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NOTES ON RIEMANNIAN MAPS

Bayram SAHIN?

In this paper, we first find necessary and sufficient conditions for the total
space of a Riemannian map to be an Einstein manifold and then we obtain various
inequalities in terms of the scalar curvatures of the base space, fibers and images. In
the equality cases of those inequalities, we obtain harmonicity and totally
geodesicity of such maps.
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1. Introduction

Smooth maps between Riemannian manifolds are useful for comparing
geometric structures between two manifolds. Isometric immersions (Riemannian
submanifolds) are basic such maps between Riemannian manifolds. In 1992,
Fischer introduced Riemannian maps between Riemannian manifolds in [3] as a
generalization of the notions of isometric immersions and Riemannian
submersions. Let F: (M,gM ) —>(N,gN) be a smooth map between Riemannian
manifolds such that 0 <rankF < min{m,n}, where dimM =m and dimN =n.
Then we denote the kernel space of F. by kerF and consider the orthogonal
complementary space H= (kerE)" to kerF. Then the tangent bundle of M has
the following decomposition

TM =kerk. @©H.

We denote the range of F. by rangek and consider the orthogonal
complementary space (rangeF)" to rangeF in the tangent bundle TN of N.

Since rankF < min{m,n}, we always have (rangeR)" #{0}. Thus the tangent
bundle TN of N has the following decomposition
TN = (rangeF.) @ (rangeR.)".

Now, a smooth map F:(Mm,gM)—>(Nn,gN) is called Riemannian map at

: : I h . :
p, €M if the horizontal restriction F,epl :(kerEpl)L—>(rangeEp1) is a linear
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isometry between the inner product spaces ((kerF*pl)l,gM(pl) |(kerF )l) and
“p,

(rangelipl,gN (pz)l(rangeapl)), p, = F(p,). Therefore Fischer stated in [3] that a

Riemannian map is a map which is as isometric as it can be. It follows that
iIsometric immersions and Riemannian submersions are particular Riemannian

maps with kerF. ={0} and (rangeR.)" ={0}. It is known that a Riemannian map
is a subimmersion which implies that the rank of the linear map
F.,:T,M =T, N is constant for p in each connected component of M [1]

and [3]. A remarkable property of Riemannian maps is that a Riemannian map
satisfies the generalized eikonal equation |F. ? =rankF which is a bridge

between geometric optics and physical optics [3].

Riemannian maps between semi-Riemannian manifolds have been defined
in [7] by putting some regularity conditions. On the other hand, affine Riemannian
maps have been also investigated and decomposition theorems related to
Riemannian maps and curvatures are obtained in [6] (For Riemannian maps and
their applications in spacetime geometry, see: [7]). Riemannian maps and related
topics are now very active research area in differential geometry, see: [4], [5],
[10], [11].

In this paper, we first obtain necessary and sufficient conditions for the
total space of a Riemannian maps to be an Einstein manifold. Then we calculate
the scalar curvatures of the base, space, fibers and image (rangeF.) and obtain

several inequalities. By using these inequalities, we obtain new conditions for a
Riemannian map to be harmonic or totally geodesic.

2. Preliminaries
Let (M,gM) and (N,gN) be Riemannian manifolds and suppose that
F:M — N is a smooth map between them. Let p, = F(p,) for each p,eM.
Suppose that v" is the Levi-Civita connection on (N,gN). Then the second
fundamental form of F is given by
(VE)X.Y)= VX EW-EEYY) @

N
for X,Y eI'(TM), where V© is the pulback connection of V" It is known that
the second fundamental form is symmetric. First note that in [12] we showed that
the second fundamental form (VE.)(X,Y), VX,Y eI'((kerk)"), of a Riemannian

map has no components in rangeF.. More precisely we have the following.
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Lemma 2.1. [12] Let F be a Riemannian map from a Riemannian
manifold (M, g,, ) to a Riemannian manifold (N,gN ). Then

g, (VE)(X,Y),R(2))=0,VX,Y,Z eT((kerF)").
Let F be a Riemannian map from a Riemannian manifold (M, gM) to a

Riemannian manifold (N,gN). Then we define T and A as

A.F =HV, VF + VWV, HF, T.F = VV.. VF + VV HF,
for vector fields E,F on M, where v" is the Levi-Civita connection of g, - In

fact, one can see that these tensor fields are O’Neill’s tensor fields which were
defined for Riemannian submersions. For any EI'(TM), T and A_ are skew-
symmetric operators on (I'(TM),g) reversing the horizontal and the vertical
distributions. It is also easy to see that T is vertical, T, =T, and A is
horizontal, A = Ac.

We now state the following curvature relations between the base manifold
(N, gN) and the total manifold (M, g), [2], [9] and [13].

g(RU.V)W,F) = g(RU.V)W,F)-g(T,F,T,W)+g(T,F,T,W)(2)
g(R(X, V)Y, W) =—g((V,T)yW,Y) =g ((V,A) Y W)
+9(T, X, T, Y)—g(AV,A\W) 3)
g, (R"(EX,EY)RZ,ET)=g (R" (X,Y)Z,T)
+g  (VE)(X,2),(VE)(Y.T))

-9, (VE)(Y,2),(VE)(X,T)). 4)
g(RU, VW, X) =g((Vy THW, X)=g((Vy )W, X) ®)
g(R(X,Y)Z,V)=—g((V,A)Y.V)-9(T, Z,AY)

—9(AZ, T,Y)+9(AZ, T, X) (6)

for X,Y,Z,H,Tee(M) and U V,W e y'(M).

In this section, we finally recall the following relation for a Riemannian
map.

Lemma 2.2. [7] Let F:(M, Q) —>(B,gB) be a Riemannian map between

Riemannian manifolds (M, g) and (B, gB). Then we have

(P =—div(r(F) + Y {g, REF.(x), .0 )F(6), F(, )}

i, j=r+l

I(VE)
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3" Ric(x,, R(%, X,),). (7

i=r+l
at peM, where {e,,...,e,€.,,..,,} be an orthonormal basis of I'(TM) such
that {e,...,e,} is an orthonormal basis of (kerk) and {e,,...e,} IS an

M
orthonormal basis of (kerF)*, Ric is Ricci tensor of M and |(VF.) * is the

square of the length of the second fundamental form.

3. Einstein Metrics on the Total space of a Riemannian Map

In this section, we are going to find necessary and sufficient conditions for
the total space of a Riemannian map to be Einstein manifold. By using (2), (3),
(4), (5) and (6), we have the following result for the Ricci tensor.
Lemma3.1. Let F:(M,g) — (B, gB) be a Riemannian map. Then, we have

M %
Ric(W,,W,) = Ric(W,,W, ) — rg(H,TWIWZ)
+ Z g((vejT)WlWZ' e;)+ g(Aele' Aejwz)’ (8)
j=r+l

V
where Ric(W,,W,) and H are Ricci tensor and the mean curvature vector field
of any fibre,

RIC(X,Y) = Y9((V,T), tY)+9((V, A)Y.u) = (T, X, T, Y)

i=1

Fg(AULAL)- Y g (VR)(E, V) (VR)(X,e,)

r+1=1

((kerFic J_) (rangek.)
+9 (VE)(X,Y),z )+ Ric (F.(X),F.(Y)), (9)
(rangeﬁ) ((kerF*)l) ] .
where Ric (F.(X),F.(Y)) and ¢ are Ricci tensor of rangek and

((kerE.)") — component of the tension field 7,

Ric(X,U) = 3 a((%y D), U, X) = 9((¥, Tt XD+ D 6((7, A), X.U)

i=1 j=r+l

+29(Tuej,Aer) (10)

for W, ,W,,UeI'(kerk) and X,Y eT((kerk)"), where {u,..u} and
{e,.,...€,} are orthonormal frames of (kerk) and (kerk)".
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Proposition 3.1. Let F:(M,g)—>(B,gB) be a Riemannian map with totally
geodesic fibers. Then, (M, 9,, ) is Einstein if and only if the following conditions

are satisfied:

RICOW, W,)-+ Y 9(A, W A, WL) = gU.V) (11)
r (rangek.) ((kerF)t)
> g(Au, ALY+ R (FOOFM)+g, (TR )
- 29, (VE)(E VL (VEXX.e) = g(X.Y) (12)
and i g((VejA)ej X,U)=0. (13)

We note that the above conditions (11) and (13) are the same as the conditions
given for Riemannian submersions in [2, Page:144]. The only difference is the
condition (12). Using (8) and (9) we have the scalar curvature of the total space as
follows.

Theorem 3.1. Let F:(M,g) — (B, gB) be a Riemannian map. Then, we have

2
((kerF)™)

T

. (rangeR)
s=8+s +

P - 3 (VR e

jl=r+

Y, A, )

I=r+li=1

#2339V, ), o)

j=r+1k=1

/\e-uk
J

2

(14)

1Liel
(rangef)

where s, § and s denote the scalar curvature of M, the scalar curvature
of the fiber and the scalar curvature of (rangeR.) .

Using (7), we have also the following result.

Corollary 3.1. Let F: (M ", g, ) — (B, gB) be a Riemannian map. Then, we have

2
((kerF)™)

s=8+s" +dive(F)+|(VE)[ + ~rH[°

T

2

-3 VR ) 123 S0, T, )

jl=r+1 j=r+lk=1

/\e-uk
J

m r

+ :E: :E:g((‘7ui/\)elelfui)__

I=r+li=1

2
T8l (15)
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at pe M, where s" denotes the scalar curvature of (ker )" and {s,..., &2, } is

an orthonormal frame of M .
From Theorem 3.1, we have the following results.
Corollary 3.2. Let F:(M,g)—>(B,gB) be a Riemannian map with totally

geodesic fibers. Then

2

2 ((kerF)™)

T

(rangek.)

s<§+s +2ii

j=r+1k=1
and the equality is satisfied if and only if F is totally geodesic.
Corollary 3.3. Let F:(M,g)—>(B,g_) be a Riemannian map with totally

+

Ae-uk
J

geodesic fibers. Then
. (rangeR) n 2
$>$+s - HVF*)(ej,e,)H :
Jl=r+l
and the equality is satisfied if and only if F is harmonic and the horizontal
distribution is integrable.
From Corollary 3.1, we have the following result.

Corollary 3.4. Let F:(M,g)—(B,g_) be a Riemannian map with totally
geodesic fibers. Then, we have

((kerF)1)
T

=Y VR,

Jl=r+1

s=8+s" +dive(F) +|(VR)[ +

Y0, A, 6w

I=r+li=1

D)3

j=r+ik=1

/\e-uk
]

at peM.

By using the generalized divergence theorem of a map (see:[7, Theorem 3.3.1,
page:70], we have the following sufficient condition for a Riemannian map F to
be harmonic.

Corollary 3.5. Let (M,g) be an oriented compact Riemannian manifold with

Riemannian volume form M, and let (N,gN) be a Riemanian manifold. If

F:M — N is a Riemannian map with totally geodesic fibers and the following
inequality

W

j=r+lk=1

s>8+s"+|(VF.)

(7, A, 1)

/\e-uk
J

is satisfied, then F is harmonic.
Proof. Let F be a Riemannian map with totally geodesic fibers. Since
oM =, from generalized divergence theorem and corollary 3.1 we have
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jM{s ~$§-s"—|(VF.)
- 2.2
j=r+lk=1
which gives the assertion.

Moreover, for the totally geodesicity of F , we have the following result.
Corollary 3.6. Let (M,g) be an oriented compact Riemannian manifold with

Riemannian volume form o, and let (N,gN) be a Riemanian manifold. If

1Y [VRE e
jul=r+1

0V, A, & Uy =0

Aejuk

F:M — N is a Riemannian map with totally geodesic fibers and the following
inequality

s<s+s'— Y [VE)e, ) + 3 D0(v, A), &.u)

jl=r+l I=r+li=1
is satisfied, then F is totally geodesic.
From Corollary 3.4, we have the following results.
Corollary 3.7. Let F:(M,g)—>(B,gB) be a Riemannian map with totally

geodesic fibers. Then, we have

s>§+s" +divr(F)- i HVF*)(e,-,E.)H2+ iz

jl=r+l j=r+lk=1

+ Z Zg ((Vui A)el eI ’ ui)
I=r+li=1
at pe M. The equality is satisfied if and only if F is totally geodesic. In the
equality case, it takes the following form
m r 2 m r
s=8+s"+ ZZAejuk + ZZQ((VuiA)e. g,u), at peM.
j=r+lk=1 I=r+li=1

Corollary 3.8. Let F:(M,g)—>(B,gB) be a Riemannian map with totally

2

Ae-uk
J

geodesic fibers. Then, we have

s>$§+s" +dive(F) - Z H(VF*)(ej,el )H2 + iig((vui A), &)

jl=r+l I=r+1i=1
at pe M, the equality is satisfied if and only if F is totally geodesic and the
horizontal distribution is integrable. In the equality case, it takes the following
form
s=§+s". (16)
Corollary 3.9. Let F:(M,g) — (B, gB) be a Riemannian map with totally

geodesic fibers. Then, we have
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s>8+s" +dive(F)+ igB (VF)(U,.U,), (VR)(U,.U,))

253530 ES 3 3T

j=r+ik=1 I=r+1i=1
at p e M, the equality is satisfied if and only if F is harmonic.

Aejuk

4. Conclusion

The theory of Riemannian maps is a new research area and it is a
generalization of Riemannian submanifolds and Riemannian submersions.
Einstein conditions and curvature relations for submanifolds and Riemannian
submersions have been widely investigated. This paper is an attempt to investigate
Riemannian maps by using curvature relations. In this direction, we first
investigate Einstein conditions for the total manifold of a Riemannian map. Then
we obtain the harmonicity and totally geodesicity of Riemannian maps by
comparing the curvatures of the total manifold, the base manifold and the fiber,
and by using the Bochner identity.
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