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REGULARIZED ALGORITHM FOR THE
PROXIMAL SPLIT FEASIBILITY PROBLEMS

by Ajay Kumar', Balwant Singh Thakur?, Teodor Turcanu® and Hemant Kumar Sharma*

The purpose of this paper is to propose a regularized algorithm to find find common solution
of proximal split feasibility problem and fixed point problems for the case of convex and nonconvex
functions in real Hilbert spaces. The algorithm is motivated by the inertial method and the split prox-
imal algorithm with self adaptive step size such that their implementation does not required any prior
information about the operator norm. In addition, we give a numerical example to verify the efficiency

and implementation of our scheme.
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1. Introduction

The split feasibility problem (SFP) was introduced by Censor and Elfving [9] in a finite
dimensional Hilbert space for modeling inverse problems in radiation therapy treatment planning
which arise from phase retrieval and in medical image reconstruction, especially in intensity modu-
lated therapy [11]. It plays key role in signal processing Byrne [8] and medical image reconstruction
Byrne [7]. A more general case is the proximal split feasibility problem.

Let H; and H, be real Hilbert space, f: Hf — RU{e}, g: Hy — RU{e} proper, lower
semicontinuous, convex functions. Let A: H; — H, be a bounded linear operator, then the proximal
split feasibility problem is defined as below:

find x* € argmin f; such that Ax* € argmin f3, 1.1

where
argmin f = {x € H, : £(x) < f(y), Yy € Hy },
and
argming = {x € H, : g(x) < g(y),Vy € Hp}.
Let C and Q be nonempty, closed and convex subsets of H; and H, respectively, f = ic
and g = ip be indicator functions of C and Q, respectively, then the problem (1.1) reduces to the
following split feasibility problem:

find x* € C such that Ax* € Q. 1.2)

ISchool of Studies in Mathematics, Pt.Ravishankar Shukla University Raipur - 492010 (C.G.), India, Email
sharma.ajaykumar93@gmail.com

2School of Studies in Mathematics, Pt.Ravishankar Shukla University Raipur - 492010 (C.G.), India, Email
balwantst@gmail.com

3Department of Mathematics & Informatics, National University of Science and Technology Politehnica Bucharest,
Bucharest 060042, Romania, Email teodor.turcanu@upb.ro, deimosted@yahoo.com

4DKS PGI&RC Raipur 492001, India, Email hemantsharma.rp@gmail.com

29



30 Ajay Kumar, Balwant Singh Thakur, Teodor Turcanu and Hemant Kumar Sharma

A classical method to solve the SFP is Byrne’s CQ algorithm ([7], [8]). Since then a num-
ber of numerical algorithms have been developed to solve the SFP; see([10, 15, 22, 23]) and the
references therein.

Concerning problem (1.1), based on an idea of Lopez et al. [15] and with a new way of
selecting the step-sizes, Moudafi and Thakur [18] introduced the following split proximal algorithm:

Set 6%(x) := ||A*(I—prox)Lg)Ax||2 + H(I—proanf)xﬂz, h(x) == %H(l—proxlg)AxHZ, and
1(x) := 5|1 = proxy, )x]1*.
For given an initial point x; € Hy:
Xptl = proanf(xn — ,u,lA*(I—prox;Lg)Axn), n>1, 1.3)
g x)1)+[(x11)

where the stepsize is chosen as ,, 1= p, h 07(n)

i lu =yl

with 0 < p, <4and prox,,, ((y) =argmingep, {f(u)

If 6(x,) =0, then x, 1 = x, is a solution of (1.3) and the iterative process stops, otherwise,
setn:=n+ 1 and go to (1.3).

Moreover, Moudafi and Thakur [18] also assumed f to be convex and allowed the function g
to be nonconvex and proved a weak convergence result in Hilbert spaces. They considered the more
general problem of finding a minimizer ¥ of f such that Ax is a critical point of g, i.e.

0 € df(%) such that 0 € dpg(AX),
where dp stands for the proximal subdifferential of g.

Shehu and Ogbuisi [24] constructed the following iterative algorithm for approximating a
solution of proximal split feasibility problems for the case of convex and non-convex functions and
proved strong convergence in Hilbert spaces.

For given an initial point x; € H; compute x,, 1 via the following rule:

wp = (1 —ay)xy,
Yn = Proxy, (W — tyA™ (1 — prox, ) Aw,), 1.4)
Xn+1 = (1 - ﬁn)xn +ﬁnsyn;n >1,

(wn)+1(wn)

where the stepsize U, := p,,h 1620mn)]| with 0 < p, < 4.

If 6(w,) =0, then x,4| = x, is a solution of (1.4) and the iterative process stops, otherwise
setn:=n+1 and go to (1.4).

Khuangsatung et al. [14] introduced a regularized algorithm based on the viscosity method
for solving the proximal split feasibility problem and the fixed point problem in Hilbert spaces as
follows:

For a given initial point x; € H{, assume that x,, has been constructed and
[|A* (1 = prox; o JAw, | > + [| (I = prox, ,, Jwall* # 0,

then compute x,41 by the following iterative scheme:

{yn = proxy,, (0 W (xn) 4 (1 — 0)x, — UaA™ (I — prox; . )Ax,), 15)

Xn+1 = (1 _Bn)xn+ﬁnsyn7” >1,
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where the stepsize U, := PnW

expansive mappings, respectively.
Some other algorithms for proximal split feasibility problem may be found in [1, 12, 14, 19,

with 0 < p, <4 and y,S: H; — H| is contraction and non-

25, 30] and references therein.

In the context of implementation, an algorithm with a higher rate of convergence is more use-
ful. A way to improve convergence rate is to add inertial term in the algorithm. It was first proposed
by Polyak [21] as an acceleration process to solve the smooth convex minimization problem. The
main feature of the inertial-type algorithms is that it uses two previous iterates to construct the next
one. In recent years several convergence results were obtained using inertial type algorithms; see,
for instance: [3, 4, 16, 23, 26, 28].

Inspired and motivated by the above mentioned works, in this paper propose an algorithm
with inertial method to solve the proximal split feasibility problems and establish strong conver-
gence result for by employing proposed algorithm in Hilbert spaces. We also provide a numerical
example to illustrate the effectiveness of the proposed algorithm.

2. Preliminaries

Let C be a nonempty closed, convex subset of Hilbert space H. A mapping T: C — H said
to be k-strictly pseudocontractive if

1T =Ty|* < |lx = yI* + k|| (1 = T)x— (1 = T)y|?, 2.1

holds, for 0 < k < 1 and for all x,y € C.

It is said to be nonexpansive if k = 0, pseudo-contractive if k = 1, Strongly pseudo-contractive
if there exists a positive constant A € (0, 1) such that T — Al is pseudo-contractive. The class of k-
strict pseudo-contractions falls into the one between classes of nonexpansive mappings and pseudo-
contractions.

If z € F(T), where F(T) denote the set of fixed points of 7', then from (2.1), we have

(1—k)|lx—Tx||* <2(x—z,x—Tx). (2.2)
We now recall some definitions and results:
An operator A is strong positive on H, if there exists a constant T > 0 with the property:
(Ax,x) > ||x|)?, Vx e H.

The proximal operator prox, , : H — H is defined by,

1
proxy e (v) = argmin{g(u) + - |lu—y[*}.
It is firmly nonexpansive [13], i.e.,
(prox; ¢ (x) — prox, . (v),x =) > [|prox;,4(x) — prox, , ()|,
holds, for all x,y € H.

Lemma 2.1 ([12]). In a real Hilbert space H, following hold:
(D) Jlox+ (1= a)yl]* = allx|* + (1= a)|lyl|* — (1 —a)[|x =y,
@) [lx =yl = [|xl* = 20x,3) + [Iy]%,
3 [lx+yl* < x> +2(nx + ),
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forallx,y € Hand o € (0,1).
Lemma 2.2 ([27]). Givenx € H andy € C. Then, Pcx =y if and only if
(x—y,y—z) >0 VzeC.

Lemma 2.3 ([6]). Let C be a nonempty closed, convex subset of a real Hilbert space H. If S: C — C
is a nonexpansive mapping, then I — S is demi-closed at zero.

Lemma 2.4 ([17]). Assume that A is a strong positive linear bounded operator on a Hilbert space
H with coefficient T > 0and 0 < p < ||A||~!, then |I — pA|| < 1—p7.

We now list some properties of strictly pseudo-contractive mappings from [2], [31].

Lemma 2.5. Let C be a closed convex subset of a Hilbert space H.

(1) Let T: C — C be a k-strictly psuedo-contractive mapping, then a mapping S: C — C defined
by Sx = Ax+ (1 —A)Tx, x € C is nonexpansive for A € [k,1) also F(S) = F(T).

(i1) Foraninteger N > 1, assume for each 1 <i <N, T;: C — C is a k;-strictly pseudo-contractive
mapping for some 0 < k; < 1. Assume that {n;}"_, is a positive sequence such that y.;_; n; = 1.
Then Y7 0iT; is a non-self-k-strictly pseudo-contractive mapping with k = max{k; : 1 <i <
n}

(iii) If {T;}7_, has a common fixed point in C. Then F (Y} n;T;) = N}_, F(T;).

Lemma 2.6 ([29]). Let {s,} be a sequence of nonnegative real numbers satisfying:
Spt1 < (1 - an)sn + 0,0, + %, V2> 1,

where
(D) {on} C[0,1], Xy oy = oo;
(2) limsupo, <0;
(3) Yn 2 0 (I’l 2 1)a2:10:1 Ya < oo,

Then, lim,,_,c. s, = 0.

3. Main Results

For rest of the paper, let

e H; and H, be two real Hilbert spaces,

o f: H — RU{+o} and g: Hy — RU{+oo} be two proper and lower semicontinuous convex
functions,

e B: H| — H| be a strong positive bounded linear operator with coefficient T and A: H; — H;
be a bounded linear operator.

e y: Hj — H; be a contraction with § € (0,1) and 0 <y < §,

e S: H, — H; be a mapping defined as Sx = kx+ (1 — k)Tx, where T : H; — H; be a k-strictly
pseudo-contractive mapping,

¢ {an}::lv {ﬁn :::1 C (071)’ and {en};o:l - [Ové) - [071)-

e the solution set of (1.1) and (1.2) is denoted by Q and I', respectively.

Before describing our algorithm, the following conditions are required in convergence anal-
ysis.



Modified Iterative Method For The Proximal... 33

(C1) The solution set F(T)NQ # 0;

(C2) Yo oy = o0 and limy, 00 04, = 05
(C3) Let {0} C [0,0) with & > 0 such that lim,, .. g* = 0;
4| (1—proxy . JAwy||?

T proxsg)Awn P+ —proxs g JAmnlE € for some € > 0, where 0 < p, < 4.

(C4) e<p, <

We now propose the a modified split proximal algorithm as follows:

Algorithm 3.1. Given an initial start x1,xo € H\, assume that x,, has been constructed and ||A* (I —
prox;Lg)AW,,H2 +|[(I— proanf)WnHz # 0. Then compute x,1 by the following iterative scheme:

Wp = Xp + 6n(xn _xn—l)a
Yn = Proxy, r(wn — tpA™ (1 — prox ) Aw,),
Xn+1 = anylll(xn)+ﬁnxn+[(l _,Bn)l_anB}Synv n>1,

317 = proxy ) Aw||* + 31| (7 — proxy, )wall?
[[A*(I = prox; ) Awn > + || (T — proxy , p)wall*

where the stepsize U, ‘= Py

Remark 3.1. In Algorithm 3.1 the inertial parameter 6, is chosen as,

min{mve}a If Xn # Xn—1,

0, otherwise.

6, = 3.1

Theorem 3.1. Let the conditions (C1)-(C4) hold. Then, the sequence {x,} generated by Algorithm
3.1 converges strongly to x* € F(T) N, which also solves the variational inequality (VI)

((B—7yy)x*,x* —x) <0, Vx e F(T)NQ.
Proof. For a given A > 0 and x € Hj, set

h(x) (I—prox,lg)Atz,

=15

)
1 2

1(x) = 3 (1~ proxg,

67 (x) := A" (I — prox; o JAx|[* + || (I — prox , )],

then,

h(x,) +1(x,
Hp = Pn 7( 02)(—;!)( )

Let x* € F(T) N, then x* = prox, , x* and Ax* = prox, ,Ax*. Since / — prox;, is firmly
nonexpansive, we have
(A*(I = prox o )Axy,x, — x") = ((I — prox, , )JAxy, Ax, — Ax")
= ((I = prox; 4 )Ax, — (I — proxy  )JAx*, Ax, — Ax")
> || (I — prox; o )Ax, >
=2h(xy,).
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From the definition of y, and the nonexpansivity of prox, , ;, we obtain

3 =112 = [[pr0x (03 — " (1 — proxy Jw,) — '
<||wy — A" (I — prox;,)Aw, —x* ||2
< lwn = |2 4t |A* (T = prox g )JAw,||* — 28, (A* (I — prox; o JAw,,, w, — x*)

< lwa =2+ 17 |A™ (1 = prox; o JAw > — 4ptah (w,)

< = 179 LT 1o

—4p, (h(wgg (—;/ i()w)) ()
4 LR () 00 b
<o (G o) ¢

Using condition (C4), for all n > 1 we get Wm — pn > 0, and hence from (3.2), we

have
lyn =1 < [lwa "% 3:3)
Let My = sup,~ 1 {6y ||x, — x4—1]|,2[[x, —x*||}, then by the definition of w,

[[wn *x*Hz =[] + 0 (X — Xn—1) *X*Hz
= [t = X[ + 67 Pn — X1 1> 26 (%0 — X", 0 —x1)
< | _X*”2 + 93\\)6;1 —Xn—1 ||2 + 260|260 — x| || — X1 |

< oo = X [1? + 2M32 0, |, — X1 |- (3.4)
From (3.3) and (3.4), we get
[yn = X117 < [l = ||+ 2M20, [} — 1 |- 3.5

From Remark 3.1, we have 6,]|x, —x,—1]| < o, for all n > 1. This together with (C3), yield that

6 G,
lim —|jx, —x,_1]| < lim — = 0. 3.6)
n—reo Oy, n—reo Oy
From (3.3), we get
[lyn =[] < [[wn — x| = |lxn + On (0 — xn—1) — X7

<l = x|+ 6|20 — 201 - (3.7)
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Using (3.7), Algorithm 3.1, and nonexpansivity of S, we have

o1 = x| = [l oYY (%) + Bun + [(1 — Bu)T — 0 B] Sy, — x|
< o yw(xn) — 06, B(x*) — Bux™ + Buxn + [(1 — Bu)I — 04, B] Sy, + 04, Bx* + Bx* — x*||
< [lon(Yy(xn) = B(x")) = Bu (o —x*) + ((1 = Bu)l — 0B)Syn — ((1 = Bu)l — 0 B)x"||
< Yy (xn) = BOES) ||+ Balln — x| 4 (1 = Bu)l — 0 T) || Syn — x|
< YW (xn) = B ||+ Balln = x| 4 (1 = By — 0 T) [lyn — x|
< 0| YW () — B[+ Ballxn — x| + (1 = By — 06, 7) (|12 — x| + 6|0 — x0—1]])
< oYy (xn) = B(X") || 4 (1 = @) [lxw — x| + (1 — Bu — @ T) B[l 0 — X1 |
< (1= o) [lxn —x*[| + ¥l w(xn) — W) || + ol yw(x") — B(x") |
+ (1= B — ) Oyl — X1 |
< (1= 067)[Jxn = 7| + 0 Y8 [0 — x™[| + Q| Yy (™) — B(x") |
+ 6, ||x0 — 20— 1 || (1 = B — 04, 7)
Yy (x") — B(x")||

= (1= 0, (7= 78)) s =" + 0 (v~ 78)

T—7y0
On|xn — Xn—1[|(1 — Bp — @ T)
+ 0, (T —7y0) )
< max { [ — x|, Yy (x*) —B(x")|| I On [0 — Xn—1[| (1 — B — O T)
T-Y8 (7 —78)

.< max{|x1 2, (IW(x*) —B(x")]| +Sup¢n> } ’

T— ’)/6 neN

Onllxn—xp—1|(1=Bn—0wT)

an(1=75) and by (3.6) we get that lim,,_,. ¢, = 0. Therefore ¢, is bounded,
which implies that the sequence {x,} is bounded, consequently {y,},{Sy,} and {w,} are also
bounded.

where, ¢, =
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By Algorithm 3.1 and Lemma 2.1, we have

Pt = 27112 = oy sn) + o + (1 Ba)T — uB)Sya — x|

— () — B*) + Bl —x) + (1 )T — uBJSy
(1= Bl - Bl

e (7 ) — Ba*) B — )+ [(1 — Ba)] — 0uB)(Sya — )

< 20, (7 (1) — BY" st — 3 )+
+[1Buoen — ) + [(1 = Bl — 0B](Syn —x)||?

<204, (YW (xn) — Bx* xy1 —x*Y + 2B, (1 — B — 0,B)(Sy, — x* , xp — x*)
1B (o = 2|2+ 1 [(1 = BT — 0 B] (Syn —x*)|?

<20, (YW (xn) — Bx" ,xp1 —x7) + 2B, (1 — By — 06, T) (Syn — x*, x, — x*)
+ Bl — 2|7 4 (1= By — 06,7)? 1Sy — 7|2

< 206, (YW (xn) = Bx" X1 = x7) 4+ 2B (1= B — 0 T)[|Syn —x7 [ [0 — 7|
+ Bl — 27|17 4 (1= By — 06,7)? 1Sy — 7|2

<205 (YW (%) = Bx" 01 =)+ Bul(1 = B — 06 T) ( Sy = x> + [lw — ")
+ Bl = 2|17 4 (1= By — 06,7)? Sy — 7|2

<205, (YW () = BY 1 = x*) + Bl — 217
+ (1= By — )1 Sya — x| (3.8)

<205 (YW (xn) — YW (X"), Xpa1 —x7) + 200, (YW (x7) — Bx", x40 —x7)
+ Ballx — 2|7 4 [1(1 = Bu — 0 7) [y — x|

<204 ¥8 |l — X7 [0 41 — X7 + 206 (YW (x") — Bx", x 1 —x7)
+ Ballxn =217 4 (1= By — 0 T) ([lxn —x* 1> +2M26, |13, — x-1]))

< 0 Y8 ([l — 217 4 w1 = [1?) + 206, (YW (x") — Bx* 201 —x7)
+ Balbon =1+ (1 = Bu — 06 7) (s — 21> +2M26, | — 201 ),

which implies that,

1—a,(t—170) 20,
— 2 < o x)2 *\ Py -
lonss = < S P s () B g =)
2M5 (1 — By — 06,T) By || X0 — Xn—1]|
+
1 —oy,y0
o (T~ 28) oy Oa(T—278) [ 2(yy(x") — BY' st — ")
< (12 =7 _
<(1 1—%w)w”x”+1_%m { (t—273)
2Mp0,(1 — B, — o, T) }
o, (T —290)
= (1=8))|lx, —x*|> + 8,80, 3.9

_ 0 (1-2Y8) — 2y ) =B xp 1 =x") | 2M 0 (1—Pr—0nT)
where 6,1 = W and Cn (—275) +1 + Zan(f_z,yﬁ)

We now divide our proof into two cases:
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Case 1: Suppose that there exists ng € N, such that {||x, —x*||};_, is nonincreasing. Then, {||x, —
x|}, converges and [|x, — x*||> — [|x,41 — x*[|* = 0 as n — oo.

From (3.2), (3.8) and condition (C4), we obtain
[Pne1 =1 < 200 (YW () = B, g1 =) + Bal g — 27>
+ (1= B — 0 7) [y — x|
< 2007y () — B 501 — )+ Bty —x° 2+ (1= By — y7)

* (wn) (h(wn) (Wn))z
(a1 = o G ) (2 )y

<206, (YW (xn) = Bx™ X1 — X7) + B, — X" H2

(1= Bu— 0T) ([l — "2+ 2M26, 50 = 301

B 4h(Wn) B (h(Wn) +Z(Wn))2
Pr ((h(Wn)+l(Wn)) pn> 6% (wa) >’

implies that
4h(wn) (h(wn) +1(wn))?
(1 =By — 0T)pn ((h(w,,)+l(w,,)) - n) 87(m)

< ot = |7 = 1 — X[ + 206, (YW (x0) — Bx* X0 1 —X7)
— 0, T|| X0 fx*||2 +2M56,(1 — By — 06, T) || X0 — Xn—1]]
—0asn — oo.

Hence, we have
(A(wn) +1(wn))?
02(wy)
By the linearity and boundedness of A, we obtain that {6%(w,)} is bounded. It follows that

Tim ((h(wa) +1(wa))?)

—0asn — oo,

0,

which implies that
,}E?oh(wn) = r}glgol(wn) =0.
Since {w, } is bounded, there exists a subsequence {wy, } of {w,} satisfying w,; — w. By the
lower semicontinuity of &, we have

0 < h(w) <liminf/(w,,;) = lim h(w,) = 0.

J—roe n—yoo

Therefore, h(w) = 5||(I — prox; . )Aw||* = 0. Hence, Aw is a fixed point of the proximal mapping of
g or equivalently, Aw is a minimizer of g. Similarily, from the lower semicontinuity of /, we obtain

0 < 1(w) < liminfl(wy,) = lim /(p) =0.

Therefore, I(w) = ||(I— prox;tunf)sz =0, i.e. wis a fixed point of the proximal mapping of f. In
other word, w is a minimizer of f. Hence, w € Q. Since
h(wn) +1(wy)

n < 4
0O<u, < 02(y)

—0asn — oo,

and hence, 1, — 0 as n — co.
From (2.2), we have



38 Ajay Kumar, Balwant Singh Thakur, Teodor Turcanu and Hemant Kumar Sharma

1Syn =212 = [lyn = "+ Syn = yall?

= [lyn = *"11> = 2(3n — 2,30 — Syn) + 1Sy — 3l

< lyn =x* 112 = (1= &) 1Sy = yull* + [[Syn = yall?

<y =X >+ K[ Syn = yal*- (3.10)

From (3.8) and (3.10), we have
1 =712 < 206 () — B 1 — )+ Bl — 2

+ (1= By — 0 7) [[ Sy — ||

<205 (YW (xn) = BX i1 =)+ Balx — 2717
+ (1= By — ) (|[yn —x* || +KlISyn — yul*)

<205 (YW (xn) = BX X1 =)+ Balx — 277
+ (1= B — 06, T) (K[| Syn =yl > + [l0 — "
+2M3 6, || x — Xn-11]),

(3.11)
implies that
~(1= By — 0 T)K||Syn —yul
<205 (YW (xn) = BX i1 =)+ Ballva — 21 = [Pnn — x|
+ (1= B — o4 T) ([[x _X*Hz +2M> 60, [ xn — Xn—1]])
<20, (YW () = BY 1 = %) 4 o — 27|17 = [ — 217
+2M56,||x, — xp—1|[(1 — By — 04, T),
by condition (C2) and (3.6), we have
i 1Sy, — | = 0. (3.12)
Since limy, o0 [(wy,) = lim,, e % ||(1— prox,wnf)WnH2 =0, we get
Y}LTI;HWn—pTOXMannH =0. (3.13)
Since [, — 0 as n — oo, by nonexpansiveness of prox, , ;, we have
[lyn — proanfw,,H = ||pr0anf(wn — U, A* (I — prox,lg)Awn) —proxlunfw,,H
< [ — 1o A* (1 = proxs g JAw,, — wi|
< Up||A™ (I — prox; o )JAw,|| — 0 as n — eo.
Therefore,
[yn = wall < l[yn —proxy,, pwall + [Iproxy ,, e —wall = 0 asn — e (3.14)

By definition of w,, and using (3.6),
[Wn — Xl = |10 + 0 (X0 — Xn—1) — Xa]|

= Oyl|xn —xp—1]| > 0asn — oo, (3.15)
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Since Wp; =W E Hj, using (3.15) we conclude that X, =W E Hj, similarly using (3.14)
we get that Ynj = WE H;. By Lemma 2.3, Lemma 2.5 and (3.12), we have w € F(T). Hence
weF(T)NQ.

Next, we show that limsup,,_,..((B —yy)x",x* —x,) <0, where x* = Porp(r) (I — B+ yy)x".
Then we have

limsup((B — yy)x™,x" —xp) = lim (B — yy)x",x" — ;)
Jj—yeo

n—yoo
=((B—yy)x",x" —w)
<0, by Lemma 2.2. 3.16)

Now, we prove that x, converges strongly to x*. From (3.9), we have
[Pt =22 < (1= &) v — 5[ + 8,

where
5 - 0, (T —2y0) 2{(yy(x*) — Bx*, xp11 —x*)  2Mp0,(1 — B, — o, T)
S R (t—2y9) o, (t—2y8)
Using (C2), (C3) and (3.16) we get, ¥> | 6, = oo and limsup§, < 0. Applying Lemma 2.6, we
conclude that lim,,_,e [|x, — x*|| = 0.

and §, =

Case 2: Assume that {||x, —x*||}7*_, is not monotonically decreasing sequence.

Set T, = ||x, —x*||, n > 1 and let 7 : N — N be a mapping defined by
t(n) :=max{k € N: k <n, T} <Ty1},n > ngy (large enough).
Clearly, 7 is a non decreasing sequence such that 7(n) — oo as n — oo and
0<Tu) <Ti@y1, Vn=no.
After a similar arguments as in the Case 1, we can see that
Jim [[Syz(u) —ye(m | = 0.
and

lim /’l(WT(n)) = I}EEOZ(WT(n)) =0.

n—yo
Similarly from (3.9), we have

[Xemye1 =11 < (1= 8 ey — X117 + () Sen)
implies,
bee () =117 < Loy a8 [Poeimy =X < ey =71
Since limsup,,_,., §z(,) < 0, we get that
Jim [z — 27| = 0.
Thus,
lim oo 1 — [ =0.

As a consequences, we obtain for all n > ny.
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0<Ty <max{Ls(), Ly 1} = Cegnyr1s
i.e,
0 < |lxp —x*|| < ||xg(n)41 — X*|| — 0 as n — oo. Hence, lim ||x, —x*|| = 0, that is, {x,} con-
verges strongly to x*. This completes the proof.

O

If we take f = ic and g = ip in Algorithm 3.1, then prox; , = Fc and prox; , = Py for all A,
where argmin f = C and argming = Q. As a direct consequence of Theorem 3.1, we state following
result for split feasibility problem.

Corollary 3.1. Let the conditions (C2)-(C4) hold and the solution set F(T)NT # 0. Then, the
sequence {x,} defined by Algorithm 3.1 converges strongly to a point x* € F(T)NT.

4. Finite family of pseudo-contractive mappings

Now, we propose following split proximal algorithm for finite family of pseudo-contractive
mappings:

Algorithm 4.1. Given an initial point x1,xy € Hy, assume that x,, has been constructed and ||A* (I —
prox,lg)AwnH2 +|(I— prox,wnf)wnﬂ2 # 0, then compute x,+1 by the following iterative scheme:

Wp = Xp+ 6n(-’cn _xnfl)a
Yn = ProXy, r(Wn — UnA* (I — proxy o )JAwy),
Xn+1 = an?"l’(xn) +ann + [(1 - ﬁn)l_ OCnB]SYn,n > 1,

where S: H — H| is a mapping defined by Sx = kx+ (1 —k)Y.} | 0;Tix and k = max{k; : i =
1,2,...,n}, and the inertial parameter 0, is chosen as Algorithm 3.1.

Theorem 4.1. Let {T;}! | : Hy — H\ be finite family of k;-strictly pseudo-contractive mappings and
iYL\ be a positive sequence such that Y!_,n; = 1. Let F(T;)"_, NQ # 0 and the conditions (C2)-
Nisi=1 i=11 i=1
C4) hold. Then, the sequence {x,} defined by Algorithm 4.1 converges strongly to a common fixed
q
point x*, i.e x* € F({T;}?_,) NQ which also solves the variational inequality:

(ry=B)x",x—x") <0, Vxe F({Ti}L) NQ.

Proof. Define T : Hl — H; by Tx =Y n;Tix. By Lemma 2.5, we conclude that T is k-strictly
pseudo-contractive mappings and F(T) = F(Y¥/_, n;T;) = N, F(T;). Then the conclusion follows
from the Theorem 3.1. This completes the proof. ]

5. Nonconvex minimization problem

In this section, we propose an iterative algorithm and prove strong convergence theorem
for common solution to nonconvex minimization feasibility problem and fixed point problem of
k-strictly pseudocontractive mapping in real Hilbert spaces.

The nonconvex theory is of great practical interest, but is less developed as compared to the
convex one. Moudafi and Thakur [18], studies the convergence of split proximal algorithm in which
one function is allowed to be noconvex. They considered the following problem:

0 € df(w) such that 0 € dpg(AW). (5.1
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The solution set of Problem (5.1) is denoted by Q. The Problem (5.1) includes as special cases,
g convex and g lower-G? function which itself is of great importance in variational analysis and
optimization [18].

Poliquin—Rockafellar [20] introduced the concept of a proximal subdifferential and also in-
vestigated the limiting proximal subdifferential. Let g : H, — RU {4} and let w € domg, i.e.,
g(W) < +oo. The proximal subdifferential dpg(W) is defined as follows:

Definition 5.1. A vector u is in dpg(W) if there exist some r > 0 and € > 0 such that for all w €
B(w,¢), then

(0 —15) < g(w) — g(9) + 5 |w— ],
and dpg(w) = 0 if g(W) = 0.

We now recall that:

e g is locally lower semicontinuous at w if its epigraph is closed relative to a neighborhood of
(w,8(w)),

e g is prox-bounded if g is minorized by a quadratic function,

e for € > 0, the g-attentive &-localisation of dpg around (W, i), the mapping T : Hy — 212 is
defined by

ooy [ (€ 900l < e, if o] < & and )~ ()] < &
L(w) =
0, otherwise.

Definition 5.2 ([20]). A function g is said to be prox-regular at w for ii € dpg(w) , if there exist some
r> 0 and € > 0 such that for all ww' € B(w,€) with |g(w) —g(w')| < € and all u € B(i;€) with
u € dpg(w) one has

/

g(W) 2 () + {uw' —w) — Z[[w' = w2,

Lemma 5.1 ([18]). Suppose that g is locally lower semicontinuous at w and prox-regular at w for
it = 0 with respect to r and €. Let Ty be the g-attentive €-localisation of dpg around (w,i). Then for
each A €]0, L[ and wy,wq in a neighborhood U, of W,
(I =proxyo ) (wi) = (I = prox; ) (w2), w1 —w2)
A
2 1= progg) 1) = (1= prog o) = 27 szl —wa

We now propose an algorithm to study the convergence property of problem (5.1).

Algorithm 5.1. Given an initial point x1,xy € H|, assume that x,, has been constructed and ||A* (I —
prox; , )JAwy, |+ ||(1 — prox,, ”nf)wnHz # 0, then compute x,+1 by the following iterative scheme:
Wi = X + Oy (X0 — Xn—1),
Yn = Proxy, . ¢(Wn — HpA* (I = prox,, o )Awy),
Xn1 = 0 YW (Xn) + Buxn + [(1 = Bu)] — 0 B]Syn,n > 1,
where A, € (0, % — &) (for some € > 0 small enough), stepsize

(317 = proxy, o JAwa ) + (311(Z = proxy, u, rJwal*)
1A% (1 = prox;, o JAwn | + || (T — proxy, ,, ¢ )wal 2

n -— Mn

with 0 < p, < 4. The inertial parameter 6, is chosen same as Algorithm 3.1.
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We now present main result of this section.

Theorem 5.1. Let f: Hy — RU{+co} be a proper and lower semicontinuous convex function, and
g: Hy — H, be locally lower semicontinuous at Aw, prox-bounded and prox-regular at Aw for it =0
with w a point that solves (5.1) and A be a bounded linear operator which is surjective with a dense
domain. Suppose that the conditions (C2)-(C4) holds with Y, oAy < oo. If F(T)N Q1 # 0 and
lx1 — w|| is small enough, then the sequence {x,} generated by Algorithm 5.1 converges strongly to
a point w € F(T)NQy which also solves the variational inequality problem:

((B—yy)w,w—x) <0, Vx e F(T)NQ;.
Proof. Since w € F(T) NQ, using the Lemma 5.1 and nonexpansivity of prox; 1 f» We have

[ — 91 = 191X (4 — fa” (1 — proxs ) wa) — ]2
< lwn — paA* (I — prox,,  )JAw, — w2

< [y — 72+ 2 A" (1 = Proxs ) Aw, |2 = 241, (A" (I = prox;, ;) Aw,, wi, — 1)

r 2
< b 5124 A0 1o, v |~ 24t (2000n) — 5L oy =)
r 2
< 24 A0 pro, w2 = ) + 2t s o 2
— (o) +100)  AarlAR
= o = 2P o, ) 2+ VG P (1 A
o anln) Y (o) £ 1)
”"(h<wn>+z<wn> ”") 62(w,)
i) 2w N AR N
< (1 (i o) ) e
() ()
"\ h(wy) +l(wn) " 02(wy)
2h(wy) rl|A||? _
< (v (1o g ) G ) e o
_ 4h(wn) _ (R(wn) +L(wn))?
n <h(wn)+l(w,,) n) —Gz(w,,) . 5.2)

From Theorem II.19 of Brezis [5], we recall that A is surjective with a dense domain < 3y > 0 such
that ||A*x|| > y]|x||. This gives that

2h(wn) 1(1 —proxs,  JA(wa) | 1 [|( —prox, JA(wa)I* 1

IVA(wn) 2 [JA*(I = proxg, ) A(wa) > = 7 [[(I = prox; o) A(wa) |2~ 72

From conditions on the parameters A, and p,, there exist of a positive constant M such that

4h(wy) _pn) (o) + 1)) 55

512 =12
I3 =9I < (1 M2 =517 = (st e
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By Algorithm 5.1 and (5.3), we have
(X1 =] = [ @YW (xn) + Bpxn + [(1 = Bu)I — uB]Syn — 7
< o yy(xn) — 0B(OW) = Buw + Baxn + [(1 = Ba)l — 0uBSyn + 0uBW + B — ||
< Jlow (yw () — (W)) B =) + ((1 = Bu) — 0B)Syn — ((1 = Bu)I — 06, B) 0|
< 04| YW (xn) = BOW) ||+ Balln = Wl + [[(1 = Ba)l — B [|Syn — 9|
< 0| YW (n) = BOW) [ + Ballxn = W[ + (1 = Bu — 0 T)|lyn — ]|

From (5.3) and definition of w,, we have
Iy =] < (14 MAy) 2wy — x|
= (1+-MA)E (5 + 8 (60 =50 -1) ')
< (14+M2)? (5 — | + 6w —xa 1)) (5.4)
From (5.4) and using 1 +x < €%, x > 0, we have
et =] < 0l 7 (ea) — BOR) 4+ Balla — ] + (1= By — 00 (1 +MA) 2l — o]
+ O] — Xn—1]])
< YW () — BOW)|| + (14 M) (1= 0,7) 50 — ]| 4+ (1 = By — 00 T) By — X1
< (1 M) 2 (1= 04,7) [y — 9] + ¥ Y () — W) | + 0| W () — B9 |
+ (1= Bn = 0 7) 6|0 — X1 |

< M2 (1= 0,) |y — ]| + Y8 |13 — || + 06 | W () — B(W)|
+ (1 _ﬁn - O‘nf)en”xn —Xn—1 H

M 0 _
:ezl”(lfan<ffeg—kn)>||xnfw||
ra, (T Y8 > (%) = BOW)I | (1= B — 0 T) Onllxn —Xn—1]
(=) o (v--)

W (w) = B | (1= Bn = ) ullxn —XHII)

_ 8 _ ¥
(T M, O (T e%ln

< e | max [ln — W[,

< 200 (ma o ol (supvn+supn) ).

neN neN

where y, = M7 O, = =P O T)On XXl Clearly, {9, },{y,} are bounded, as lim,,_,o ¢, =

5 5
(77 i (-
e2 ™M e2 ™M

0and Y,;> (A, < co. This implies that the sequence {x,} is bounded. Consequently {y,},{Ty,} and
{wy} are also bounded.
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Now, following the methods of Theorem 3.1, we can show that
lim (h(wy) +1(wy,)) =0,
n—soo
ie.,
r}g&(h(w,,)) =0 and }}iigo(l(wn)) =0.

If w is a weak cluster point of {w,}, then there exists a subsequence {w,, } which weakly converges
to w. Using similar arguments as in the proof of Theorem 3.1, we can show that

(1) 0 € df(w) such that 0 € dpg(Aw),
) I Tyn —yull — 0,0 — oo,
(3) limy—e Hwn _YnH =0=Ilim; e ||xn _.VnH’
@) weQ NF(T).
Similarly we can get that lim,_.||x, — w|| = 0, i.e., {x,} converges strongly to w. This
completes the proof. |

6. Numerical results

In this section, we give a numerical example to compare Algorithm 3.1 with Algorithm (1.5)
of Khuangsatung et al. [14] in an infinite dimensional Hilbert space.

Example 6.1. Let E; = E, = L,([0, 1]) with inner product given as (x,y) = fol ()y(t)dt, Vx,y €
L5([0,1]) and norm ||x| == (fy |x(t)\2dt)%, Vx,y € L»([0,1]). Let C = {x € L»([0,1]) : (x,a) < b},
where a=¢' ,b=2and Q = {x € L([0,1]) : |x—d||> < r}, whered =t*>+1,r =2.

We first recall that the projections on sets C and Q are given by:

» ( ) X, l:f.x S C7
roxX = X) =
PrOXpu,r = fc b— H <“"2x> a+x, otherwise,
and
X, fxeQ,
proxlg = PQ(X) - .
d+ri=—r Hx dH otherwise,

where f = ic and g = ig, the indicator functions on C and Q respectively. Let A: L,([0,1]) —
L([0,1]) be a bounded linear operator defined by Ax(t) = %[) Let S,B,y : L(]0,1]) — L»([0,1])
be defined by Sx(t) = )@ Bx(t) = 1, yx(t) = )@ forall x e E\. Take p,=1=7%, o, = ﬁ,
Bn = 5n1 = On for n > 1, then the conditions in Theorem 3.1 are satisfied. We now consider the
following four cases.
Case 1: Tuke xo(t) = x1(t) =é,
Case 2: Tuke xo(t) =t + 1 ,x1(t) =12,
Case 3: Tuke xo(t) =2¢', x;(t) = 21,
Case 4: Take xo(t) =e' +1, x1(t) = 3t.
For these cases, our Algorithm 3.1 is compared with Algorithm 1.5 of Khuangsatung et al.
[14]. We plot the graphs of Error = ||xp4+1 — X, || against number of iterations with stopping criteria
|Xp 11— xa| < 1073, The graphs show that our algorithm works well and converges faster than the
Algorithm 1.5 and have computative advantages over the algorithm of Khuangsatung et al. [14].
The numerical results are displayed in Figure 1.
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