − proλg)(w1)− (I − proλg)(w2)∥2 − λ r
(1−λ r)2 ∥w1 −w2∥2.

We now propose an algorithm to study the convergence property of problem (5.1).

Algorithm 5.1. Given an initial point x1,x0 ∈ H1, assume that xn has been constructed and ∥A∗(I−
proxλg)Awn∥2 +∥(I −proxλ µn f )wn∥2 ̸= 0, then compute xn+1 by the following iterative scheme:

wn = xn +θn(xn − xn−1),

yn = proxλnµn f (wn −µnA∗(I −proxλng)Awn),

xn+1 = αnγψ(xn)+βnxn +[(1−βn)I −αnB]Syn,n ≥ 1,

where λn ∈ (0, 1
r − ε) (for some ε > 0 small enough), stepsize

µn := ρn
( 1

2∥(I −proxλng)Awn∥2)+( 1
2∥(I −proxλnµn f )wn∥2)

∥A∗(I −proxλng)Awn∥2 +∥(I −proxλnµn f )wn∥2

with 0 < ρn < 4. The inertial parameter θn is chosen same as Algorithm 3.1.
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We now present main result of this section.

Theorem 5.1. Let f : H1 → R∪{+∞} be a proper and lower semicontinuous convex function, and
g : H2 → H2 be locally lower semicontinuous at Aw̄, prox-bounded and prox-regular at Aw̄ for ū = 0
with w̄ a point that solves (5.1) and A be a bounded linear operator which is surjective with a dense
domain. Suppose that the conditions (C2)-(C4) holds with ∑

∞
n=0 λn < ∞. If F(T )∩Ω1 ̸= /0 and

∥x1 − w̄∥ is small enough, then the sequence {xn} generated by Algorithm 5.1 converges strongly to
a point w̄ ∈ F(T )∩Ω1 which also solves the variational inequality problem:

⟨(B− γψ)w̄, w̄− x⟩ ≤ 0, ∀x ∈ F(T )∩Ω1.

Proof. Since w̄ ∈ F(T )∩Ω1, using the Lemma 5.1 and nonexpansivity of proxλnµn f , we have

∥yn − w̄∥2 = ∥proxλnµn f (wn −µnA∗(I −proxλg)Awn)− w̄∥2

≤ ∥wn −µnA∗(I −proxλng)Awn − w̄∥2

≤ ∥wn − w̄∥2 +µ
2
n∥A∗(I −proxλg)Awn∥2 −2µn⟨A∗(I −proxλng)Awn,wn − w̄⟩

≤ ∥wn − w̄∥2 +µ
2
n∥A∗(I −proxλng)Awn∥2 −2µn

(
2h(wn)−

λnr∥A∥2

(1−λnr)2 ∥wn − w̄∥2)
≤ ∥wn − w̄∥2 +µ

2
n∥A∗(I −proxλng)Awn∥2 −4µnh(wn)+2µn

λnr∥A∥2

(1−λnr)2 ∥wn − w̄∥2

≤ ∥wn − w̄∥2 +2ρn
(h(wn)+ l(wn))

∥∇h(wn)∥2 +∥∇h(wn)∥2
λnr∥A∥2

(1−λnr)2 ∥wn − w̄∥2

−ρn

(
4h(wn)

h(wn)+ l(wn)
−ρn

)
(h(wn)+ l(wn))

2

θ 2(wn)

≤
(

1+λnρn

(
2h(wn)

∥∇h(wn)∥2 +
2l(wn)

∥∇l(wn)∥2

)
r∥A∥2

(1−λnr)2

)
∥wn − w̄∥2

−ρn

(
4h(wn)

h(wn)+ l(wn)
−ρn

)
(h(wn)+ l(wn))

2

θ 2(wn)

≤
(

1+λnρn

(
1+

2h(wn)

∥∇h(wn)∥2

)
r∥A∥2

(1−λnr)2

)
∥wn − w̄∥2

−ρn

(
4h(wn)

h(wn)+ l(wn)
−ρn

)
(h(wn)+ l(wn))

2

θ 2(wn)
. (5.2)

From Theorem II.19 of Brezis [5], we recall that A is surjective with a dense domain ⇔ ∃γ > 0 such
that ∥A∗x∥ ≥ γ∥x∥. This gives that

2h(wn)

∥∇h(wn)∥2 =
∥(I −proxλng)A(wn)∥2

∥A∗(I −proxλng)A(wn)∥2 ≤ 1
γ2

∥(I −proxλng)A(wn)∥2

∥(I −proxλng)A(wn)∥2 =
1
γ2 .

From conditions on the parameters λn and ρn, there exist of a positive constant M such that

∥yn − w̄∥2 ≤ (1+Mλn)∥wn − w̄∥2 −ρn

(
4h(wn)

h(wn)+ l(wn)
−ρn

)
(h(wn)+ l(wn))

2

θ 2(wn)
. (5.3)
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By Algorithm 5.1 and (5.3), we have

∥xn+1 − w̄∥= ∥αnγψ(xn)+βnxn +[(1−βn)I −αnB]Syn − w̄∥

≤ ∥αnγψ(xn)−αnB(w̄)−βnw̄+βnxn +[(1−βn)I −αnB]Syn +αnBw̄+βnw̄− w̄∥

≤ ∥αn(γψ(xn)−B(w̄))−βn(xn − w̄)+((1−βn)I −αnB)Syn − ((1−βn)I −αnB)w̄∥

≤ αn∥γψ(xn)−B(w̄)∥+βn∥xn − w̄∥+∥(1−βn)I −αnB∥∥Syn − w̄∥

≤ αn∥γψ(xn)−B(w̄)∥+βn∥xn − w̄∥+(1−βn −αnτ)∥yn − w̄∥

From (5.3) and definition of wn, we have

∥yn − x∗∥ ≤ (1+Mλn)
1
2 ∥wn − x∗∥

= (1+Mλn)
1
2 (∥xn +θn(xn − xn−1)− x∗∥)

≤ (1+Mλn)
1
2 (∥xn − x∗∥+θn∥xn − xn−1∥) . (5.4)

From (5.4) and using 1+ x ≤ ex, x ≥ 0, we have

∥xn+1 − w̄∥ ≤ αn∥γψ(xn)−B(w̄)∥+βn∥xn − w̄∥+(1−βn −αnτ)
(
(1+Mλn)

1
2 ∥xn − w̄∥

+θn∥xn − xn−1∥
)

≤ αn∥γψ(xn)−B(w̄)∥+(1+Mλn)
1
2 (1−αnτ)∥xn − w̄∥+(1−βn −αnτ)θn∥xn − xn−1∥

≤ (1+Mλn)
1
2 (1−αnτ)∥xn − w̄∥+αnγ∥ψ(xn)−ψ(w̄)∥+αn∥ψ(w̄)−B(w̄)∥

+(1−βn −αnτ)θn∥xn − xn−1∥

≤ e(Mλn)
1
2 (1−αnτ)∥xn − w̄∥+αnγδ∥xn − w̄∥+αn∥ψ(w̄)−B(w̄)∥

+(1−βn −αnτ)θn∥xn − xn−1∥

= e
M
2 λn

(
1−αn

(
τ − γδ

e
M
2 λn

))
∥xn − w̄∥

+αn

(
τ − γδ

e
M
2 λn

)∥ψ(w̄)−B(w̄)∥(
τ − γδ

e
M
2 λn

) +
(1−βn −αnτ)θn∥xn − xn−1∥

αn

(
τ − γδ

e
M
2 λn

)


≤ e
M
2 λn

max

∥xn − w̄∥,
(∥ψ(w̄)−B(w̄)∥(

τ − γδ

e
M
2 λn

) +
(1−βn −αnτ)θn∥xn − xn−1∥

αn

(
τ − γδ

e
M
2 λn

) )


...

≤ e
M
2 ∑

∞
n=1 λn

(
max

{
∥x1 − w̄∥,

(
sup
n∈N

ψn + sup
n∈N

φn

)})
,

where ψn =
∥ψ(w̄)−B(w̄)∥(

τ− γδ

e
M
2 λn

) , φn =
(1−βn−αnτ)θn∥xn−xn−1∥

αn

(
τ− γδ

e
M
2 λn

) . Clearly, {φn},{ψn} are bounded, as limn→∞ φn =

0 and ∑
∞
n=0 λn < ∞. This implies that the sequence {xn} is bounded. Consequently {yn},{Tyn} and

{wn} are also bounded.
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Now, following the methods of Theorem 3.1, we can show that

lim
n→∞

(h(wn)+ l(wn)) = 0,

i.e.,
lim
n→∞

(h(wn)) = 0 and lim
n→∞

(l(wn)) = 0.

If w is a weak cluster point of {wn}, then there exists a subsequence {wn j} which weakly converges
to w. Using similar arguments as in the proof of Theorem 3.1, we can show that

(1) 0 ∈ ∂ f (w) such that 0 ∈ ∂Pg(Aw),
(2) ∥Tyn − yn∥→ 0,n → ∞,
(3) limn→∞ ∥wn − yn∥= 0 = limn→∞ ∥xn − yn∥,
(4) w̄ ∈ Ω1 ∩F(T ).

Similarly we can get that limn→∞ ∥xn − w̄∥ = 0, i.e., {xn} converges strongly to w̄. This
completes the proof. □

6. Numerical results

In this section, we give a numerical example to compare Algorithm 3.1 with Algorithm (1.5)
of Khuangsatung et al. [14] in an infinite dimensional Hilbert space.

Example 6.1. Let E1 = E2 = L2([0,1]) with inner product given as ⟨x,y⟩ =
∫ 1

0 x(t)y(t)dt, ∀x,y ∈
L2([0,1]) and norm ∥x∥ := (

∫ 1
0 |x(t)|2dt)

1
2 , ∀x,y ∈ L2([0,1]). Let C = {x ∈ L2([0,1]) : ⟨x,a⟩ ≤ b},

where a = et ,b = 2 and Q = {x ∈ L2([0,1]) : ∥x−d∥2 ≤ r}, where d = t2 +1,r = 2.
We first recall that the projections on sets C and Q are given by:

proxλ µn f = PC(x) =

x, if x ∈C,
b−⟨a,x⟩
∥a∥2

2
a+ x, otherwise,

and

proxλg = PQ(x) =

x, if x ∈ Q,

d + r x−d
∥x−d∥ , otherwise,

where f = iC and g = iQ, the indicator functions on C and Q respectively. Let A : L2([0,1]) →
L2([0,1]) be a bounded linear operator defined by Ax(t) = x(t)

2 . Let S,B,ψ : L2([0,1])→ L2([0,1])
be defined by Sx(t) = x(t)

2 , Bx(t) = 1, ψx(t) = x(t)
3 for all x ∈ E1. Take ρn = 1 = γ , αn = 1

4n ,
βn = n

2n+1 = θn for n ≥ 1, then the conditions in Theorem 3.1 are satisfied. We now consider the
following four cases.

Case 1: Take x0(t) = 3et , x1(t) = et ,
Case 2: Take x0(t) = t +1, x1(t) = t2,
Case 3: Take x0(t) = 2et , x1(t) = 2t,
Case 4: Take x0(t) = et + t, x1(t) = 2

3 t.
For these cases, our Algorithm 3.1 is compared with Algorithm 1.5 of Khuangsatung et al.

[14]. We plot the graphs of Error = ∥xn+1 − xn∥ against number of iterations with stopping criteria
|xn+1 − xn| < 10−3. The graphs show that our algorithm works well and converges faster than the
Algorithm 1.5 and have computative advantages over the algorithm of Khuangsatung et al. [14].
The numerical results are displayed in Figure 1.
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(A) Case 1 (B) Case 2

(C) Case 3 (D) Case 4

FIGURE 1
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