
U.P.B. Sci. Bull., Series A, Vol. 79, Iss. 4, 2017 ISSN 1223-7027

A GENERAL CLASS OF DERIVATIVE FREE WITH MEMORY ROOT

SOLVERS

Moin-ud-Din Junjua1, Fiza Zafar1, Nusrat Yasmin2, Saima Akram3

In this paper, we present a general with-memory extension of an existing
without memory derivative free family of n−point optimal methods to solve nonlinear
functions employing a self-accelerating parameter. At each iterative step, we use a suit-
able variation of the free parameter. This parameter is computed by using the informa-

tion from current and previous iterations so that the convergence order of the existing
family is improved from 2n to 2n + 2n−1 without using any additional function evalu-
ations. An extensive comparison of our with memory method is done with the existing
with- and without memory methods using smooth and non-smooth nonlinear functions.

The performance of the methods is also analyzed visually using complex plane. Which
confirms that the proposed family of with-memory methods is competitive with the pre-
vious methods of the same domain.
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1. Introduction

Development of root finding methods is an important task in numerical analysis and
applied sciences, which has been focused much attention recently. Traub for the first time
classified the root solvers as one point and multipoint methods [11]. He also discussed the
limitations of convergence order and computational efficiency of one point methods that
for such methods the informational efficiency cannot exceed the upper bound 2. So, the
multipoint methods are of great importance because of their high efficiency and accuracy
[11]. These methods have notable applications in experimental mathematics, number the-
ory, and research fields including high energy physics, nonlinear process simulation, finite
element modeling CAD, 3D real time graphics, statistics, security, cryptography and so
on. Newton’s method and Steffensen’s method are most famous multiprecision methods [5].
Several one point and multipoint iterative methods for finding roots of nonlinear equations
have been investigated in the recent past [3, 4, 6, 7, 9, 10, 14]. Steffensen type methods
have an advantage that they work for smooth as well as for non-smooth functions because
derivative of a function in many practical situations is not easily available. According to
the conjecture of Kung and Traub [2], a root finding method without memory with n + 1
functional evaluations can have at most convergence order 2n (optimal order) and efficiency

index (EI) 2
n

n+1 , where n ∈ N. The methods which satisfy the conjecture of Kung and Traub
are known as optimal methods. An interesting fact about the optimal without memory root
solvers is that their convergence order and efficiency can be increased without increasing the
number of functional evaluations, that is by extending them to with-memory methods. A
root solver which uses current and previous information at each iterative step is known as
with-memory root solver. The construction of with-memory optimal root solvers is based
on two techniques; first is by the use of self accelerating parameter [10] and the second is by
the use of inverse interpolation [8].
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Motivated by this idea, we, in this paper, construct a general derivative free class
of with-memory root solvers based on an optimal n−point derivative free class of without-
memory methods given in [13], using a self-accelerating parameter. This self-accelerating
parameter is computed by using the Newton’s interpolation polynomial and it is proved that
the convergence order of n−point family of without memory methods is increased from 2n to
2n+2n−1. The contents of this paper are summarized as follows. In Section 2, three methods
to calculate the accelerating parameter are presented and a new n−point class of derivative
free with-memory root solvers is developed. Section 3, includes the analysis of R−order
convergence [5]. The comparison of the proposed class of methods with the existing methods
using some nonlinear functions is given in Section 4. In Section 5, dynamical behavior of
the iterative methods is presented and finally the conclusions of this work are provided in
Section 6.

2. New derivative free class of with-memory root solvers

In a recent paper [13], Zafar et al. proposed a derivative free family of without
memory n−point optimal methods of arbitrary order of convergence 2n (n ≥ 1) . This family
requires n+1 functional evaluations and is constructed by using rational interpolation given
as follows:

wk,0 = xk,0 + γf(xk,0), γ ∈ R,

wk,1 = xk,0 −
f(xk,0)

f [xk,0, wk,0]
,

...

wk,n = xk,0 −
a0
a1

, n ≥ 2, (1)

where, k ≥ 0 is iteration index, a0 and a1 are constants to be determined through a rational
polynomial of degree n− 1 such that:

rn−1(t) =
a0 + a1(t− x)

1 + b1(t− x) + · · ·+ bn−2(t− x)n−2
, n ≥ 2, b0 = 1, (2)

with the following conditions:

rn−1(xk,0) = f(xk,0),

rn−1(wk,n) = f(wk,n), n = 1, 2, · · · , n− 1, n ≥ 2, (3)

where, b1, b2, · · · bn−2 are constants to be determined through (3).
For n = 3 in the above family (1), we obtain the following three-point method [13]:

wk,0 = xk,0 + γf(xk,0), γ ∈ R, k ≥ 0,

wk,1 = xk,0 −
f(xk,0)

f [wk,0, xk,0]
,

wk,2 = xk,0 −
f(xk,0)(f(wk,1)− f(wk,0))

f(wk,1)f [wk,0, xk,0]− f(wk,0)f [wk,1, xk,0]
,

wk,3 = xk,0 −
f(xk,0)(h1 + h2 + h3)

h1f [wk,0, xk,0] + h2f [wk,1, xk,0] + h3f [wk,2, xk,0]
, (4)

where,

h1 = f(wk,1)f(wk,2)(wk,2 − wk,1), (5)

h2 = f(wk,0)f(wk,2)(wk,0 − wk,2), (6)

h3 = f(wk,0)f(wk,1)(wk,1 − wk,0). (7)
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A four-point and five-point method is also given in the same paper [13]. Throughout this
paper, we often use normalized Taylor series coefficients for f as follows:

ck =
f (j)(α)

k!f ′(α)
, j = 2, 3, ...,

where, α is a simple root of the real function f : G ⊂ R → R. For the error analysis of (1),
we require the following theorem, which was proved in [13].

Theorem 2.1. Let a function f : G ⊂ R → R is sufficiently differentiable and let α be a
simple zero in an open interval If ⊂ G. Let x0 be a simple root close enough to α then the
n−point family (1) has convergence order 2n and the following is the error relation.

εk+1 = xk+1 − α ∼ dnε
2n , k = 0, 1, · · · (8)

where,

d−1 = 1 + γf ′(α), d0 = 1, d1 = (1 + γf ′(α))c2, (9)

dm = dm−1[c2dm−1 + (−1)m−1cm+1dm−2 + · · ·+ d−1], m = 2, · · · , n. (10)

By using the theorem stated above, the general error for the family (1) is described
by:

εk,j ∼ ξk,j(1 + γf ′(α))2
j−1

ε2
j

k , j = 1, · · · , n, (11)

where, εk = wk,0 − α, εk,j = wk,j − α, j = 1, · · · , n, and k is iteration index. The above
family (1) is constructed by varying the parameter γ. In this paper, γ is determined by
using the information of current and previous iteration, such that the family (1) becomes
a with-memory family. To increase the order of convergence of the family (1), we choose
γ = γk ≈ − 1

f ′(α) , which would exceeds the order of the family (1) from 2n to 2n + 2n−1.

However, f ′(α) is not easily available at all data points, so we use a suitable approximation
of f ′(α), calculated by using available information. Our main task is to increase the order
of convergence of the new family (1) without increasing the number of function evaluations.
To approximate f ′(α), three methods are presented here. Method I is the Newton’s inter-
polating polynomial of degree two passing through the points xk,0, wk−1,n−1 and wk−1,n−2

given as:

N2(t) = N2(t; xk,0, wk−1,n−1, wk−1,n−2)

= f(xk,0) + f [xk,0, wk−1,n−1](t− xk,0)

+f [xk,0, wk−1,n−1, wk−1,n−2](t− xk,0)(t− wk−1,n−1). (12)

Method II uses the Newton’s interpolant of degree three passing through nodes xk,0, wk−1,n−1, wk−1,n−2

and wk−1,n−3 such that:

N3(t) = N3(t;xk,0, wk−1,n−1, wk−1,n−2, wk−1,n−3)

= f(xk,0) + f [xk,0, wk−1,n−1](t− xk,0)

+f [xk,0, wk−1,n−1, wk−1,n−2](t− xk,0)(t− wk−1,n−1)

+f [xk,0, wk−1,n−1, wk−1,n−2, wk−1,n−3](t− xk,0)(t− wk−1,n−1)

(t− wk−1,n−2), (13)
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and Method III uses the Newton’s interpolant of degree four passing through xk,0, wk−1,n−1,
wk−1,n−2, wk−1,n−3 and wk−1,n−4 such that:

N4(t) = N4(t;xk,0, wk−1,n−1, wk−1,n−2, wk−1,n−3, wk−1,n−4)

= f(xk,0) + f [xk,0, wk−1,n−1](t− xk,0)

+f [xk,0, wk−1,n−1, wk−1,n−2](t− xk,0)(t− wk−1,n−1)

+f [xk,0, wk−1,n−1, wk−1,n−2, wk−1,n−3](t− xk,0)(t− wk−1,n−1)

(t− wk−1,n−2) + f [xk,0, wk−1,n−1, wk−1,n−2, wk−1,n−3, wk−1,n−4]

(t− xk,0)(t− wk−1,n−1)(t− wk−1,n−2)(t− wk−1,n−3). (14)

To calculate the varying parameter γk, we use (12), (13) and (14) and obtain the following
formulae:

γk = − 1

N ′
2(xk,0)

≈ − 1

f ′(α)
(Method I), (15)

γk = − 1

N ′
3(xk,0)

≈ − 1

f ′(α)
(Method II), (16)

γk = − 1

N ′
4(xk,0)

≈ − 1

f ′(α)
(Method III), (17)

The derivative of Newton’s interpolating polynomial is calculated by the following Lemma
given by Petković in [8] as:

Lemma 2.1. Let Nm be Newton’s interpolating polynomial of degree m that interpolates
a function f at m + 1 distinct nodes t0, t1, ..., tm contained in an interval If and the
derivative is continuous in If . Assume that all differences ej = tj − α are sufficiently
close to zero α of f and the condition e0 = O(e1.e2., ..., em) holds. Then, N ′

m(t0) ∼
f ′(α)(1 + (−1)m+1cm+1

m∏
j=1

ej).

Thus, for m = 2 we get

N ′
2(xk,0) ∼ f ′(α)(1 + (−1)3c3

2∏
j=1

ej) (18)

= f ′(α)(1− c3e1e2),

where e1 and e2 are errors appeared in the first and second step of the n−point family (1).
Similarly for m = 3 we have,

N ′
3(wk,0) = f ′(α)(1 + c4e1e2e3), (19)

where e1, e2 and e3 are errors appeared in the first, second and third step of the n−point
family (1).
By replacing the free parameter γ in the iterative family (1) with γk, we get the following
n−point derivative free family with-memory:

wk,0 = xk,0 + γkf(xk,0), k ≥ 0

wk,1 = xk,0 −
f(xk,0)

f [xk,0, wk,0]
,

...

wk,n = xk,0 −
a0
a1

, n ≥ 2, (20)

where a0, b1, · · · bn−2 and a1 are constants to be determined through interpolating conditions
(3) and γk is computed by one of the formulae (15),(16) and (17).
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3. R−order of convergence of with-memory family

To calculate the order of convergence of the new derivative free with-memory family
(20), we use the idea of R−order of convergence [5] and give the following theorems.

Theorem 3.1. Let f(x) be a sufficiently differentiable function in a neighborhood of its sim-
ple root α. If an initial approximation x0 is sufficiently close to α and the varying parameter
γk is computed by (15), then R−order of convergence of family (20) is at least 11 · 2n−3 for

n ≥ 3 and at least 1
2 (5 +

√
33) ≈ 5.372 for n = 2.

Proof. Let us consider thatR−order of convergence of the iterative sequences {wk,n}, {wk,n−1}
and {wk,n−2} be at least r, v and u respectively, that is

εk,n−2 ∼ ηk,uε
u
k , εk,n−1 ∼ ηk,vε

v
k , εk+1 ∼ ηk,rε

r
k. (21)

Hence,
εk,n−2 ∼ ηk,u(ηk−1,rε

r
k−1)

u = ηk,uη
u
k−1,rε

ru
k−1, (22)

εk,n−1 ∼ ηk,v(ηk−1,rε
r
k−1)

v = ηk,vη
v
k−1,rε

rv
k−1, (23)

εk+1 ∼ ηk,r(ηk−1,rε
r
k−1)

r = ηk,rη
r
k−1,rε

r2

k−1. (24)

Now, by using (18) we have

N ′
2(wk,0) ∼ f ′(α)(1− c3εk−1,n−2εk−1,n−1) (25)

and from (12)
1 + γkf

′(α) ∼ c3εk−1,n−2εk−1,n−1. (26)

Now, using (25) and (26) we get

εk,n−2 ∼ ξk,n−2(1 + γkf
′(α))2

n−3

ε2
n−2

k

∼ ξk,n−2(c3εk−1,n−2εk−1,n−1)
2n−3

(ηk−1,rε
r
k−1)

2n−2

∼ ξk,n−2c
2n−3

3 (εk−1,n−2εk−1,n−1)
2n−3

η2
n−2

k−1,r(ε
r
k−1)

2n−2

∼ ξk,n−2c
2n−3

3 η2
n−2

k−1,r(ηk−1,uηk−1,v)
2n−3

(εk−1)
(u+v)2

n−3
+r2n−2

(27)

and

εk,n−1 ∼ ξk,n−1(1 + γkf
′(α))2

n−2

ε2
n−1

k

∼ ξk,n−1(c3εk,n−2εk,n−1)
2n−2

(εk)
2n−1

∼ ξk,n−1c
2n−2

3 (εk,n−2εk,n−1)
2n−2

(εk)
2n−1

∼ ξk,n−1c
2n−2

3 η2
n−1

k−1,r(ηk,uηk,v)
2n−2

(εk−1)
(u+v)2

n−2
+r2n−1

. (28)

Similarly,

εk,n ∼ ξk,n(1 + γkf
′(α))2

n−1

ε2
n

k

∼ ξk,n(c3εk−1,n−2εk−1,n−1)
2n−1

ε2
n

k

∼ ξk,nc
2n−1

3 η2
n

k−1,r(εk−1)
(u+v)2

n−1
+r2n . (29)

Equating the error exponents of εk−1 in the three pairs (22) and (27), (23) and (28) and
(24) and (29), we obtain the following system of equations in unknown order u, v and r.

ru− (u+ v)2n−3 − r2n−2 = 0

rv − (u+ v)2n−2 − r2n−1 = 0

r2 − (u+ v)2n−1 − r2n = 0. (30)

Solving the above system of equations, we have the solution u = 11 ·2n−5, v = 11 ·2n−4, r =
11 ·2n−3. Thus, the R−order of convergence of the family (20) is at least 11 ·2n−3 for n ≥ 3.
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For example, for n = 3 the family (20) has at least R−order 11 and at least 11 · 24−3 = 22
for n = 4. The case for n = 2 is some what different as that of three-point and four-point
formulae. We use the nodes xk−1(= wk−1,0), wk−1(= wk−1,1) and xk(= wk,0) to construct
the Newton’s interpolating polynomial and set u = 1, in (30), to obtain the following system:

rv − (v + 1)− 2r = 0

r2 − 2(v + 1)− 4r = 0 (31)

with the solution v = 1
4 (5 +

√
33) and r = 1

2 (5 +
√
33). Thus the family (20) is at least of

R−order 1
2 (5 +

√
33) ≈ 5.372 for n = 2. The proof is complete. �

Theorem 3.2. Let f(x) be a sufficiently differentiable function in a neighborhood of its sim-
ple root α. If an initial approximation x0 is sufficiently close to α and the varying parameter
γk is computed by (16) then R−order of convergence of n−point family with-memory (20)

is at least 23 · 2n−4 for n ≥ 4 and at least 1
2 (11+

√
137) ≃ 11.352 and 6 for n = 3 and n = 2

respectively.

Proof. The proof is similar to the proof of Theorem 3.1 if we assume that R−order of
iterative sequences {wk,n−3}, {wk,n−2}, {wk,n−1} and {wk,n} is u, v, y and r respectively.
Hence, it is omitted. �

Theorem 3.3. Let f(x) be a sufficiently differentiable function in a neighborhood of its sim-
ple root α. If an initial approximation x0 is sufficiently close to α and the varying parameter
γk is computed by (17) then R−order of convergence of n−point with-memory family (20)
is at least 47 · 2n−5 for n ≥ 5 and at least 23.34, 11.68 and 6 for n = 4, n = 3 and n = 2
respectively.

Proof. Assume thatR−order of iterative sequences {wk,n−4}, {wk,n−3}, {wk,n−2}, {wk,n−1}
and {wk,n} be u, v, y, l and r respectively. Then the proof is similar to the proof of Theorem
3.1. Hence, it is skipped over. �

Remark 3.1. From the above results it is clear that the convergence order of the family
of without memory n−point optimal methods (1) is increased from 4 to 6 for n = 2, 8 to
11.68 for n = 3, 16 to 23.34 for n = 4 and 32 to 47 for n = 5. We note that the order
of convergence of the derivative free without memory family (1) is accelerated up to 50%.
Generally, the convergence order of (1) is increased from 2n to 2n + 2n−1 that is the order
of convergence of the family of with memory methods (20).

4. Numerical examples

In this section, we test performance of the proposed with-memory n−point class of
root solvers (20) (FNSM) to solve some smooth and non-smooth nonlinear functions taken
from the literature. We compare the results of the without memory n−point families of Zafar
et al. [13] (1), Kung and Traub [2] (KT) and Zheng et al. [14] (ZLH) (for n = 3) with their
with-memory extensions, i.e. replacing the free parameter γ with the accelerating parameter
γk in the without memory families. The parameter, γk is computed by (15), (16) and (17)
according to availability of the points. All numerical computations are performed using
the programming package Maple 16 with multiple-precision arithmetic and 1000 significant
digits. We have considered the following test functions:

f1(x) = e−x2

(x− 2)(1 + x3 + x6), x0 = 1.5, α = 2,

f2(x) = x2 − (1− x)25, x0 = 0, α = 0.1437...,

f3(x) = xex
2

− sin2 x+ 3 cosx+ 5, x0 = −1, α = −1.2076...
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Table 1: Comparison of With- and Without Memory Methods for f1, x0 = 1.5
Methods |x1 − α| |x2 − α| |x3 − α| |x4 − α| COC EI
ZLH n = 3
γ = 0.01 (Without Memory) 1.01(−3) 4.09(−24) 3.01(−187) 0 8.00 1.68
γk(15) (With-Memory) 1.01(−3) 4.79(−34) 1.72(−337) 0 10.00 1.77
γk(16) (With-Memory) 1.01(−3) 2.70(−36) 8.29(−392) 0 10.91 1.81
γk(17) (With-Memory) 1.01(−3) 1.69(−36) 2.76(−429) 0 11.98 1.86
KT n = 3
γ = 0.01 (Without Memory) 1.09(−3) 3.35(−23) 2.60(−179) 0 8.00 1.68
γk(15) (With-Memory) 1.09(−3) 4.78(−33) 2.91(−327) 0 10.02 1.77
γk(16) (With-Memory) 1.09(−3) 1.80(−35) 4.01(−383) 0 10.94 1.81
γk(17) (With-Memory) 1.09(−3) 2.31(−35) 6.53(−415) 0 11.98 1.86
FNSM n = 3
γ = 1(Without Memory) 7.36(−4) 6.16(−25) 1.49(−193) 0 8.00 1.68
γk(15) (With-Memory) 7.36(−4) 4.60(−34) 6.17(−348) 0 10.02 1.78
γk(16) (With-Memory) 7.36(−4) 1.31(−36) 8.60(−396) 0 10.97 1.82
γk(17) (With-Memory) 7.36(−4) 3.15(−38) 1.12(−449) 0 11.98 1.86

Tables 1-3 display the error of approximations to corresponding root of nonlinear
functions (|xk − α|) for first four iterations of the methods, where A(−E) denotes A×10−E .
In that case the root α is not exact, it is replaced by a more accurate value which has
more number of significant digits than the assigned precision. The Tables also include
computational order of convergence (COC) computed after first three iterations by the

formula [12], COC≈ log|(xk+1−α)/(xk−α)|
log|(xk−α)/(xk−1−α)| , and efficiency index (EI) for each of the methods.

In all numerical tests, initial value of the accelerating parameter γ0 = 0.01 is used. From the
Tables 1-3, we can see that, the computational order and efficiency of the existing without
memory methods (1), (ZLH) and (KT) has been significantly increased by employing the
accelerator γk. It is also observed that the computation of the parameter γk using (17)
provides higher order and accuracy than the use of (15) and (16). For the case of f2,
FNSM with (17) produces the convergence order 12.22 which is higher than 7.98, i.e. the
order of the its without memory version (1). For the solution of f1 and f3, the proposed
with-memory family (FNSM) with (17) possesses the convergence order 11.98 and 12.00
for n = 3, respectively. Thus, we can conclude that the convergence order of the without
memory family (1) has been increased from 2n to 2n + 2n−1. Numerical tests of f1, f2 and
f3 show that the presented with-memory family (FNSM) is also competitive with the with-
memory extensions of existing families by Zheng et al. [14] (ZLH) and Kung and Traub [2]
(KT). Moreover, the computational efficiency index of the presented with-memory family is
1.86 which is higher than 1.68, i.e. the efficiency index of the without memory family (1)
for n = 3.

Table 2: Comparison of With- and Without Memory Methods for f2, x0 = 0
Methods |x1 − α| |x2 − α| |x3 − α| |x4 − α| COC EI
ZLH n = 3
γ = 0.01 (Without Memory) 3.95(−2) 4.93(−6) 1.61(−37) 2.10(−288) 8.00 1.68
γk(15) (With-Memory) 3.95(−2) 8.83(−11) 3.79(−96) 6.85(−947) 9.87 1.77
γk(16) (With-Memory) 3.95(−2) 9.22(−8) 3.17(−69) 4.25(−744) 10.98 1.82
γk(17) (With-Memory) 3.95(−2) 1.24(−8) 1.15(−87) 0 12.13 1.86
KT n = 3
γ = 0.01 (Without Memory) 4.61(−2) 1.40(−4) 5.99(−25) 6.75(−187) 8.09 1.68
γk(15) (With-Memory) 4.61(−2) 9.86(−9) 2.04(−71) 3.02(−698) 10.00 1.77
γk(16) (With-Memory) 4.61(−2) 1.67(−5) 7.56(−43) 1.45(−453) 10.85 1.81
γk(17) (With-Memory) 4.61(−2) 9.54(−6) 1.56(−50) 8.90(−589) 12.15 1.86
FNSM n = 3
γ = 0.01 (Without Memory) 9.64(−3) 1.53(−11) 9.89(−82) 2.89(−643) 7.98 1.68
γk(15) (With-Memory) 9.64(−3) 1.62(−8) 4.55(−71) 6.18(−696) 10.83 1.81
γk(16) (With-Memory) 9.64(−3) 5.91(−12) 5.16(−114) 0 11.07 1.82
γk(17) (With-Memory) 9.64(−3) 2.93(−12) 1.37(−128) 0 12.22 1.87
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Table 3: Comparison of With- and Without Memory Methods for f3, x0 = −1
Methods |x1 − α| |x2 − α| |x3 − α| |x4 − α| COC EI
ZLH n = 3
γ = 0.01 (Without Memory) 4.18(−6) 2.98(−43) 2.00(−339) 0 8.00 1.68
γk(15) (With-Memory) 4.18(−6) 1.04(−59) 2.02(−595) 0 9.99 1.77
γk(16) (With-Memory) 4.18(−6) 7.81(−63) 1.16(−686) 0 11.00 1.82
γk(17) (With-Memory) 4.18(−6) 3.97(−66) 5.58(−786) 0 11.99 1.86
KT n = 3
γ = 0.01 (Without Memory) 2.12(−4) 2.99(−28) 4.63(−219) 0 8.00 1.68
γk(15) (With-Memory) 2.12(−4) 5.53(−40) 1.41(−395) 0 9.99 1.77
γk(16) (With-Memory) 2.12(−4) 1.79(−44) 1.99(−483) 0 10.95 1.81
γk(17) (With-Memory) 2.12(−4) 5.83(−44) 9.42(−518) 0 11.98 1.86
FNSM n = 3
γ = 0.01 (Without Memory) 6.26(−7) 1.06(−50) 7.19(−401) 0 8.00 1.68
γk(15) (With-Memory) 6.26(−7) 5.21(−67) 1.30(−667) 0 10.00 1.78
γk(16) (With-Memory) 6.26(−7) 1.34(−69) 2.38(−759) 0 11.00 1.82
γk(17) (With-Memory) 6.26(−7) 3.09(−72) 4.32(−856) 0 12.00 1.86

5. Dynamical behavior

In this section, we analyze the dynamical planes associated to the rational functions
obtained by applying the iterative methods to complex functions in the complex plane using
basin of attraction. The dynamical planes are obtained by using two different techniques on
Matlab R2013a software as follows. By taking a rectangle [−2, 2] × [−2, 2] of the complex
plane, we define a mesh of 1000× 1000 initial approximations. The starting point is in the
basin of attraction of a root to which the sequence of the iterative method converges with an
error approximation lower than 10−5 and at most 30 iterations. In the first technique this
initial point is assigned with a specific color which is already selected for the corresponding
root. If the sequence of the iterative method converges in less number of iterations then the
color will be more intense and if it is not converging to any of the roots after 30 iterations,
then that initial point is marked with dark blue color. For the second technique, maximum
number of iterations are 25 with an error estimation lower than 10−5 and each initial guess
is assigned with a color depending upon to the number of iterations for the iterative method
to converge to any of the root of the given function. In this technique we use colormap ’Hot’.
The color of the initial point will be more intense if the sequence of the iterative method
converges in less number of iterations and if it is not converging to any of the roots after
25 iterations, then initial point is assigned with black color. The proposed with-memory
method (FNSM) and the with-memory method of Kung and Traub [2] (KT) are applied
to the following complex functions: p1(z) = z3 − 1, with roots 1.0, −0.5000 + 0.86605I,
−0.5000− 0.86605I, p2(z) = z5 − 1, with roots 1.0, 0.3090+ 0.95105I, −0.8090+ 0.58778I,
−0.8090− 0.58778I, 0.30902− 0.95105I.

Figure 1. Dynamical Planes of KT using (16) for n = 3 on p1.

Dynamical planes of the with-memory methods (FNSM) and (KT) for n = 3 and
β0 = 0.01 applied to the functions p1(z) and p2(z) are depicted in the figures 1-4. Two
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Figure 2. Dynamical Planes of FNSM using (16) for n = 3 on p1.

Figure 3. Dynamical Planes of KT using (16) for n = 3 on p2.

Figure 4. Dynamical Planes of FNSM using (16) for n = 3 on p2.

types of attraction basins are given in all the figures. Color maps for both types are provided
with each figure which show the root to which an initial guess converges and the number
of iterations in which the convergence occurs. It can be observed from the dynamics that
the appearance of wide darker region shows that the iterative method (FNSM) consumes
less number of iterations and have wider regions of convergence in comparison with (KT).
Hence, the proposed with-memory method (FNSM) is more reliable as its dynamical planes
has less black and dark blue regions in comparison with the with-memory family of Kung
and Traub [2] (KT).
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6. Conclusions

In this work, we have proposed a with-memory extension of an existing without mem-
ory derivative free family of n−point optimal methods to solve nonlinear functions employing
a self-accelerating parameter. The R−order of convergence of the without memory family
(1) has been increased from 2n to 2n + 2n−1 for arbitrary n, without additional functional
evaluations. The convergence speed is accelerated by using suitable variation of an accel-
erating parameter at each iterative step. This parameter is computed using the Newton’s
interpolating polynomials. Numerical results support the theoretical results and demon-
strate the efficiency and robustness of proposed class of methods (20) in comparison with
the existing with- and without memory methods as it is clear from the columns EI and
|xi − α| in Table 1-3. It can also be observed that the computational order of convergence is
comparable with the existing methods as it is apparent from the COC column of the Tables
1-3. Finally, dynamical behavior of the proposed family is presented to conclude that the
proposed family of methods is competitive with the already developed methods of same
domain.
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