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AFFINE ARITHMETICS APPLICATIONS TO SIGNAL 
PROCESSING  

Răzvan MIALTU1, Mircea BODEA2 

Affine arithmetic represents a background mathematics theory for multiple 
applications, including, recently, for error estimation for signal processing systems. 
This paper introduces affine assertions as a concept for mixed-signal circuits using 
an original environment for semi-symbolic simulation. The original approach is 
compared with system level Monte-Carlo analysis, results showing an increase 
factor of ca. 20 for functional coverage. 

This paper summarizes the developed solution for the electronic design 
automation software area application of the static analysis methods in real numbers 
finite memory systems representation associated errors. 
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1. Introduction 

Integrated systems designed for conditioning and processing electrical 
signals have to comply with a desired behavior within specified limits. In the case 
of digital systems, usage of a strong methodology based on automated tools for 
synthesis and place and route together with high fabrication fault coverage 
through the use of state of the art established tests ensure failure rates under 
1 ppm for the final products reaching the market. For analog circuits and for 
mixed-signal integrated systems, technology variation impact is amplified as local 
deviations of single parameters may produce non-linear interactions. 

The state-of-the-art methodology for producing a robust design, capable of 
resulting in a high yield product on the market, is based on statistical methods for 
sampling the infinite space of possible values for a large set of input parameters, 
results being computed for this representative population and then aggregated into 
the solution estimation. The smallest sampling population is used in corner 
simulations, where technology parameters are set identically for all 
microelectronic devices present in the design to values that represent 
combinations of upper and lower side specification limits. An enlarged sampling 

                                                            
1 Eng., TA, Depart. of Devices, Circuits and Electronic Apparatus, University POLITEHNICA of 

Bucharest, Romania, e-mail: razvanmialtu@yahoo.com 
2 Prof., Depart. of Devices, Circuits and Electronic Apparatus, University POLITEHNICA of 

Bucharest, Romania, e-mail: mircea.bodea@dcae.pub.ro 



150                                                   Răzvan Mialtu, Mircea Bodea 

population is used with Monte-Carlo simulations as, in this case, each device in 
the system is characterized by its own set of random values for the technology 
parameters constrained to their own specifications. The finite computation 
resources determine these methods to represent a bottleneck of the design and 
verification flow, thus increasing the projects associated risk. Pure numerical 
simulations (e.g. transient runs, DC analysis, AC analysis, Monte Carlo, 
technology corners) are characterized by a soft limitation that impacts their 
overall performance when employed for verification and more specifically to 
system validation: data provided on specification parameters does not encompass 
any information about uncertainty sources that contribute to the results. 

Integrated circuits hardware design and software development use an 
extended set of formal methods to ensure the product compliance with 
specifications. These validation techniques rely on mathematical identity proof 
and their implementation with electronic design automation software applications 
assumes symbolic interpretation of available data resulted from successive steps 
of the development flow, thus solutions complexity increases with vocabulary and 
syntax (e.g. use of formal techniques is more natural for digital systems than for 
analog components). 

This paper introduces a novel simulation framework enabling an improved 
methodology for signal processing systems validation based on the mathematical 
theory of affine arithmetic. The original use of state-of-the-art SystemVerilog [1] 
digital assertions, originally extended to special conceived affine signal classes, 
enables semi-symbolic simulations, where a single simulation provides 
supplemental information on deviations from the nominal case. 

This paper is divided into chapters as follows. Initially, the background 
mathematical theory of affine is introduced from a requirement driven view. Next 
section is focused on the presentation of the novel concept of assertions for affine 
represented signals. The implementation details for a specific signal processing 
system architecture mathematical novel models (Mathworks Simulink and 
SystemVerilog) are part of Section 4, while the final two sections include results 
of simulations focusing on comparison between the two methods to characterize 
system parameters variation for providing the novel validation methodology an 
initial proof of concept. 

2. Affine Arithmetic Theory 

Designed systems performance is limited by technology, concept and 
deviation from mathematical abstraction. By technology limitation, the 
convention herein is to understand the state-of-the art physics associated with a 
certain system class, e.g. integrated electronics systems functionality is based on 
silicon semiconductor phenomena. Concept limitation refers to human civilization 
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understanding of problems and general solutions to them, e.g. computer 
architectures have in common processing core accessing via buses data found in 
memory components. 

Mixed-signal systems due to their nature of processing values that are 
time-continuous and value-continuous have intrinsic errors both in analog and in 
digital domain. Starting from imperfect modeling of circuit behavior in simulators 
due to incomplete understanding of phenomena or due to equation simplifications 
for computational resources reasons, or from error injection in simulation due to 
computation with a software on a digital machine storing information in limited 
size registers and ending with silicon transistors parameter variations, signals in 
the final product differ from their expected values. A robust design is achieved 
when the differences do not accumulate, thus keeping real values within certain 
limits from the expected ones. 

Range arithmetic was introduced [2] to provide a complete mathematical 
formalism for the study of errors propagation in a digital computing machine, i.e. 
a computer processor, having as motivation the necessity of providing accurate 
computation results, with a known documented degree of accuracy. Interval 
arithmetic set is composed of a superset of real numbers, each of its elements 
representing the whole set of real values found lying between its two endpoints.  

Recursive mathematic functions or feedback control loops show the 
insufficiency of interval expressions, where they fail to converge. 

Numbers in affine format [3] represent values determined by a set of 
variables, thus being similar with a multi-variable function ݂ሺݔଵ, .ଶݔ .  .ௗሻݔ
Taylor’s theorem stipulates that a one can find a series ܶሺݔଵ, .ଶݔ .  ௗሻݔ
approximating the function within a defined accuracy, the remainder being given 
by the same theorem: 
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and expressed as a sum of  
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where ݂ሺݔ௅

௞ሻ are the values in whose vicinity the function is computed. 
 
From a mathematical point of view, numbers of affine arithmetic are 

defined as 
෤ݔ ൌ ଴ݔ ൅ ଵߝଵݔ ൅ ଶߝଶݔ ൅ ڮ ൅ ௡ (5)ߝ௡ݔ

with the number ݔ෤ uniquely defined by a set ݔ଴, ,ଵݔ .ଶݔ .  ௡ of known floating-pointݔ
numbers and by a set ߝଵ, .ଶߝ .  ௡ of symbolic variables whose value respectߝ
 

11 <<− iε  (6)
where iε  is called noise symbol, thus the influence of each noise symbol being 
quantized by its derivative value ݔଵ, .ଶݔ .  .௡ݔ

Considering an ideal value defined by no influence of noise components, 
i.e. ݅׊ א ௜ݔכܰ ൌ 0, the projections of the affine variable on Թ of maximum and, 
respectively, of minimum value, shall be found at same distance to the ideal value. 
The total deviation for an affine variable from its central value has the metric 
defined by 

෤ሻݔሺ݀ܽݎ ൌ ෍|ݔ௞|
௡

௞ୀଵ

 
(7)

corresponding to the difference to the worst cases values, i.e. all the terms 
contributing in a singular error direction (either positive or negative). 

Two affine forms may share a set of common noise symbols ሼߝ௜ଵ, .௜ଶߝ .  ௜௠ሽߝ
thus indicating a partial dependency or correlation between the two quantities. A 
pair of intervals ሺݔ,  ሻ in Թଶ space constraints possible values to a rectangularݕ
region denoted by ሾݔ௠௜௡, ௠௔௫ሿݔ ൈ ሾݕ௠௜௡,  ௠௔௫ሿ, whereas in the case of an affineݕ
forms, pairs sharing at least one symbol determine Թଶ definition domain to be 
constrained to a smaller polygon. As a generalization, m affine forms depending 
on n noise symbols determine a set S of possible joint values for the 
corresponding quantities in the form of a center-symmetric convex polytope that 
is a parallel projection into Թ௠ of the hypercube ܷ௡. 

The group law of affine forms, the addition, manifesting closure, 
associativity, existence of an identity element and generation of an inverse 
element, is linearly defined according to representation of any affine form as a 
sum of noise symbols and derivatives products. Therefore, linear operations 
results are part of affine forms group as equation: 

 

ݖ̃ ൌ ෤ݔߙ ൅ ෤ݕߚ ൅ ܿ (8)
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with ܿ א Թ, is easily converted to 

ݖ̃ ൌ ଴ݔߙ ൅ ଴ݕߚ ൅ ܿ ൅ ෍ሺݔߙ௞ ൅ ௞ߝ௞ሻݕߚ

ௗ

௞ୀଵ

 
(9)

where one can recognize an affine form with components univocally determined 
by the summing terms. With the observation that real numbers are a subset of 
affine numbers, addition and any operation that generates an affine number result 
is said to be an affine operation. Non-affine operations can generate non-affine 
numbers when their terms are affine themselves, e.g. the multiplication 
represented by 

ݖ̃ ൌ ෤ (10)ݕ෤ݔ
and defined by summation of products resulting from all symbols combinations. 
While multiplication with the ideal value, a real number in itself, generate affine 
form terms, multiplication of products that include symbols shall generate 
quadratic symbols, not included in affine numbers set. 

Consistency of affine arithmetic, i.e. closure, when non-affine operations 
are employed, is ensured through results approximation with a new affine number. 
For the multiplication result, the last term of equation 

 

ݖ̃ ൌ ଴ݕ଴ݔ ൅ ෍ሺݕ଴ݔ௞ ൅ ௞ߝ௞ሻݕ଴ݔ ൅
௡

௞ୀଵ

 ௡ାଵߝ௡ାଵݖ
(11)

is replacing the quadratic components from the exact formula with a new noise 
symbol and a new corresponding weight. The approximation procedure ensures 
closure with the drawback of inclusion of an additional noise term and an intrinsic 
overestimation.  

3. Mixed-Signal Assertions 

Current signal processing integrating systems complexity leads to 
increased effort associated to design and verification activities. The solution found 
for decreasing the time to market of a product containing at least one integrated 
digital system is usage of automation procedures. These are not restricted to 
extensive scripting and other methods used for software testing, specific 
methodology making use of hardware verification language special structures 
generating constrained randomization of input stimuli and providing flexible 
checking with employment of assertions. 

Randomization of stimuli for a digital system is used for creating sets of 
values for all inputs ports in a way that statistically will cause the internal finite 
state machines to transition between most of their states, desirable through all, in 
various sequences. Introduction of constraints into the randomization equations 
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promises that only valid stimuli are provided as inputs, thus reducing the number 
of false errors and optimizing resources. At the other end, errors are discovered 
automatically through the use of assertions, as long as a specification is in place. 
This specification dictates the way outputs shall behave when certain signal 
values are provided at the system inputs. Insertion of assertions is not limited to 
system output ports, as grey box testing provides a superior confidence level. 

 

 
Fig. 1. Basic digital assertion for events succesion. 

 
Digital assertions, currently state-of-the-art, are limited to a certain set of 

expressions that are relevant for digital systems (e.g. check of time intervals 
between two active states, as shown in Fig. 1), representing in fact a subset of 
expressions that SystemVerilog language is able to provide. 

Last years have known the spawning of activities for integrating 
assertions, both Property Specification Language [4] and SystemVerilog [5] 
flavored, into mixed-signal systems pre-silicon verification, extending a digital 
system design state-of-the-art methodology to analog domain. The efforts have 
been not only directed to providing checkers for analog models developed in the 
extended family of hardware description languages (VHDL, Verilog and their 
extensions), but also for integrating assertions directly at SPICE netlist level [6] 
with the help of pragmas. 

 

 
Fig. 2. Typical assertion on the analog signal of a comparator with hysteresis. 
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Analog assertions [5], due to signals continuous nature both in time and in 
value, represent a more complex version of the digital counterparts, with an 
extended set of usual operators. A PSL assertion for a simple comparator with 
hysteresis, with its behavior shown in Fig. 2, shall be written in the form 
hyst_comp_pos: assert always “Vሺinሻ ൐ Vሺrefሻ” ‐൐ “Vሺoutሻ ൐ൌ VሺVorefሻ”; and 
hyst_comp_neg: assert always “Vሺinሻ ൏ ‐Vሺrefሻ” ‐൐ “Vሺoutሻ ൏ൌ ‐VሺVorefሻ”; i.e. based on a 
hysteresis of a value double than that of V(ref), the comparator output voltage 
shall be set to the voltage corresponding to correct logic[7]. 

As the novel environment implements an arithmetic that extends the 
mathematic operators associated to real numbers, associated classes are included 
to represent stencils both for data and for operators. Classes are necessary as 
simple type extension provide neither basic operators functionality nor necessary 
memory automatic management. 

Affine arithmetic is introduced for mixed-signal systems study as a 
method to analyze the parameters variation on overall performance and whether a 
product sample under the effect of technology and environment condition corners 
shall still exhibit functionality within specification limits. The benefit that affine 
arithmetic promises in respect to classical Monte-Carlo and corner simulations 
approaches is an optimized result-to-resources ratio, but one can profit from this 
advantage only if simulation data processing is automated as well. 

As explained previously, full automation for integrated electronic systems 
verification is implemented through two techniques: (1) constrained 
randomization and (2) assertions. These ensure that for a range of inputs valid 
(properly constrained) and representative (properly randomized) the system-
under-test shall exhibit a functionality a-priori documented (characteristic 
determined by output signals being asserted accordingly). 

 

 
Fig. 3. Typical affine signal assertion on a noise symbol. 
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The fundamental affine assertion is represented by a simple checker of a 
signal defined affine term within a certain time interval, as shown in Fig. 3. The 
formal expression can be explained as the verification of the measure of the 
impact a variation of a signal path precedent block parameter has at an ulterior 
location of that signal path. Formally, the checker equivalent in algebraic analysis 
is the determination of the variation of the range from the co-domain of a 
composition of functions when certain functions parameters may have any values 
within specified ranges. 

Considering  

ݕ ൌ ݂ሺݔ௅, ሻݐ ൅ ෍ ௞݂ሺݔ௅ሻ
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 ௞ߝ
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as the result of input 
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(13)

signal processing, with standard notations for affine terms explained above, where 
the signal processing is expressed by  
 

ݕ ൌ ݂ሺݔ, ሻ (14)ݐ
with t a real value, representing time, one can express the inclusion assertion as: 
 

| ௞݂ሺݔ௅ሻ| ൏ ݈݅݉௞ ݎ݋݂ ݐ׊ א ሾݐଵ, ଶሿ (15)ݐ
 
Next section shows the implementation of specific system verification 

language environment this formal affine assertion is used in. 

4. Models for the System under Test 

Two mathematical models were developed for a mixed-signal integrated 
system representing a silicon die comprising of an area sensitive to an external 
electro-magnetic field, i.e. sensitive element, and of an associated signal 
processing circuitry. The integrated system function is high-accuracy detection of 
position and speed variations for a wheel in rotation generating a periodic signal. 
The principle applies both for external electric fields and for external magnetic 
fields, as the sensitive area can be manufactured as integrated capacitive silicon 
structures on the circuitry die or as magnetic sensitive areas. 
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Fig. 4. System-unde-test block diagram. 

 
As seen in the block diagram of Fig. 4, the analog sub-system is rejecting 

1/f noise through the means of a modulation / demodulation scheme characteristic 
to chopper architecture. An up/down counting analog-to-digital converter is 
employed for converting the demodulated signal after an anti-aliasing and ripple 
rejection analog low pass filter. Further signal processing, algorithmic in nature, is 
implemented in the digital domain. 

SystemVerilog novel implementation of the enumerated concepts, initially 
presented in [8], may be divided into three categories: (a) implementation of an 
environment with associated structures for data storing and data processing, 
representing the foundation layer; (b) a system model based on description of 
individual blocks connected in a data flow and (c) a test-bench structure that 
provides input stimuli for the device-under-test and includes the checking 
mechanisms for ensuring functionality according to specification. 

According to semi-symbolic simulation methodology, affine data requires 
intrinsic integration with the model fabric. Accordingly, a library was developed 
following two directives: (1) object oriented design shall be used for all elements, 
thus signals, wires and blocks being all instances of specific classes; (2) affine 
forms are instantiations of the fundamental data class; and (3) communication is 
realized similar to transaction level model abstraction. 

In addition to the model developed for capturing device-under-test 
behavior, a standard pre-silicon verification testbench was created having the 
particularities described by the next paragraphs. 

The model of state-of-the-art digital assertions is used for developing 
affine specific checkers. Considering affine assertions as introduced in the 
previous section, an extension of standard assertion formalism is possible within 
the limits of SystemVerilog Language Reference Manual. While no restriction is 
imposed on assertions available for binary content in a mixed-signal design, 
coding for affine assertions is extended from digital methodology. 
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As such, an immediate assertion can be extended to impose a limit for 
certain error components from a signal (e.g. the amplifier gain variation induced 
error, seen after the filter, shall not extend over a specified percent of least 
significant bit typical voltage value at the analog-to-digital converter comparator 
input pins). The assertion is written as assert ሺሺcomp.in1ሾgainindexሿሻ ൏0.7ሻ 
$displayሺ“A023 Ok. Gain delta.”ሻ with 0.7 being 20% of the LSB typical value in mV. 
A comprehensive error budget can be generated and asserted in this way at any 
intermediate point of the signal chain, including at the output port. 

Concurrent assertions rely on dynamic signals time dimension and on 
relations between signals from this perspective, with an assertion written as 
ሺOffset൐0ሻ&&$roseሺchopclk’eventሻ|ൌ൐ሺOffset൏0ሻ. Other assertions are inserted as 
properties to validate and to verify the robustness of proposed design and the 
existence of guard bands between specification limits and the parameters of worst 
case samples. 

 

 
Fig. 5. Analog signal path Simulink reference model 

 
As reference, a Mathworks Simulink model, shown in Fig. 5, was 

developed according to the state-of-the-art techniques using components that are 
found in the basic library and the Robust Control Toolbox employing variation in 
uncertainty form with the usage of Uncertain State Space blocks. 

5. Simulation Benchmarking 

The library of SystemVerilog models for components and for the 
underlying signal mechanism has been simulated with Mentor Graphics Modelsim 
v. 5.7 on Fedora Linux workstation, while results with the reference model have 
been obtained in Mathworks Matlab R2012a on Windows 7 workstation. 
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Fig. 6. Simulation results on the reference SystemVerilog model 

 
Considering a 10 kHz input signal, with chopper clock at 250 kHz, 5 

signal periods are simulated in 4 minutes with affine environment (Fig. 6), 
compared to 84 minutes for a Monte-Carlo regression with 6 runs (Fig. 7).  

 

 
Fig. 7. Simulation results on the Simulink reference model 

 
Benchmarking has been realized considering the scope of achieving a 

similar coverage factor at the assertion level, thus for the standard Monte-Carlo 
analysis method multiple runs are necessary, while a single run has been 
employed for each test case for the affine arithmetic model. Simulink simulation 
time is computed considering these multiple runs comprised in a script. 
Additionally, to minimize the influence of the tools as much as possible, batch 
scripting with no user interface, including no graphical plotting of the results, has 
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been considered. While this benchmarking measure has been presented herein, a 
better definition of test conditions and additional effort for exclusion of external 
influences is necessary in the future, as at this stage the SystemVerilog model and 
SystemVerilog environment is at the prototype level. 

6. Conclusions 

Using a semi-symbolic methodology for system validation enables, as 
shown in this paper, the replacement of standard scripts containing a set of 
simulations characterized by parameters with randomized values. The major 
benefit is a faster concept validation (up to 20 times smaller times) and thus 
enabling parameter optimization at system level with direct feedback regarding 
overall behavior and regarding individual tolerances. Additionally to 
improvements in terms of required simulation time, the methodology relies on 
automation, i.e. inherent processing supplemental data regarding deviations, the 
herein introduction of affine assertions further enhancing the concept of goals 
validation (e.g. performance, safety related, reliability). 
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