
U.P.B. Sci. Bull., Series C, Vol. 87, Iss. 4, 2025 ISSN 2286-3540

AN EMPIRICAL STUDY ON THE SECURITY OF THE
UPTANE STANDARD

Rares, -Mihail Visalom1, Alin-Gabriel Antoci2, Amelia-S, tefania Andronescu3,
Jan-Alexandru Văduva4, Răzvan Rughinis,5, Dinu T, urcanu6

Vehicles are increasingly becoming more complex and use a variety of
smaller devices integrated deep within their architecture.

The devices that govern communication within and outside a car become
outdated with the passing of time. In some situations, there are ways to up-
date certain components, but only with physical interaction with the vehicle.
In other situations, such practices are impossible.

As OTA Updates are becoming more and more present in the Automotive
field, it is essential to be able to update the firmware of Electronic Control
Units (ECUs) in a secure way. The current study formally explores the
security principles of the Uptane Standard, highlighting the challenges that
this field presents and focusing on the limitations and future work poten-
tial of the OTA Update field applied in the Automotive Industry. We also
identify the need of integrating Secure Coding practices in the development
process.

Keywords: OTA Updates, Uptane, Automotive, Cybersecurity, Threat
Modeling

1. Introduction

Over-The-Air (OTA) Updates are a means of remotely updating a device.
In the context of the Automotive Industry, this means being able to remotely
update the firmware running on the Electronic Control Units (ECUs) inside of

1Doctoral student, National University of Science and Technology Politehnica Bucharest,
Romania, e-mail: rares.visalom@upb.ro

2Masters student, National University of Science and Technology Politehnica Bucharest,
Romania, e-mail: alin_gabriel.antoci@stud.acs.upb.ro

3Masters student, National University of Science and Technology Politehnica Bucharest,
Romania, e-mail: amelia.andronescu@stud.acs.upb.ro

4Lecturer, National University of Science and Technology Politehnica Bucharest, Roma-
nia, e-mail: jan.vaduva@upb.ro

5Professor, National University of Science and Technology Politehnica Bucharest, Ro-
mania, e-mail: razvan.rughinis@upb.ro

6Associate Professor, Department of Software Engineering and Automatics, Technical
University of Moldova, Chis, inău, Moldova, e-mail: dinu.turcanu@adm.utm.md

17

18 RM Visalom, AG Antoci, AS Andronescu, JA Văduva, R Rughinis, , D T, urcanu

a car. The update process usually involves, but might not be limited to: down-
loading the updates, checking their validity, applying the update, checking if
the update was applied successfully, and recovering from a failed update.

Having a secure means of remotely updating cars would allow car manu-
facturers to patch vulnerabilities of their ECUs. For example, recent research
discovered it was possible to unlock keyless entry cars [1] by exploiting a vul-
nerability. The code for such exploits is frequently publicly available, which
adds great risk for the owners of such cars. With a secure update framework
implementation, such problems would be patched in a relatively short period
of time, without having to physically move the vehicle.

There are other use cases where being able to control the firmware of an
ECU would help. Recent business practices of some car manufacturers involve
enabling certain features of a vehicle based on a subscription model [2]. This
obviously requires secure remote access to the car. Although the need for such
an update framework is visible, a robust open-source implementation is still
to be created.

The purpose of this paper is to provide a top-level view of the current
state of the Automotive Over-The-Air Updates. The Uptane standard and its
implementation are discussed in great detail in 2 and 3, respectively. Potential
improvements of the Uptane standard are discussed in 4.

2. Uptane

The aim of this chapter is to digest and provide a summary of the most
essential information of the Uptane standard. This implies that sometimes
non-critical details will be omitted.

Uptane is not an implementation nor a working prototype, it is a standard
that borrows concepts from The Update Framework (TUF) [3]. In other words,
it is a set of directives and best practices of what a secure OTA framework
geared towards the automotive industry should be. Implementations should
respect these guidelines and implement a working system with security in mind.

Uptane adheres to a client-server architecture to deliver the updates.
The client would be installed on a vehicle while the server would be hosted
remotely.

2.0.1. Purpose and preconditions of Uptane. The purpose of Uptane is to pro-
vide a safe means of delivering updates to a client that would then update the
ECUs inside a car. To this end, the Uptane standard implies the following
preconditions, as detailed in Table 1.

Precondition number 1 implies that the car can access the server, which
is expected in a client-server architecture.

Precondition number 2 might pose a security concern if the ECUs are
directly exposed in the Internet. However, this is most likely not what the
standard suggests. The “indirect” way of connecting, which implies a gateway
between the Internet and the ECUs is a much safer approach. The overall

An Empirical Study on the Security of the Uptane Standard 19

Table 1. Uptane Preconditions.

Nr Precondition
1 Vehicles have network connectivity to the Server services
2 ECUs communicate with Servers directly or via a gateway inside the vehicle
3 ECUs are programmable and updatable
4 ECUs shall use public keys and perform hashing of images and metadata
5 Director and Image repositories shall be updated to the latest secure versions

architecture will be discussed in 2.0.2. Precondition number 3 implies flexibil-
ity on the ECUs. Flashing new firmware on hardware devices can sometimes
lead to unexpected outcomes, which is why it is a challenging field [4]. Pre-
condition number 4 implies a means for the system to check the integrity and
validity of firmware images received from the server. This is essential to en-
suring that updates have not been tampered while in transit over untrusted
networks. Moreover, this also ensures the integrity of the system [5]. Precon-
dition number 5 is the most general of the requirements and implies constant
updates and maintenance of the most critical server-side components.

2.0.2. Uptane Overall Architecture . The current chapter will focus more on
the interaction between the Uptane Servers and the vehicle. The Vehicle con-
tains an ECU that is responsible with communicating with the Uptane Servers.
This component is usually the Primary ECU, as having a separate ECU for
the sole purpose of communication adds unnecessary complexity in most cases.
Throughout the current paper, we will assume that the Primary ECU enables
communication with the Servers.

Figure 1 provides a summary of the messages exchanged between the
Primary ECU of a Vehicle and the Uptane Servers. The Uptane servers are
the Director Repository, the Image Repository and the Time Server.

Fig. 1. Overview of the interaction between Uptane servers and
a Vehicle.

20 RM Visalom, AG Antoci, AS Andronescu, JA Văduva, R Rughinis, , D T, urcanu

The vehicle itself contains many ECUs, each with its specific purpose
and mission-critical roles. In addition to very strict performance requirements,
these ECUs must also operate in a very safe environment. Thus, the risks of
altering or hindering the functionality of the ECUs are of the highest impor-
tance. Updates or changes must be verified for correctness and validated so
that the vehicle can operate normally.

The architecture discussed will help in understanding the capabilities
that an attacker has in the threat model discussed in 3. This chapter combines
information discussed by the Uptane Standard in [6] and [7].

In the next sections the importance of the Software Repositories 2.0.3
and the ECUs 2.0.4 is discussed.

2.0.3. Software Repositories . This section focuses on the Image Repository
and the Director Repository.

The Image Repository contains binary images to install on ECUs
along with signed metadata about the images. Both the binary images and
their associated metadata are provided to vehicles when vehicles request it.
The images are provided by the OEM or suppliers and uploaded to the Im-
age Repository whenever such operation is needed. Access to this repository
requires authentication and authorization to prevent potentially malicious ac-
tions from propagating in the infrastructure.

TheDirector Repository provides signed metadata that instructsECUs
what images to install. This repository stores information about vehicles,
ECUs and software revisions. Primary ECUs can upload vehicle manifests to
the Director Repository and can also download metadata. Under certain
circumstances, the Director Repository could encrypt images for ECUs
that require them and it could either encrypt those images on-the-fly/on-
demand or store encrypted images on the Image Repository.

To accomplish normal operation, Director Repository needs to include
an Inventory Database. This needs to be a private database containing
mappings between vehicles, ECUs and software revisions. In other words, the
Inventory Database is a registry of relationships between all vehicles, the
ECUs they contain and the firmware versions running on each of the ECUs.

The Time Server is another critical component that has the sole pur-
pose of providing accurate system time. The timestamps are used during the
metadata validation process.

2.0.4. ECUs . The Primary ECU is located inside the vehicle. It uploads
vehicle manifests to the Director Repository to keep the Inventory Data-
base updated. It also checks system time after having retrieved it from the
Time Server, before it downloads and verifies the latest metadata. If the val-
idation is completed successfully, it downloads and verifies the latest images
for itself and for its Secondary ECUs.

An Empirical Study on the Security of the Uptane Standard 21

The Primary ECU interacts with the Image Repository, Director
Repository and Time Server.

The Secondary ECU verifies part of the information verified by the
Primary ECU, namely time, metadata and images. However, as opposed to
the Primary ECU, the Secondary ECU does not interact with the servers
directly. It relies on the Primary ECU to provide all the information.

The ECUs can perform two types of verification processes, depending
on their type:

• Full Verification: check metadata coming from both Image Repository
and Director Repository.

• Partial Verification: only check the Targets metadata from the Director
Repository, they do not check the metadata from the Image Reposi-
tory.
The Primary ECUs can only perform Full Verification (never Partial

Verification), while the Secondary ECUs can perform either Full or Partial
Verification.

2.0.5. Uptane Roles And Metadata . There is another concept that goes hand
in hand with the individual components discussed above, and that concept is
Roles.

A Role is an entity that signs a metadata. The Role contains encryption
keys to make signing possible. More details can be seen in [8].

Therefore, a Role can be thought of as just another component that
ensures the Integrity of specific metadata.

One of the purposes of having multiple roles is to mitigate risk. Having
a Single-Point-Of-Failure would mean that if the component is compro-
mised, the entire infrastructure is compromised as a consequence.

Individually, the Roles have more or less the following purpose:
Root Role: This is the Certificate Authority of the Uptane system. It

produces and signs Root Metadata.
Root Metadata: Mapping between all four roles (Root, Targets, Snap-

shots and Timestamp) and their associated public keys.
Purpose of Root Metadata: Manages (distributes and revokes) pub-

lic keys used to verify the Root, Timestamp, Snapshot, and Targets
role metadata.

Targets Role: Produces and signs Targets Metadata.
Targets Metadata: All relevant information (filename, hash and file

size, might contain compatible hardware for the current image) of
images to be installed on ECUs, for each Image necessary for
a client ECU. Might also contain delegation information, but this
topic is not discussed in this paper.

Purpose of Targets Metadata: Used to verify Images.
Snapshot Role: Produces and signs Snapshot Metadata.

22 RM Visalom, AG Antoci, AS Andronescu, JA Văduva, R Rughinis, , D T, urcanu

Snapshot Metadata: All relevant information (filename and version
number) of the Targets Metadata file, for each Targets Metadata file
necessary for a client ECU.

Purpose of Snapshot Metadata: Used to specify which bundle of
images were released at a point in time.

Timestamp Role: Produces and signs Timestamp Metadata.
Timestamp Metadata: All relevant information (filename, hash(es)

and version number) of the latest Snapshot Metadata file.
Purpose of Timestamp Metadata: Indicates whether there is any

new Metadata and/or Images.
A very important mention is that the roles above exist on both the Di-

rector Repository and the Image Repository. Moreover, Roles do not share
the same keys between Repositories. As an example, the Root Role from the
Director Repository will not have the same key as the Root Role from the
Image Repository.

The same Roles [9] are also employed by The Update Framework (TUF)
[3], from which Uptane borrows various concepts.

Fig. 2. Configuration of Roles on the Director Repository.

Figure 2 provides an overall look over what the Roles perform. The
Root Role will sign the Metadata of the Root (itself), Timestamp, Snapshot
and Targets role. This is the basis of safe communication, as this process
establishes the keys used to check the signatures emitted by all of the Roles.

The management of the Root Role is human-controlled in the sense that
keys will be initialized and updated (revoked and new ones issued) after human
intervention.

The interaction between the Timestamp, Snapshot and Targets Roles is
different in comparison to the interaction of the Root Role with all the other

An Empirical Study on the Security of the Uptane Standard 23

roles. In other words, while the Root Role distributes keys, the other three
roles use the keys.

The internal Metadata structure will be abstracted throughout this paper
by the following simple model: payload (usually filenames, file sizes and file
hashes) and signature (validates the above payload).

The purpose of signing the Metadata is to ensure integrity of the in-
formation via a chain of trust: Timestamp Role signs Snapshot Metadata,
Snapshot Role signs Targets Metadata and Targets Role signs Image Meta-
data. This ”chain of trust” is validated at each step using the Keys managed
by the Root Role.

Notice that the Images themselves are not contained within any of the
Metadata structures. The images are only downloaded once all the Meta-
data Structures are validated (see 2.0.6). This validation process is the main
strength of Uptane (and of The Update Framework (TUF) [3]).

2.0.6. Uptane Update Process And Full Verification . The activity of a Primary
ECU will be detailed to highlight the update process.

In summary, the actions are: Download, Verify and distribute Time,
Metadata and Images. The individual steps performed by the Primary ECU
are outlined in Table 2.

Table 2. Uptane Primary ECU Actions.

Nr Action
1 Send vehicle manifest to Uptane Servers
2 Download and validate current time
3 Download and validate metadata
4 Download and validate images
5 Send time information to Secondary ECUs
6 Send metadata to Secondary ECUs
7 Send images to Secondary ECUs

As described in 2.0.2, the Primary ECU is connected to all Secondary
ECUs. The Primary ECU will be the only component that interacts with the
Uptane Servers, since Secondary ECUs do not communicate directly over the
Internet. The current discussion will focus on steps 2, 3 and 4 of the list above.

The Primary ECU will perform Full Verification of Metadata. This
means that the Primary ECU will check Metadata coming from both the
Director Repository and the Image Repository. Apart from being valid, the
information from the two sources should match and not contradict itself in any
way. The Full Verification steps are summarized and explained below. The
explanation divides the original verification process detailed by the standard
[10] and annotates it to improve clarity where necessary:
(1) Get current time.
(2) Download and Validate Root Metadata from Director Repository.

24 RM Visalom, AG Antoci, AS Andronescu, JA Văduva, R Rughinis, , D T, urcanu

(3) Download and Validate Timestamp Metadata from the Director Reposi-
tory.

(4) Extract file hash and version number of the Snapshot Metadata from
within the Timestamp Metadata. Compare the file hash and version num-
ber with those of the cached version of the previous Snapshot Metadata
(if available).

• If the new Snapshot Metadata is the same as the previous one, the
verification process is stopped and marked as Complete.

• If the new Snapshot Metadata is different and more recent, proceed
to next step.

(5) Download and Validate the most recent Snapshot Metadata from the Di-
rector Repository.

(6) Download and Validate Targets Metadata from Director Repository.
(7) Extract file name, file hash, file size (and possibly other) information from

the Targets Metadata.
• If the extracted information indicates that there are no updates to
perform, the verification process is stopped and marked as Com-
plete.

• If there are updates to perform, proceed to next step.
(8) Download and Validate Root Metadata from Image Repository.
(9) Download and Validate Timestamp Metadata from the Image Repository.
(10) Extract file hash and version number of the Snapshot Metadata from

within the Timestamp Metadata. Compare the file hash and version num-
ber with those of the cached version of the previous Snapshot Metadata
(if available).

• If the new Snapshot Metadata is the same as the previous one, skip
to the last step.

• If the new Snapshot Metadata is different and more recent, proceed
to next step.

(11) Download and Validate the most recent Snapshot Metadata from the Im-
age Repository.

(12) Download and Validate Targets Metadata from Image Repository (the
top-level Targets Metadata).

(13) Compare the Targets Metadata from the Director Repository with the
Targets Metadata from the Image Repository. They should match. The
Primary ECU should perform this check for each of the images listed by
the Targets Metadata downloaded from the Director Repository in step
7. Secondary ECUs can perform this check only for the image it will
install (the image is identified by the Image Metadata from the Director
Repository that matches the ECU identifier of the current ECU). The
detailed steps of comparing the Targets Metadata are:

An Empirical Study on the Security of the Uptane Standard 25

(a) Locate and Download a Targets Metadata from the Image Reposi-
tory that contains an image with the exact filename as the one listed
in the Director Metadata.

(b) Comparison between Targets Metadata from Director Repository
and Targets Metadata from the Image repository:
(i) Compare noncustom metadata (file length, file hashes) of either

the encrypted or unencrypted images. They should be the same
in both sets of Targets Metadata.

(ii) Compare custommetadata (hardware identifier, release counter
if present). They should be the same in both sets of Targets
Metadata.

(iii) Validate the release counter, if present. The release counter
found in the previous Targets Metadata file is less than or equal
to the release counter found in the current Targets Metadata.
Applies for both the (old Director Repository Targets Meta-
data, new Director Repository Targets Metadata) and (old
Image Repository Targets Metadata, new Image Repository
Targets Metadata) pairs.

There is a slight ambiguity in 13(b)iii about checking the release counter.
It was not clear whether the counter in the old Director Repository Targets
Metadata and the counter in the new Director Repository Targets Metadata
would be compared along with the same check being performed on the Targets
Metadata coming from the Image Repository. The ambiguity is solved in [11].

3. Limitations And Threat Model

The main purpose of Uptane is the secure delivery of updates. Hence,
preventing supply chain attacks was not a focus of Uptane at the beginning.
However, subsequent work has been done and support for ensuring a secure
supply chain can be built into an implementation of Uptane [12] [13].

Two relevant Out-Of-Scope elements listed by the standard in [14] are
Injection of malware in trusted packages and rogue package repository mirrors,
which would contain malicious packages matching the original packages.

The limitations are consistent with the idea that Uptane deals only with
secure delivery of an update and does not secure any other part of the full
process of developing, distributing and applying an update.

However, to ensure the overall security of the system, guidelines detailing
the interaction between Uptane and the other areas of the update process (e.g.
secure development and secure application of updates) are required.

Essentially, both out-of-scope elements state that Uptane does not per-
form malware checking of images in any way. Nevertheless, this is expected
from a framework that deals only with the delivery of such updates. We stress
the fact that a system that implements the Uptane standard should implement

26 RM Visalom, AG Antoci, AS Andronescu, JA Văduva, R Rughinis, , D T, urcanu

such practices. The Attacker Goals [15] are a key component of the Threat
Model elements. The goals are summarized in Table 3.

Table 3. Attacker goals summarized.

Nr Attacker Goal
1 Intercept update contents and attempt to reverse-engineer it
2 Prevent installation of updates
3 Stop one or more ECUs inside the vehicle
4 Control ECUs within the vehicle

The attacker should not be able to compromise a vehicle. Compromis-
ing a vehicle involves compromising the Uptane Server or the communication
between the Uptane Server and the Vehicle. In extreme cases both could be
compromised, as this would guarantee that potentially malicious updates reach
the Vehicle or that valid updates don’t even reach the Vehicle.

Being able to either crash or control an ECU is what would be labeled
as a success from the Attacker’s point of view. The Attacker is not necessarily
concerned with persistent control of the compromised ECUs, nor with constant
remote access into a vehicle (although this would also be a critical security flaw
and a tremendous concern).

Even blocking newer updates from reaching the target ECU is a valid
objective for the attacker, as this might ensure that older, unpatched or vul-
nerable, versions of firmware might continue to run on ECUs.

The goals reflect scenarios that an attacker might want to successfully
perform. In addition to the goals, the Threat Model contains Attacker Ca-
pabilities [16], or actual instruments that the attacker is assumed to be able
to use to try and compromise the overall security of the system. In sum-
mary, the attacker capabilities are Man-In-The-Middle attacks (intercept and
alter network traffic), Compromise either the Director Repository or the Image
Repository (only one of the two) and Compromise either the Primary ECU or
a Secondary ECU (only one of the two).

Even in such concerning circumstances, the Update Standard should be
resilient enough to at least identify the threat, so that recovery would then
be possible. It is important to note that the Uptane Standard is prone to the
same risks [17] as The Update Framework (TUF) [3].

Uptane is a standard and not an implementation, consequently an imple-
mentation of it is required for a practical assessment to be performed against
it. The first implementation of the Uptane Standard [18] was a reference im-
plementation [18] that is now obsolete. The obsolete reference implementation
brought great value as it was not only the active embodiment of the Standard,
but also served in assessing the overall security of the ideas. The obsolete
reference implementation was the basis of the first Penetration Test performed
against an Uptane implementation [19].

An Empirical Study on the Security of the Uptane Standard 27

At the time of writing this article, the best and most convenient imple-
mentation available is the latest version of ota-community-edition [20]. The
project is open source and it supports research in the Automotive Software
Over-The-Air Updates field. To aid in research efforts, we provide a step-by-
step guide to setting up a working infrastructure in [21]. We abstracted the
hardware requirements of setting up such an infrastructure. The official doc-
umentation is limited in this regard and does not offer recommendations on
hardware requirements, which might pose a technical difficulty to researchers.
This topic could be the subject of future research and could quantify how
hardware needs increase as the number of client Vehicles increases.

Our research identified another concern, which might also constitute a
complex future work project: the lack of open source alternatives for OTA
Update distribution frameworks for Automotive.

The current research identifies the need to implement better security
practices in the process both developing and then testing OTA Update frame-
works. As a general recommendation to ensure the security of any implementa-
tion of the standard, Security Testing must be implemented as soon as possible
in the Software Development Life Cycle (SDLC) to maximize the chances that
flaws being detected before progressing further in the pipeline. The means of
implementing Security Testing could be Static Application Security Testing
(SAST) over the codebase, Dynamic Application Security Testing (DAST) over
the latest build generated from the latest codebase and manual Penetration
Tests performed by experts against the latest deployment of the latest build.

A more practical future work project that the authors are working on
is a practical Penetration Test performed on the latest ota-community-edition
version. The work will be detailed in a future paper and will be based on an
assumed breach scenario of an attack originating inside the network perimeter.

4. Conclusion

Our work provided a formal evaluation of Uptane’s cybersecurity pos-
ture. We discussed the inner structures of Uptane Standard, with a focus
on its core Metadata verification process and the chain of trust that prevents
having a Single-Point-Of-Failure. We also highlighted some limitations and
the Threat Model that Uptane was designed to protect against. Although the
Uptane standard might be robust enough from a formal perspective, it still
needs to be implemented and deployed. Security tests of the implementation
should also be performed before releasing new features. To this end, having
a common, general, set of best practices to secure the development process of
future Uptane Standard implementations is highly required. This could enable
developers to discover vulnerabilities early during the development process.

28 RM Visalom, AG Antoci, AS Andronescu, JA Văduva, R Rughinis, , D T, urcanu

Acknowledgement

This scientific research is financially supported within the project ’System
for Scanning and Mapping IP Resources in Romania for the Early Detection
of Cyber Threats,’ contract no. 25Sol(T25)/2024, funded under the PN IV
Program, 5.6 – Challenges, Subprogram 5.6.3 – Solutions.

REFERENCES

[1] RollingPwn. Rolling pwn attack. [Online]. Available: https://rollingpwn.github.io/
rolling-pwn/

[2] T. Verge. Bmw starts selling heated seat subscriptions for $18 a
month. [Online]. Available: https://www.theverge.com/2022/7/12/23204950/
bmw-subscriptions-microtransactions-heated-seats-feature

[3] T. U. Framework. The update framework. [Online]. Available: https:
//theupdateframework.io/

[4] S. El Jaouhari and E. Bouvet, “Secure firmware over-the-air updates for iot: Survey,
challenges, and discussions,” Internet of Things, vol. 18, p. 100508, 2022. [Online].
Available: https://www.sciencedirect.com/science/article/pii/S2542660522000142

[5] S. Brightwood, “The importance of secure firmware updates in maintaining system
integrity,” 09 2024.

[6] Uptane. Detailed design of uptane. [Online]. Available: https://uptane.org/docs/2.1.
0/standard/uptane-standard#5-detailed-design-of-uptane

[7] ——. Server / repository implementation requirements. [On-
line]. Available: https://uptane.org/docs/2.1.0/standard/uptane-standard#
53-server--repository-implementation-requirements

[8] ——. Uptane role terminology. [Online]. Available: https://uptane.org/docs/2.1.0/
standard/uptane-standard#22-uptane-role-terminology

[9] T. U. Framework. The update framework roles and metadata. [Online]. Available:
https://theupdateframework.io/docs/metadata/

[10] Uptane. Uptane full verification. [Online]. Available: https://uptane.org/docs/2.1.0/
standard/uptane-standard#5442-full-verification

[11] ——. Uptane custom metadata about images. [Online]. Available: https://uptane.org/
docs/2.1.0/standard/uptane-standard#52311-custom-metadata-about-images

[12] U. S. Group. Scudo: A proposal for resolving software supply chain insecurities in
vehicles. [Online]. Available: https://uptane.org/papers/scudo-whitepaper.pdf

[13] Uptane. Integrating software supply chain security into uptane. [On-
line]. Available: https://uptane.org/docs/latest/deployment/best-practices#
802-integrating-software-supply-chain-security-into-uptane

[14] ——. Out of scope. [Online]. Available: https://uptane.org/docs/2.1.0/standard/
uptane-standard#34-out-of-scope

[15] ——. Attacker goals. [Online]. Available: https://uptane.org/docs/2.1.0/standard/
uptane-standard#41-attacker-goals

[16] ——. Attacker capabilities. [Online]. Available: https://uptane.org/docs/2.1.0/
standard/uptane-standard#42-attacker-capabilities

[17] T. U. Framework. Security properties of tuf repositories. [Online]. Available:
https://theupdateframework.io/docs/security/

[18] Uptane. obsolete-reference-implementation. [Online]. Available: https://github.com/
uptane/obsolete-reference-implementation

https://rollingpwn.github.io/rolling-pwn/
https://rollingpwn.github.io/rolling-pwn/
https://www.theverge.com/2022/7/12/23204950/bmw-subscriptions-microtransactions-heated-seats-feature
https://www.theverge.com/2022/7/12/23204950/bmw-subscriptions-microtransactions-heated-seats-feature
https://theupdateframework.io/
https://theupdateframework.io/
https://www.sciencedirect.com/science/article/pii/S2542660522000142
https://uptane.org/docs/2.1.0/standard/uptane-standard#5-detailed-design-of-uptane
https://uptane.org/docs/2.1.0/standard/uptane-standard#5-detailed-design-of-uptane
https://uptane.org/docs/2.1.0/standard/uptane-standard#53-server--repository-implementation-requirements
https://uptane.org/docs/2.1.0/standard/uptane-standard#53-server--repository-implementation-requirements
https://uptane.org/docs/2.1.0/standard/uptane-standard#22-uptane-role-terminology
https://uptane.org/docs/2.1.0/standard/uptane-standard#22-uptane-role-terminology
https://theupdateframework.io/docs/metadata/
https://uptane.org/docs/2.1.0/standard/uptane-standard#5442-full-verification
https://uptane.org/docs/2.1.0/standard/uptane-standard#5442-full-verification
https://uptane.org/docs/2.1.0/standard/uptane-standard#52311-custom-metadata-about-images
https://uptane.org/docs/2.1.0/standard/uptane-standard#52311-custom-metadata-about-images
https://uptane.org/papers/scudo-whitepaper.pdf
https://uptane.org/docs/latest/deployment/best-practices#802-integrating-software-supply-chain-security-into-uptane
https://uptane.org/docs/latest/deployment/best-practices#802-integrating-software-supply-chain-security-into-uptane
https://uptane.org/docs/2.1.0/standard/uptane-standard#34-out-of-scope
https://uptane.org/docs/2.1.0/standard/uptane-standard#34-out-of-scope
https://uptane.org/docs/2.1.0/standard/uptane-standard#41-attacker-goals
https://uptane.org/docs/2.1.0/standard/uptane-standard#41-attacker-goals
https://uptane.org/docs/2.1.0/standard/uptane-standard#42-attacker-capabilities
https://uptane.org/docs/2.1.0/standard/uptane-standard#42-attacker-capabilities
https://theupdateframework.io/docs/security/
https://github.com/uptane/obsolete-reference-implementation
https://github.com/uptane/obsolete-reference-implementation

	1. Introduction
	2. Uptane
	3. Limitations And Threat Model
	4. Conclusion
	Acknowledgement
	=REFERENCES

