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ON THE DUALITY OF BANACH FRAMES

Seyedeh Sara KARIMIZAD', Mohammad Sadegh ASGARI*

A basic problem of interest in connection with the study of frames in
Banach spacesis that of characterizing those Bessel sequences which can
essentially be regarded as dual Banach frames. Dual Banach frames are Bessel
sequences that have basis-like properties but which need not be bases. In this paper,
we study this problem using the notion of dual and generalized dual for Bessel
sequences with respect to a BK-space. We prove that duals and generalized duals of
Banach frames are stable under small perturbations so that the perturbations results
obtained in [5] is a special case of it. For generalized dual Banach frames
constructed via perturbation theory, we provide a bound on the deviation from
perfect reconstruction.
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1. Introduction

Frames with respect to a BK-space of scalar-valued sequences were extended
firstly by Grochenig [8] in Banach spaces. Then #P-frames were introduced by
Aldroubi et al. [1] and Christensen et al. [6] as a tool to obtain series expansions
in shift-invariant spaces. Dual Banach frames are Bessel sequences that have
basis-like properties but which need not be bases. In particular, they allow
elements of a Banach space to be written as linear combinations of the Banach
frame elements. Unfortunately, it is usually complicated to calculate a dual
Banach frame explicitly. Hence we seek methods for constructing generalized
duals. Approximate dual and pseudo-dual frames in Hilbert spaces are defined by
Christensen in [7]. The main subject of this paper deals with the concepts of
pseudo-dual and approximate dual Banach frames and examines their properties.
We also investigate using of perturbation theory to construct pseudo-dual and
approximate dual Banach frames.

The paper is organized as follows: in the rest of this Section, we will briefly
recall the definitions and basic properties of Banach frames and bases that for
more informations, we refer to [2, 3, 4, 9]. In Section 2, we discuss dual Banach
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frames and find some characterizations about them. In Section 3, we introduce the
generalized duals for Banach frames and examine their properties and we show
that these concepts are stable under small perturbations. In Section 4, we show that
generalized dual Banach frames are stable under small perturbations of the
Banach frame elements.

Throughout the paper X will be a separable Banach space and I is a countable
index set that has been well-ordered. We shall denote by {I,}r=; the family of
subsets of the first n indices in I. If |I| < oo then I,, = I forn > |I|.

Definition 1.1. Let X,; be a family of scalar-valued sequences indexed by I. Equip
X; with pointwise addition and scalar multiplication and let the coordinate
functionals {m;};c; on X, be defined by

mi({cider) = ¢ ViEL
Then X, with a norm ||-||x, is called a BK-space, if (Xg, ||-|lx,,) is a Banach space
and m; is continuous operator from X; to C for every i € I. We call X; solid if
whenever {a;};c; and {c;};¢; are sequences with {c;};c; € X; and |a;| < |¢;|, then
it follows that {a;};e; € X4 and |[{a;}ie/llx, < l{ci}ie/llx,. Moreover, the dual
space X;; of X, is also a BK-space of sequences d = {d;};¢; such that d; € C and
d(c) = Xier ¢id; V€ Xg.

We note that #P(I) is a solid BK-space and if X, is a solid BK-space such that
there exists some {c;};c; € X4 with ¢; # 0 for each i € I, then every canonical
unit vector e; = {6l~ ]-}je] is in X;. We shall also require that the canonical unit

vectors {e;};c; form a Schauder basis for X;. Moreover, if the series ;¢ ¢;d; is
convergent for every ¢ € X; then d € X; and if the above series converges for all
d € X, then ¢ € X,.
Definition 1.2. A family {f;};c; € X* is a X;-Bessel sequence for X if
{fi(x)}ie; € X4 for all x € X; it is called a X;-frame for X if it is a X;-Bessel
sequence and there exist 0 < A < B < oo such that
Allxllx < I{fi }ierllx, < Blixllx (1)

The constants A and B are called a lower and upper frame bound for X;-frame. A
X4-frame {f;};c; is called a Banach frame for X with respect to X, if there exists a
bounded linear operator S;: X; — X such that S;({f;(x)}i;) = x forall xe X.
Definition 1.3. Let {f;};,c; be a X -frame for X, Then the X;-frame condition
implies that the coefficient mapping

U:X - Xy, Ux ={fi(®)}ies VxE€eX, )
is an isomorphism. The mapping U is called the analysis operator of {f;};c;. Also
if {f;};e; is a Banach frame for X with respect to X, then the extra condition in
Definition 1.2 means that S; is a left-inverse of analysis operator U, and thus US;
is a bounded linear projection of X; onto the range R ;. The mapping S; is called
the reconstruction operator of Banach frame and the optimal frame bounds are
IS =4 Uil
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By replacing X; by X; and X by X*, we can define a X;-frame for X* as
an indexed set of elements from X as follows:
Definition 1.4. A sequence {x;};c; € X is a X}-Bessel sequence for X* if
{f (x))}ier € X for all f € X*; it is called a X;-frame for X* with frame bounds
0 < A<B<oif{f(x;)}ic; € X; and
Allfllx- < Hf Gdbierllx; < Bllfllx-  forall feX™.  (3)
The family {x;};¢; is called a Banach frame for X* with respect to X, if it is a
X;-frame for X* and there exists a bounded linear operator S,: X — X, such
that S;({f(x))}ie;) = f forall f € X",
Proposition 1.5. Let {x;};,c; € X and {f;};c; S X*. Then
(1) {x;}ier is a X;-Bessel sequence for X* with Bessel bound B, if and only if
Yier €ix; converges in X for all ¢ € X, and ||Xie; ¢; x;llx < Bllcllx,-
(ii) {f:}ie; is a X4-Bessel sequence for X with Bessel bound B, if and only if
Yier dif; converges in X* for all d € Xg and [|X;e; d; fillx- < Blld|lx;.
Proof. (i) Suppose that {x;};c; is a Xj-frame for X* with Bessel bound B. Let
¢ € Xy, then for every m > n we have

”Zielm—ln Cixi”X = Supllfllx*sllf(Zielm—In Cixi)| = Supllfllx*S1|2i€Im—In Cif(xi)l

fex* fex*
< Supllfllx*sl||{f(xi)}iel||x§||2ielm—1n Cieillxd
fex*

< B||Zier,,-1, Ciei”Xd-

Since {e;};¢; form a Schauder basis for Xj, hence ”ZiEIm ciei”X goes to zero
d

_In
as m,n tend to infinity. This shows that ),;c; ¢;x; converges in X and inequality
holds. For the converse, assume that }};¢; ¢;x; converges in X for all ¢ € X; and
the inequality satisfied. Then for every f € X* we obtain
Yiercif () = limpo0 Yier, €if (%) = f(limye0 Xier, i) = f Qier €i%1).
By our requirements on Xz and X, {f (x;)}ie; € X; and we have
{f Cedbier (O] = 1 Zier ¢ f e | = |f Qs € )1
< fllx-N2er i xillx < Bllfllx-llcllx gy
which implies that {x;};c; is a X;-Bessel sequence for X* with Bessel bound B.
The implication (ii) can be proved in a similar way.m
Definition 1.6. Let {x;};c; € X be a X-Bessel sequence for X*. Then Proposition
1.5 implies that the mapping
V:X; - X, Ve=Yecix; Vc€EX, 4)
is a bounded operator. The mapping V is called the synthesis operator of {x;};c;.
Also if {x;}i; is a Banach frame for X* with respect to X, then the extra
condition in Definition 1.4 implies that S,. is a right-inverse of synthesis operator
V, and thus S,V is a bounded linear projection of X; onto the range Rg . The
mapping S, is called the reconstruction operator of Banach frame and the optimal
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frame bounds are || S, II™2, |[V]I.
A family {f;};e; € X is called total in X* if f;(x) =0 foralli ¢ I, thenx = 0.
Similarly, {x;};¢; is total in X, if f(x;) = 0, forall i € [ then f = 0.
Definition 1.7. Let {x;};c; be a sequence in X. Then
(i) {xi}ie; is a Schauder basis for X if for every x € X there exists an unique
sequence of scalars {c;};; which is called the coordinates of x, such that
X = Dier CiXi-
(ii) {x;};e; is a X4-Riesz basis for X if it is a total set in X and there exist two
positive constants 0 < A < B < 00 such that
Allellx, < e cixillx < Bllellx, V¢ € Xq. )
The constants A and B are called the lower and upper Riesz bounds, respectively.
The following example shows that in a Hilbert space, there is a Banach frame
with respect to a BK -space which is not a Banach frame with respect to £%(N).
Example 1.8. Suppose that {e;}{2, is an orthonormal basis for a separable Hilbert
space . Consider the family {e; + e;,1}i=; which is a complete set in . By [2,
Lemma 2.6] this family is a Banach frame with respect to the BK-space
Xg={<he +ey, >}2| heH},
but not a Banach frame for / with respect to £?(N).
Remark 1.9. Let {x;};c; be a Schauder basis for X, then the linear functionals
{fi}ie; € X* defined by f; Xres ckxi) = ¢; are called the coefficient functionals
of {x;};¢;. If we define the space X, by
Xa = {fi(®)}ier | x € X},
and we equip X4 with the norm || {f;(x)};e; llx,=Il x llx, then X; becomes a BK-
space. The dual space of X,; and its norm as follows:
Xa ={f D}l fEXY,  and  {fDbierllxy = Ifllx--
This shows that {f;};c;, {x;}ie; are Banach frames for X, X* with respect to Xy, Xj,
respectively. Further since
IZier fiCOxillx = llxllx = I{fi ()} iesllx g
thus {x;};¢; is also a X;-Riesz basis for X.
Definition 1.10. Let {f;};c; € X", {x;}ie; S X be X;-Bessel and Xj-Bessel
sequences for X, X* respectively. Then
(i) {fi}ies is called a dual Banach frame for {x;};c; in X with respect to X, if
x = Yier fi(®)x; for all x € X, with respect the norm topology on X.
(i1) {x;};e; is called a dual Banach frame for {f;};c; in X* with respect to X, if
f =Y f(x)f; forall f € X*, with respect the norm topology on X*.
There is an equivalence assertion on duality of the X;-Bessel and X;-Bessel
sequences.
Theorem 1.11. Let {f;}ic;, {xi}ie; be X4-Bessel and X;-Bessel sequences for
X, X* respectively. Then the following conditions are equivalent:
(i) {fi}ies is a dual Banach frame for {x;};c; in X with respect to X.
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(ii) {x;}ie; is a dual Banach frame for {f;};c; in X* with respect to X.
(iii) f(x) = Yier i) f(x;) forallx € X, f € X™.
Proof. To prove (i) = (ii), let f € X* be arbitrary; then by Lemma 1.5(ii) the
series Y.;e; f (%) f; is convergent in X* and for every x € X we have
fQ) = f Qe fi(0)x) = Zier [;(O)f (x1) = ier £ () fi) (x)
This shows that f = Y.;c; f(x;)f;. The implications (ii) = (iii) and (iii) = (i) are
obvious.m

The following result relates dual Banach frames to Banach frames.

Lemma 1.12. Every dual Banach frame is a Banach frame.
Proof. Let {f;};c; be a dual Banach frame for {x;};c; in X with respect to X; and
let U, V be the analysis and synthesis operators for {f;};c; and {x;}ie;
respectively. Then by Theorem 1.11 we have U*V*(f) = f forall f € X*. These
yields

Wfllxs = UV (Ol < WUV GO Mk = NWUNIS GedYier llx-
The upper frame bound for {x;};c; follows from VU = Iy. Similarly, we can
show that {f;};c; is also a Banach frame for X with respect to X; m
Definition 1.13. Let {f;};c; and {x;};c; be X;-Bessel and X;-Bessel sequences for
X, X" respectively. If one of the conditions in Theorem 1.11 is satisfied. Then the
pair ({x;};e;, {fi}ie;) is called a X;-dual Banach frame for X.

The following result shows that every Banach frame have at least one dual

Theorem 1.14. Let {f;};c; be a Banach frame for X with respect to X;. Then
there exists a X;-Bessel sequence {X;};c; for X* such that ({¥;};c;, {fi}ier) is
a X;-dual Banach frame for X.
Proof. Let U, S; be the analysis and reconstruction operators for {f;};c;. Put
X; = S;(e;) where {e;};c; is the Schauder basis of the canonical unit vectors in X.
We first show that {%;};; is a X;-Bessel sequence for X*. Given ¢ € X; and
m,n € N withm > n.

|Zicr,,—1, Cifi”X = |Zier,,-1, CiSlei”X = 15:(Zies, -1, Ciei)”X
< ”Sl””ZiEIm—In Ciei”Xd-
Since ¢ € X, X.iej C;€; is convergent, this implies that {ZiEIn Cifi}nEN is a Cauchy

sequence and therefore it is convergent in X. Now Proposition 1.5 implies that
{%;}ier 1s a Xj-Bessel sequence for X*. Moreover, for every x e X we have
x =S5 Ux) = 5 Qier fi(x)er) = Xier fi(X)S1e; = Lier fi(0)%;

This shows that ({X;};c;, {fi}ie;) is a X4-dual Banach frame for X.m

Via Theorem 1.11 the Banach frame {X;};c; obtained in Theorem 1.14 is called
the canonical dual Banach frame of {f;};c; in X* with respect to X;. We also have
a parallel result for Banach frames for X* with respect to X;.
Corollary 1.15. Let {x;};; be a Banach frame for X* with respect to X;. Then

there exists a X;-Bessel sequence {fl} ; for X such that ({xi}iel, {fi}iel) isaXy-

i€
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dual Banach frame for X.
Proof. Let V and S, be the synthesis and reconstruction operators for {x;};c;. Put
fi: = S;e;, where {e;};c; is the Schauder basis of the canonical unit vectors in X};.
Since for all d € X; and m,n € N with m > n we have
”Zielm—ln difi| X = ”Zielm—ln dl-S;"eil x*
< IS ||Zies,, -1, diei] X5
Therefore { fi}iel is a X;-Bessel sequence for X. Also for all f € X* we have
f=SV(f) =S Cier f(x)e) = Tier f (x)Sre; = Tier f (X f;
From this the result follows.m
Similarly the Banach frame {fi}iel

canonical dual Banach frame of {x;};c; in X with respectto Xj.

Sr*(Ziezm—zn diei)l

X*

obtained in Corollary 1.15 is called the

2. Characterizations and perturbations of Dual Banach frames

In this section we generalize some results of Christensen [4] to the situation of
dual Banach frames. We give a characterization of dual Banach frames in terms of
the synthesis and analysis operators without any knowledge of the frame bounds.
We also show that every Banach frame has infinitely many dual Banach frames.
Theorem 2.1. Let {f;};c;, {x;}ic; be X4-Bessel and Xj-Bessel sequences for X, X*
respectively. Then the following statements hold.
(i) Let {f;}i; be a Banach frame for X with respect to X; with the analysis
operator U. Then the dual Banach frames for {f;};c; in X* with respect to
X} are precisely the families {x;};e; = {T;€;}ic;, where T; : X, > X isa
bounded left-inverse of U.
(ii) Let {x;};c; be a Banach frame for X* with respect to X;; with the synthesis
operator V. Then the dual Banach frames for {x;};c; in X with respect to
X, are precisely the families {f;};c; = {Te;}ie; where T, : X — X, is a
bounded right-inverse of V.
Proof. The proof is identical to the proof of Theorem 1.14 and Corollary 1.15.m
The next result is analogous to [4, Lemma 5.7.3] for the situation of dual Banach
frames.
Theorem 2.2. Let {f:};c;, {x;};c; be Banach frames for X,X* with respect to
X4, X;, with the analysis and synthesis operators U,V respectively. Then the
following holds:
(i) The bounded left-inverses of U are precisely the operators having the
form S; + W(Ix, — US,;), where W:X;— X is a bounded operator and
S; denotes the reconstruction operator of {f;};¢;.
(i1) The bounded right-inverses of V are precisely the operators having the
form S, + (Ix, — S;V)W, where W:X—> X, is a bounded operator and
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S, denotes the reconstruction operator of {x;};¢;.
Proof. For the proof of (i), it is obvious that an operator of the given form is a
left-inverse of U. On the other hand, if T; is a left-inverse of U, then by taking
W =T, we have T; =S, + T;(Ix, — US;). The argument for statement (ii) is
similar.m
The next theorem is analogous to a well-known result in abstract frame theory
[4, Theorem 5.7.4]. This theorem is a characterization of all dual Banach frames
associated with a given Banach frame.
Theorem 2.3. Let {f;};c;, {x;};c; be Banach frames for X, X* with respect to X,
X; with the analysis and synthesis operators U,V, respectively. Then the
following holds:
(i) The dual Banach frames of {f;};; in X* with respect to X are precisely
the families
{Zider = (e + vk — Zier i(E)Yidker
where {y;}re; is a Xj-Bassel sequence for X* and {X;};c; denotes the
canonical dual Banach frame of {f;};¢; in X* with respect to X}.
(ii) The dual Banach frames of {x;};c; in X with respect to X, are precisely the
families

{gk}ker = {fk + hie = Yier fk(xi)hi}kel

where {hy}reris a X;z-Bessel sequence for X and {fi}iel denotes the
canonical dual Banach frame of {x;};c; in X with respect to Xj;.
Proof. (i) By Theorems 2.1, 2.2 we can characterize the dual Banach frames,

{f.}ie;in X* with respect to X as families the form

{Zi3eer = {(S1 + Wy, — USl))ek}kEI
where W: X; — X is a bounded operator, or equivalently an operator of the form
W(c) = Yierciyi where {yi}rer is a X;-Bessel sequence for X*. Inserting this
expression for W we obtain

{ziker = {Siex + Wey — WUS e }ke;

= {% + vk — Liet i®)Yidker-
The proof for the statement (ii) is analogous.m
A nonzero operator A € B(X,Y) is called a left divisor of zero if there exists a
nonzero operator I' € B(Y,X) such that AI' = 0; similarly, it is called a right
divisor of zero if there exists a nonzero operator I' € B(Y, X) such that ' = 0.
Theorem 2.4. Let {f;};c;, {x;};c; be Banach frames for X, X* with respect to X,
X . Then the analysis and synthesis operators of them are right and left divisors of
zero in B(X, Xy), B(X4, X) respectively.
Proof. Suppose that U, V are the analysis and synthesis operators of {f;};e;, {xi}ier
respectively. Let
ANXgy—Xand "X > X; by A=Iy—US; and I' =1y — S, V,
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where S}, S, denote the reconstruction operators of {f;};c;, {x;};c;. Then we have
AU =0and VI = 0.m
The following Theorem is another characterization of the dual Banach frames by
the family of left and right divisors of zero.
Theorem 2.5. Let {f;},c;, {x;};c; be Banach frames for X, X* with respect to X,
X; with the analysis and synthesis operators U,V, respectively. Then the
following holds:
(i) There exists a one to one correspondence between dual Banach frames of
{fi}ie; in X with respect to X; and the bounded operators A: X; — X
such that AU = 0.
(i1) There exists a one to one correspondence between dual Banach frames of
{x;}ie; in X with respect to X,; and the bounded operators I': X — X, such
that VI = 0.
Proof. (i) Let {y;};c; be a dual Banach frame of {f;};; in X* with respect to X
with the synthesis operator W. Define A:X; — X by A=W —§;, where S
denotes the reconstruction operator of {f;};¢;. Clearly, A is a bounded operator
and by using Theorem 1.11 we have AU = WU — S;U = 0. For the opposite
implication, suppose that A is a bounded operator from X; in X such that AU = 0.
Let y; = S;e; + Ae;, i €1, where {e;};c; denotes the Schauder basis of the
canonical unit vectors in X;. As in the proof of Theorem 1.14, {y;};c; is a X}-
Bessel sequence for X* and for every x € X we have
Yier [i()yi = Yier fi(x)Si€; + Xier fi(x)Ae; = S)Ux + AUx = x.
This shows that {y;};¢; is a dual Banach frame of {f;};c; in X* with respect to X}.
(ii) The proofis similar to (i).m
The following theorem is a perturbation result of dual Banach frames.
Theorem 2.6. Let {f;};c; and {f ’i}iel be two Banach frames for X with respect

to X; with the canonical dual Banach frames {%;};c; and {f’i}ielrespectively.
Also let {y;};c; be a fix alternate dual Banach frame of {f;};c; in X* with
respect to X; with the synthesis operator V and {fl —f'i}iel,{fi —f’i}iabe
two X;-Bessel, X;-Bessel sequences for X,X* with sufficiently small Bessel
bounds &€ > 0. Then there exists an alternate dual Banach frame {y’i}iel for
{f'l.]ielin X* with respect to X such that {yi —y’i}iel is also a Xj-Bessel
sequence in X* and its bound is a multiple of €.

Proof. Suppose that U, S;and U, S are the analysis and reconstruction
operators of {fi};e; and {f 'l'}iEI respectively. Then we have %; = S;e; and
x'; =S'e; for all i €1, where {e;};c; denotes the Schauder basis of the

canonical unit vectors in X;. By using Theorem 2.5, there exists a bounded
operator A: X; — X such that
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AU=0 and y,=%X;+ Ae;, Vi€l
If we define z; = x'; + Ae; for all i € I. Then it is easy to check that {z;};¢; is a
X;-Bessel sequence in X* with the synthesis operator of S} + A. We claim that
the bounded operator I'x = (S, + A)U'x = Y/ f ;(x)z; is invertible. In fact, for

any xeX, we have
llx — Txllx = ||x — ZiE,f'i(x)ziHX = ||AU'x||X = ||AU'x - AUx||X
< [IAll||U'x - UX||Xd < ellAllllxllx-
Therefore, if €||A]l < 1, then | Iy —T IS e | All< 1 and so I' is invertible and

N T— 1 :
we obtain ||F || = 1-Ix-Tl ~ 1-¢llAll’
ellAll

e = = = — ] < = i~ < 200
Puty’ = 'z foralli € I. It is trivial that {y'i}iel is a X;-Bessel sequence in X~

This implies that

and we see from T'x = Y;¢; f',(x)z; that x = X,;¢; f';(x)y’;. Hence {y’i}ia is a
dual Banach frame for {f ’i}iel in X* with respect to X;. On the other hand, for
every ¢ € X; we have
[Zier i i =y, = |Zier i =Ty + Ty = T2 |,
< |1 =TI ier coyillx 1 T ey i = 20)

ellAll 1 e =
- 1—€”||A”||””%iel ayillx + 5 |Zier i (® = x D)l
1+||AllllV
= TIIAII Il ¢ "Xd E.

This completes the proof.m

Corollary 2.7. Let {x;};c; and {x';};c; be Banach frames for X* with respect to
X} and let {f;};c; be a dual Banach frame of {x;};; in X with respect to X,. Let
{fi —f’i}iEI and {x; — x';};e; be two X;-Bessel X;-Bessel sequences for X, X*
with sufficiently small Bessel bounds €. Then there exists a dual Banach frame
{f'i}iel for {x';};; in X with respect to X, such that {f; — f’i}iel is a X;-Bessel

sequence in X and its bound is a multiple of «.
Proof. The proof is similar to Theorem 2.6.m

3. Generalized dual Banach frames

In this section we generalize the concepts of pseudo-dual and approximate dual
for Banach frames in Banach spaces and examines their properties.

Definition 3.1. Suppose that {f;};c;, {x;}ie; are X;-Bessel and X;—Bessel
sequences for X, X* with analysis and synthesis operators U, V respectively. Then

(1) {fi}ies is called a pseudo-dual Banach frame for {x;};c; in X with respect
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to Xy, if the operator VU is a bijection on X.
(i1) {fi}ier is an approximate dual Banach frame for {x;};c; in X with respect
to Xg4,if ||Ixy — VU|| < 1.

Note that if {f;};e; is a pseudo-dual Banach frame for {x;};c; in X with respect to
Xdﬂ then
x = Yiel i) (VU)'x; Vx € X.

Thus {f;};; is a dual Banach frame for {(VU)™1x;};c; in X with respect to Xj.
Therefore {f;};¢; is a Banach frame for X with respect to X;. By symmetry {x;};¢;
is also a Banach frame for X* with respect to X;. Obviously, every approximate
dual Banach frame for X with respect to X; is a pseudo-dual Banach frame.

The next result follows immediately from the definition. We leave the proof to
interested readers.

Corollary 3.2. Let {f;};c; and {x;};c; be X;-Bessel and X}-Bessel sequences for
X, X* with analysis and synthesis operators U and V respectively. Then the
following statements are equivalent:

(1) {fi}ie; is a pseudo-dual Banach frame for {x;};c; in X with respect to Xj.
(i) x = Yie (V) 10)x; = Nigr fi()(VU) ;. VX EX.

(ifi) f = Zier F((VU) ') fi = Zier f)U V)i VfEX™

(iv) Forevery x € X and f € X* we have

fO) = Ziet f((VD) 2 fi(x) = Bier f ) fi((VU)™H0).

Theorem 3.3. Let {f;};c; be an approximate dual Banach frame for {x;};c; in X
with respect to X; with the analysis and synthesis operators U, V, respectively.
Then the following holds:

(i) {(U*V*)"1f}ie; is a dual Banach frame for {x;};c; in X with respect to
Xqand (UV)7U; = fi + Znoa Uy — UV
(i) For fixed n € N, consider the partial sum
foi = fi + Xjea (I —UVTY £
Then {f,;}ie; is an approximate dual Banach frame of {x;};c; in X with

respect to X;. Denoting its associated analysis operator by U,,, we have
| Iys — UiV* IS Iy« — UV ™1 —> 0 as n— o

Proof. (i) If {f;};c; is an approximate dual Banach frame for {x;};c; then the
operator VU is a bijection on X and for all x € X we have

x = VOV x = Y il VU)T10)x; = Lier(UTV)TH ()i

This shows that {(U*V*)"1f;};c; is a dual Banach frame for {x;};c; in X with
respect to X;. Moreover, the inverse of VU can be written as follows:
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VO =(Ux— Uy = VU = Iy + Xy = VU

From this the result in (i) follows.
(i1) For any x € X we have

(Ix = VUpx = x — Xier fri(X)x; .
=X — et Lj=olx* — UV (f (o)x;
= x = Xfo(lx — Ux = VU))Ux = VU) x
= (Iy — VU™ x
Thus
I Iy — VU, I=1 Iy — VO™ LI Iy — VU ™15 0 as n—- o m

The following result shows that the image of a dual Banach frame under a
bounded invertible operator is a pseudo-dual Banach frame.

Theorem 3.4. Suppose that {f;};c; and {x;};c; are X;-Bessel and X;—Bessel

sequences for X, X* respectively, and let {aj}?]:l be a finite sequence of complex
numbers such that Z]Nﬂ 0o; # 0. Then the following holds:

(i) Ifforall1<j <N, {fij}iel C X* is a dual Banach frame for {x;};¢; in X
with respect to X; and A: X — X is an invertible operator, then the
sequence {g;}ie; € X* defined by g; =X, ajA*(fij), (i€l is a
pseudo-dual Banach frame for {x;};c; in X with respect to X;.

(ii) If for all 1 < j < N, {f;}ie; is a dual Banach frame for {xi]-}iel in X with
respect to X; and A: X — X is an invertible operator, then {f;};¢; is also a
pseudo-dual Banach frame for the sequence {y;};c; © X defined by

Yi = Z?’:l a;Ax;j in X with respect to Xg.

Proof. (i) Let U and V be the analysis and synthesis operators of {g;};c; and
{x;}ie; respectively. For every x € X we have

VU(X) = Yier 9:(0)x; = Nier Xi=1 ;N (fij) (O
=20 Yier fi(Ax) x; = (B ) Ax,
hence VU is invertible. From this the result follows.
(i1) The proof'is similar to (i).m
Theorem 3.5. Let {x;};¢;, {Vi}ie; be X4-Riesz bases for X with the canonical dual
Banach frames {ﬁ-}ia,{gi}ie, respectively. Then {fl} ; is a pseudo-dual Banach

i€
frame for {y;};¢; in X with respect to X;.
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Proof. If V; and V, are the synthesis operators of {x;};c;, {¥i}ies» then V,V, are
invertible and V%, V; 1 are the analysis operators of {fi}iel’ {Ji}ie; respectively.
Thus V,V; 1 is a bijection on X and for every x € X we have

x = Yiet i COViVs 'y = it i(ViVs %)y
From this the claim follows immediately.m
Theorem 3.6. Suppose that {f;};c; and {x;};c; are X;-Bessel and X;—Bessel
sequences for X, X™ respectively, and let A, I be two invertible operators on X.
Then {f;};c; is a pseudo-dual Banach frame for {x;};c; in X with respect to X, if

and only if {A"f;};e; is a pseudo-dual Banach frame for {Ax;};c; in X with
respect to X.

Proof. Suppose that U, Ur and V,V, are the analysis and synthesis operators of
{fiYiec (T°(fd}ier and {x;};c;, {Ax;};e; respectively. This claim follows
immediately from the fact that for each x € X we have

VaUr(x) = Zies T () () Ax; = AQue fi(Tx)x;) = AVUTx.
This finishes the proof.m
Theorem 3.7. Let {f;}ic;, {x:}ie; be two X;-Bessel and X-Bessel sequences for
X, X*and let A, T be invertible operators on X. If {f;};; is a dual Banach frame

for {x;};; in X with respect to X; then {I"*(f;)};c; is a pseudo-dual Banach frame
for {Ax;};c; in X with respect to X;.

Proof. The hypotheses imply that x = Y;¢; f; (x)x; therefore
Liar T () )Ax; = AQier fiTx)x;) = Al'x.

From this the result follows at once.m

Next we give a method for constructing a family of pseudo-dual Banach frames
from a given Banach frame.

Theorem 3.8. Let {f;};,c; be a pseudo-dual Banach frame for {x;};; in X with
respect to X, with the analysis and synthesis operators U, V respectively. Let a, 8
be two complex numbers such that @ + 8 = 1. Then the sequence {g;};; defined
by g; = af; + B(VU)*(f;), is a pseudo-dual Banach frame for {x;};¢; in X with

respect to X;, where { fl} is the canonical dual Banach frame of {x;};¢;.

iel
Proof. For every x € X we have

Yier 9i(Ox; = a Tier f;0)x; + B Xt VU (f;) (0)x;
= aVUx + B Yie; f: (VUX)x;
=(a+B)VUx=VUx. =
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4. Perturbation results of generalized dual Banach frames

In this section we show that generalized dual Banach frames are stable
under small perturbations of the Banach frame elements so that the perturbation
results obtained in [5] is a special case of it.

Theorem 4.1. Let {f;};c; be a Banach frame for X with respect to X; with the
analysis and reconstruction operators U, S;. Assume that {g;};c; € X* and there
exist 4, u = 0 such that
O 2ANU I+l < 1.
(i) I {fi(x) — gi(®)}ier llx,< AN {fi(}ier llx,+ull x i,
for all x € X. Then {g;};¢; is a Banach frame for X with respect to X; and
{g:}ie1, {fi}ie; are approximate dual Banach frames of {%;};c;, {¥i}ie; in X
with respect to X, respectively, where {X;};c;, {Ji}ic; are the canonical
dual Banach frame of {f;};c;, {gi}ie; in X* with respectto Xj.
Proof. If U’ is the analysis operator of {g;};¢;, then by the hypotheses we have
Il U'x N, <Il U'x — Ux llx, Il Ux llx,< (A+ D NU I +p) Il x llx.
for all x<X. This establishes the upper frame bound for {g;};c;. On the other hand,
from S;U = I, we have || Iy — S;U" I< ||S;||[|JU — U'|] < 1 and this implies that
{g:}ie; 1s an approximate dual Banach frame of {X;};¢; and so

nN—1 < ;
ISU) < 1—AUl+lIS I

If we set ' = (S,U")"1S,, then S'U" = Iy which implies that {g;};c; is a Banach
frame for X with respect to X; and
ISl <
Finally, from y; = S’(e;) we obtain
Iy —S'Ull = IS'U" = S'UIl < [IS'IIIU" = Ul <

This concludes the proof.
Theorem 4.2. Let {f;};c; be a dual Banach frame of {x;};,c; in X with respect to
X, with the analysis and synthesis operators U, V. Assume that {g;};c; is a
sequence in X* and there exist A, ¢ = 0 such that

O 2AN00+w Ivi<i.

(i) I{AG = g0V ier lxy,< A1 {FilOYier Ny, + 1l X 1y Vx € X.
Then {g;};¢; is an approximate dual Banach frame for {x;};c; in X with respect to
X,.
Proof. The proof is similar to that of Theorem 4.1.m
Theorem 4.3. Let {f;},c; be a dual Banach frame of {x;};; in X with respect to
X; with the analysis and synthesis operators U, V. Assume that {y;};c; is a
sequence in X and there exist A, u = 0 such that

i) @+ullUiD@+ Vi) < 1.

(1) e i — y)llx < AlXies cixillx + ullclix,

lISall
1=@luli+wlisil

_Gll+wlsi
1=(AUl+m sl )
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for all ¢ eXy. Then {f;};c; is an approximate dual Banach frame for {y;};¢; in X
with respect to X,;. Furthermore, there exists a X -Bessel sequence {g;};e; for X
such that it is an approximate dual Banach frame for {x;};c; in X with respect to
Xd.
Proof. The hypotheses imply that {y;};c; is a X;-Bessel sequences for X*. Let V'
be the synthesis operator of {y;};¢;. For all x € X we have
Il x = V'Ux llx=ll e i) (x; — ) I

SAlxllx+pll Ux liy,

S@+plUminxiy

<@A+HIVITUDA+plu)lxly.
From this we obtain ||Iy — V'U|| < A + u||U|| < 1, which implies that {f;};; is
an approximate dual Banach frame for {y;};c; in X with respect to X; and

-1
IV'U)H < PR YT
Therefore if we define g; = (V'U)"1)*(f;), for all i € I, then we have
x=V'UWV'U) " x = Xie; gi ()i,
Which shows that {g;};¢; is a dual Banach frame for {y;};c; in X with respect to
X, with the analysis operator U’ = U(V'U)~1. We also have
Iy —vU'll < VIl = Ul
< IVIIlUllZx — (V'U)~*|
< VT o)=L — v'ull

A+ullU]|
< IIvilllvl 28 < 1.

Therefore {g;};; is an approximate dual Banach frame for {x;};c; in X with
respect to X;.m
Corollary 4.4. Let {f;};c; be a dual Banach frame of {x;};c; in X with respect to
X; with the analysis and synthesis operators U, V. Assume that {y;};c; is a
sequence in X such that {||lx; — y;||}ie; € X and

@+ IVIITIDIUTHI N = ill}ierllx; < 1.

Then {f;};c; is an approximate dual Banach frame for {y;};c; in X with respect to
X; and there exists a X;-Bessel sequence {g;}ie; for X such that it is an
approximate dual Banach frame for {x;};¢; in X with respect to X;.
Proof. Since for every ¢ € X; we have
IZier ciCei — yllx < Hllxi = yill}ierllxzllcllx g

therefore by 4 = 0 and p = [[{llx; — y;ll}ie/llx;, the result follows from Theorem
43.m
Corollary 4.5. Let {f;};c; be a dual Banach frame of {x;};¢; in X with respect to
X4 with the analysis and synthesis operators U, V. Assume that exists a family
{Aj} __of bounded operators on X and a family {ai j}, . of scalars so that

Jj€J i€l,jE]
yizxi_ZjE]aijiji Viel.
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If @; = sup;e; |a;j| < oo, forall j € J and

A+ VUV e el < 1,
then {f;};; is an approximate dual Banach frame for {y;};c; in X with respect to
X; and there exists a X;-Bessel sequence {g;}ic; for X such that it is an
approximate dual Banach frame for {x;};¢; in X with respect to X;.
Proof. For all j € J and ¢ € X; we have

[ Zier cocijill, = supyguy, =1 [Tier ciaif (0]
X Xa
< supypy. [V (Pl {ayeil, ”X
da
< alIVIllicly,.

This yields
IZicrciCe = y)llx = |Zier Zjey Ciaijiji”X
= [1Zje) Ay (Bier ciaiji) ||,
< Yjeslloj |l |Zier ciaijxil],
< llellx IV Zjeg oA
Now with A =0 and u = ||V|[Xje; a]-”/lj”, the result follows from Theorem
43.m
Theorem 4.6. Let {f;};c;, {9i}ie; be two pseudo-dual Banach frames for {x;};¢;
in X with respect to X; with the analysis and synthesis operators U;, U, and V,
respectively. If || (VU,)"L Il V Illl U, I< 1, then the sequence {f; + g;}ic; is a
pseudo-dual Banach frame for {x;};c; in X with respect to X;.
Proof. Since || (VU LIV Il U, I< 1 the operator Iy + (VU VU, is
invertible, which implies that V (U; + U,) is invertible. We have
Ziet(fi + 90 C)x; = Lier [i )% + Lier i (0)x; = V(Uy + Uy)x,
for all x € X. Therefore {f; + g;}i¢; is a pseudo-dual Banach frame for {x;};c;.m
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