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SUFFICIENT OPTIMALITY CONDITIONS AND MOND-
WEIR DUALITY FOR QUASIDIFFERENTIABLE
OPTIMIZATION PROBLEMS WITH UNIVEX FUNCTIONS

Tadeusz ANTCZAK?, Vinay SINGH?

In the paper, a nonconvex quasidifferentiable optimization problem with the
inequality constraints is considered. The concept of a univex function with respect to
a convex compact set is introduced. Further, the sufficient optimality conditions and
several duality results in the sense of Mond-Weir are established for the considered
quasidifferentiable optimization problem under assumption that the functions
constituting it are univex with respect to convex compact sets which are equal to
Minkowski sum of their subdifferentials and superdifferentials.

Keywords: quasidifferentiable optimization problem; optimality conditions;
duality; quasidifferentiable univex function with respect to convex compact set.

1. Introduction

Quasidifferential calculus were developed by Demyanov and Rubinov [8]
and have been studied in more detail in [9]. Since then it has been developed
extensively. A survey of results concerning this class of functions is presented in
[10]. This is also a consequence of the fact that quasidifferential calculus plays an
important role in nonsmooth analysis and optimization. Indeed, the concept of
quasidifferentiability can be employed to study a wide range of theoretical and
practical issues in many fields, for instance, in economics, engineering,
mechanics, optimal control theory, etc. (see, [11], [13], [24], and others). Further,
the class of quasidifferentiable functions is fairly broad. It contains not only
convex, concave, and differentiable functions but also convex-concave, D.C. (i.e.,
difference of two convex), maximum, and other functions. In addition, it even
includes some functions which are not locally Lipschitz continuous.

Optimality and duality results for quasidifferentiable optimization
problems can be found in several works (see, for example, Eppler and Luderer
[20], Demyanov and Rubinov [12], Gao [15], [16], Kuntz and Scholtes [18],
Luderer and Rosiger [20], Polyakova [21], Shapiro [23], Uderzo [25], Ward [26],
Xia et al. [28], and others). In most of the works mentioned above, the necessary
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optimality conditions have been proved for quasidifferentiable optimization
problems only. However, there are a few papers in the literature in which the
sufficient optimality conditions and duality results have been established for some
classes of nonconvex quasidifferentiable optimization problems. Namely, Craven
[6] established the sufficient optimality conditions for directionally differentiable
optimization problems under cone-invexity hypotheses. In [7], Craven presented
the sufficient optimality conditions and Wolfe duality results for directionally
differentiable optimization problems under directional invexity hypotheses.
Glover [17] proved the sufficiency of the presented necessary optimality
conditions under assumptions that the objective function is directionally
differentiable pseudo-invex and the constraints are directionally differentiable
quasi-invex. Yin and Zhang [27] established sufficient optimality conditions for
the considered quasidifferentiable optimization problem under generalized
convexity. Gao [16] proved the sufficient optimality conditions for
quasidifferentiable optimization problems under assumption that the objective
function is directionally differentiable pseudoconvex and the constraint functions
are directionally differentiable quasiconvex.

The aim of this paper is to prove the sufficient optimality conditions of the
Lagrange multiplier type and several Mond-Weir duality results for a new class of
nonconvex quasidifferentiable optimization problems with inequality constraints.
However, our approach in proving the sufficiency of the Karush-Kuhn-Tucker
necessary optimality conditions and Mond-Weir duality results for the considered
quasidifferentiable optimization problem differs even from those ones mentioned
above in which directionally differentiable generalized convex functions have
been used. In this paper, we introduce a new concept of generalized convexity,
namely, the notion of univexity with respect to a convex compact set. We use this
notion in establishing the sufficient optimality conditions and duality theorems in
the sense of Mond-Weir for the considered quasidifferentiable optimization
problem involving univex functions with respect to convex compact sets which
are equal to Minkowski sum of their subdifferentials and superdifferentials. The
results established in the paper are illustrated by an example of a nonsmooth
optimization problem with quasidifferentiable univex functions with respect to the
same function n and with respect to convex compact sets which are equal to
Minkowski sum of subdifferentials and superdifferentials functions constituting
this extremum problem.

2. Preliminaries

Definition 2.1 A mapping f : R* — R is said to be directionally
differentiable at u € Rr into a direction d if the limit
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exists finite. It is said that f is directionally

£(u:d) = lim f(u+td)—f(u)
tl0 t

differentiable or semi-differentiable at u if its directional derivative f'(u;d) exists
finite forall d € R".

Definition 2.2 A real-valued function f : R" — R is said to be
quasidifferentiable at u € R" if f is directionally differentiable and there exists a
ordered pair of convex compact sets D, (u) =[of (u), of (u)] such that

f'(u;d) = max vid+ min w'd, (1)
veof (u) weof (u)

where of (u) and of (u) are called subdifferential and superdifferential of f at u,

respectively. Further, the ordered par of sets D, (u)=[of(u),of (u)] is called
quasidifferential of the function f at u.

Let us note that the pair of sets constituting the quasidifferential to a
function f at a certain point u is not unique, because if D(u)=[of (u),of (u)] is a
quasidifferential of f at X, then, for any convex compact set V, the ordered pair of
sets [of (u) + V, of (u) — V] is also its quasidifferential.

Now, we introduce the definition of a univex function with respect to a
convex compact subset of R". The concept of a univex function with respect to a
convex compact set generalizes the notion of a differentiable univex function,
earlier given in the literature by Bector et al. [4].

Definition 2.3 Let f : R" — R, u € R" and Sty be an arbitrary convex
compact subset of R". If there exist functions b : R" x R" — R with b(x,u) > 0 for
alx e R", ®: R — Randn: R"x R"— R such that the inequality

b(x, u)®d(f (x) —f(u)) >wm(x,u), VW e Sty (2)
holds for all x € R" (x = u), then f is said to be a (strictly) univex function at u on
R" with respect to the convex compact set Sty and with respect to @, b and n.

If fis defined on a nonempty set X < R", u € X and inequality (2) is
satisfied for all x € X, then f is to be a (strictly) univex function at u on X with
respect to convex compact set St and with respect to @, b and n.

If inequality (2) is satisfied for all u € R" with respect to a convex
compact set Sy, then f is said to be a (strictly) univex function on R" with respect
to Sr and with respect to @, b and n.

Remark 2.1. In order to define an analogous class of (strictly) unicave
functions, the direction of inequality (2) should be reversed.
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Remark 2.2. Note that, in the case when f is a locally Lipschitz function
and St is equal to the Clarke generalized gradient of f at u (see [5]), then we
obtain the definition of a locally Lipschitz univex function.

Remark 2.3. Note that the definition of a locally Lipschitz univex
function generalizes and extends many other definitions of nondifferentiable
generalized convex functions. Indeed, if we assume that St is equal to the Clarke
generalized gradient [5] of f at u, then, from Definition 2.3, there are the following
special cases:

i) If ®(a) =aand b(x,u) =1 forall x e X and n(x,u) = x — u, then we obtain the
definition of a nonsmooth convex function.

i) If ®(a) = a and bi(x,u) = 1 for all x € X, then we obtain the definition of a
locally Lipschitz invex function (with respect to n) given by Reiland [22].

i) If ®(a) = a and n(x,u) = x — u, then we obtain the definition of a locally
Lipschitz b-convex function.

iv) If ®(@) = a, then we obtain the definition of a locally Lipschitz b-invex
function (with respect to n)) (see Li et al. [19]).

v) If ®(a)=1(e* —1) for a certain scalar r = 0 and n(x,u) = x — u and b(x,u) = 1

for all x € X, then we obtain the definition of a locally Lipschitz r-convex
function (see Avriel [3], in the differentiable case).

vi) If d(a)=1(e* —1) for a certain scalar r = 0 and b(x,u) = 1, then we obtain the

definition of a locally Lipschitz r-invex function (with respect to n)
introduced by Antczak [1].

vii) If ®(a) =1 (e* —1) for a certain scalar r = 0, then we obtain the definition of a

locally Lipschitz B-r-invex function (with respect to n) (see Antczak [2], in
the differentiable case).

Example 2.1. Let f : RZ — R be a function defined by
f(X) =exp QXl +|X2”)—1. First, we show that f is a quasidifferentiable function at

X = (0,0). Indeed, we have f'(x;d)=|d,+[d,| Hence, it can be proved that
f(xd)=  max  vid+ min  w'd, oF(xX)=co{(0,0),(2-2),(2.2)}

veco{(0,0),(2,-2),(2,2)} weco{(-1,-1),(1,-1)}
and éf(i) =co{(-11),(-1,-1)}. Hence, by Definition 2.2, it follows that f is a
quasidifferentiable function at X = (0,0). Further, we have S; s, = of (X) + of (X) =
co{(-11),(1-1),(13),(-1,-1),(1L,-3),@LD)}. Now, let b : R? x R? - R+ be defined by
b(x,X)=4forall x € R, ® : R — R be a function defined by ®(a) = In(a + 1) and
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|x1+|x2||

n : R? x R? — R? be a vector-valued function n(x,i):[ ] Hence, by

—[x + ],
Definition 2.3, it can be proved that f is a quasidifferentiable univex function at x
= (0,0) on R? with respect to the convex compact set S¢(x) and with respect to
functions @, b and n defined above.

3. Optimality
In the paper, consider the following nonsmooth optimization problem:
f(x) > min
st gi(x)<0, jelJ={1,....m}, (P)
X e R",

where f: R" > R, gj : R" > R, j € J, are quasidifferentiable functions on R".
Thus, problem (P) may be referred as a quasidifferentiable optimization problem.

Let X;={ x € R" gj <0, j € J} be the set of all feasible solutions in
problem (P). Further, we denote by J(X) the set of inequality constraint indexes
that are active at point x € X, thatis, J(X) ={jeJ:g;(X)=0}.

In [16], Gao presented the following necessary optimality conditions for
nonsmooth optimization problems with inequality constraints in which the
functions involved are quasidifferentiable.

Theorem 3.1. (Karush-Kuhn-Tucker type necessary optimality conditions). Let X
e X be an optimal solution for the considered quasidifferentiable optimization
problem (P). Further, assume that f is quasidifferentiable at X, with the

quasidifferential D, (X) =[of (X),of (X)], each gj, j e J, is quasidifferentiable at X,
with the quasidifferential ng (X):[ng(i),égj(i)]. If the constraint qualification
[20] is satisfied at X for problem (P), then, for any sets of w,edf(x) and
w; €09;(X), j € J, there exist the scalars %;(w)>0, j € J, not all zero, such that

0e of (X) +w, +iX1(W)(Qg,-(>_<)+W,-), (3)
A;(w)g;(x)=0, jel, (4)
A (w)=0, jel, (5)

where A, (w),....A,,(w) are dependent on the specific choice of w = (Wo, Wa,...,wm).

Theorem 3.2. (Sufficient optimality conditions). Let X be a feasible
solution in the considered optimization problem (P) and the Karush-Kuhn-Tucker

type necessary optimality conditions (3) — (5) be satisfied at X with the
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quasidifferentials Dy (x) =[of (X),6f (X)], Dy (X) =[29;(X),09;(X)], j € J. Further,

assume that f is quasidifferentiable univex function at X on X with respect to
St =of (X)+w, (for any w,edf(x)) and with respect to @, br and n, where

bi(x,x) > 0 for all x € X, a <0 = ®¢(a) < 0 and, moreover, each g;j, j € J(X), is
quasidifferentiable univex function at X on X with respect to Syj0 = 09;(X) +W;

(for any w;edg;(X), j € J,) and with respect to @ by, and n, where a <0 =

gj°
D4, (a)<0, j € J(X). Then X is an optimal solution in the considered
optimization problem (P).

Proof Assume that X is such a feasible point in problem (P) at which the
Karush-Kuhn-Tucker type necessary optimality conditions (3) — (5) are satisfied

with the quasidifferentials D; (X) = [of (X),of (X)], D, (%) =[09;(%),89;(0], j € J.
This means that, for given sets of w,edf(x) and w; eégj(i), j € J, there exist
L,(Ww)eR and A(w)eR™ such that the conditions (3) — (5) are satisfied. Hence,

by the Karush-Kuhn-Tucker type necessary optimality condition (3), it follows
that there exist v, € df(x) and v;edg;(x), J € J, such that

m
0=vy +W, +ij(w)(vj +Wj). (6)

j=1
By hypotheses, f is a quasidifferentiable univex function at X on R" with respect
to Sy =0df(X)+w, and with respect to @, bf and m, g J € J(X), is

quasidifferentiable univex function at X on X with respect to ngm =09;(X) + W,
and with respect to Dy, by, and n. Hence, by Definition 2.3, the inequalities

by (x, X)®¢ (F(x) ~F(X)) 2 gn(x,X), Vo €Sz, 7)

bgj (x,Y)(I)gj (gj(x)—gj(i))ijTn(x,X), Vo, €Sy J €J(x) (8)

hold for all x e X. Since (7) and (8) are fulfilled for any sets o, €S, and

o, eSg]m,j € J(X), respectively, by the definitions of S;;, and SW), they are
also fulfilled for o, =v,+w; €S;;,) and ; =v;+w;, €Sy - Thus, (7) and (8)
yield

b, (x, X), (F(x) — F (X)) = (v +wg)n(x,X), 9)

by, (X, X)®@ (9;(x) —g;(X) ) = (v] +win(x,X), jeI(x). (10)
Using x € X and X e X together with the definition of J(X), we get gj(x) < gj(X),
J € J(X). By assumption, it follows that
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@, (9;(x)—-9;(x)) <0, J € J(X). (11)
By definition, bgj (x,X)=>0, j € J(x), for all x € X. Thus, (11) gives
by, (X, X)P, (9;() —g;(X)) <0, j & I(X). (12)
Combining (10) and (12), we obtain
(v] +wIn(x,X)<0. jeJ(X). (13)
Since 2;(w)>0,j € J(x), and %;(w)=0, j & J(X), therefore, (13) yields
ixj (W)(v] +w] m(x,X)<0. (14)
j=1
By (6) and (14), it follows that
(Vg +wg)n(x,X) = 0. (15)
Combining (9) and (15), we obtain
by (X, %)@ (F(X) — (X)) > 0. (16)

By assumption, br(x,x) > 0 for all x € X and a < 0 = ®¢a) < 0. Thus, (16)
implies that the inequality f(x) > f(x) holds for all x € X. This means that X is
optimal in problem (P). Hence, the proof of this theorem is complete.
Example 3.1. Consider the following nonsmooth optimization problem:
f(x):ln(xlz+x§+\x1—\x2H+1)—> min

s.t. gy (x)=arctg (‘x1+|x2”)£ 0, (P1)
X € R%
Note that X = { x € R?: arctg([x, +|x,[) < 0 }and X = (0,0) is a feasible solution
in problem (P1). Further, it can be proved that f and g: are quasidifferentiable at
X . Indeed, we have f;(x;d) = |d, —|d,| and, therefore,
f(00);d)= maxv'd + min w'd |,
veco{(0,-2),(2,0),(0,2)} we{(0,-1),(0,1)}
where of(0,0) =cof(0,-2),(2,0),(0,2)}, of (0,0)={(0,-1),(0,1)}. Hence, by Definition
2.2, T is a quasidifferentiable function at X = (0,0). Further, by Definition 2.1, we
have g}(x;d) =|d1 + |d2|| and, therefore,
g (x;d) = max vid+ min  w'd,
veco{(0,0),(=2,2),(2,2)} weco{(~1,-1),(1, 1)}

where g, (X) =c0{(0,0),(-2,2).(22)} and &g,(X) =cof(-1-1),(1,—1)}. Hence, by
Definition 2.2, gz is a quasidifferentiable function at X = (0,0).
It can be proved that the Karush-Kuhn-Tucker necessary optimality

conditions are fulfilled at X. Indeed, it can be shown that, for any sets of
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w, € of (X) and w; € dg; (X), there exists 4,(w) >0 such that the conditions (3) — (5)
are satisfied. Since the Karush-Kuhn-Tucker necessary optimality conditions are
fulfilled at X, in order to prove optimality of X by Theorem 3.2, we have to show
that f and g1 are quasidifferentiable univex functions at X on X with respect to
convex compact sets which are equal to Minkowski sum of their subdifferentials
and superdifferentials and with respect to the same function n, but not necessarily
with respect to the same functions b and ®. We set by (x,X) =3, ®r(a) = exp(a) —

1, St =f(X)+w, (for any wyedf(X)), by (x,X)=4, @y (@)=tg(a),
Sym =09, (X)+w, (for any w;€dgy(X)), n : X x X — R* be a vector-valued

|x1 + |x2||

function defined by n(x,i){ ] Then, by Definition 2.3, f is a

— X + [
quasidifferentiable function at X on X with respect to S;;, and with respect to @,
br, n and g1 is a quasidifferentiable function at X on X with respect to S, and
with respect to @, ,b,, m. Further, note that functions ®¢ and @, satisfy
conditions given in Theorem 3.2. Hence, since all hypotheses of Theorem 3.2 are
fulfilled, X is an optimal solution in the considered nonsmooth optimization
problem (P1).

3. Mond-Weir duality

In this section, for the considered quasidifferentiable optimization problem (P),
we define its dual problem in the sense of Mond-Weir as follows:

f(y) > max
0eaf(y)+wo + Y 2j(w)(@g;(y) +w;),
j=1
for any sets of w, edf(y) and w;edg;(y),jeJ, (D) (17)
Ai(w)giy) =0, j €, (18)
y e R" 4(W) >0, jel, (19)

where A(w) = (A, (W),...,A,,(w)) are dependent on the specific choice of w =
(Wo,Wa,...,Wk).

We denote by Z the set of all feasible solutions in Mond-Weir dual
problem (D), that is, the set of (y, A(w)) satisfying constraints (17) — (19). Further,
we denote by Y = prr"Z the projection of the set Z on R".

Theorem 4.1. (Weak duality). Let x and (y,A(w)) be any feasible solutions
in the considered optimization problem (P) and its Mond-Weir dual problem (D),
respectively. Further, assume that f is a quasidifferentiable univex function at y on
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XUY with respect to S;,, =of(y)+w, and with respect to @1, bf and n, where
br(x,y) > 0, a < 0 = ®(a)<0, each Aj(w)gj, ] € J(y), is a quasidifferentiable
univex function at y on XUY with respect to ng (y) = ag;(y) +w; and with respect
to @y, by and n, wherea<0 = Dy (a)<0, j € J. Then f(x) > f(y).

Proof Let x and (y,A(w)) be any feasible solutions in problem (P) and its
Mond-Weir dual problem (D), respectively. This means that, for given sets of
w, € of (y) and w, eégj(y) , J € J, there exist A(w) € R and p(w) € R™ such that
the constraints (17) — (19) are fulfilled. Suppose, contrary to the result, that

f(x) < f(y). (20)

By hypotheses, f is a quasidifferentiable univex function at y on XuY with

respect to S;,, = of (y) +w, and with respect to @, by and 1, each g;j, j € J(y), is a

quasidifferentiable univex function at y on XuY with respect to
ng(y) =0g;(y) +w; and with respect to Dy, by, and n. Hence, by Definition 2.3,

the following inequalities

by (X, )@, (F(x) - f(y)) 2 ogn(X,y), Vo, e Stiy) (21)
by, (X, )@y, (1;(W)g;(X) = ;(W)g;(¥) ) = (W) n(X,Y), Yo, €Sy ) j€I(y) (22)
hold. By assumption, b;(x,y)>0and a<0 = @;(a)<0. Hence, (20) yields

br (x,y)®¢ (f(x) —f(y)) <0. (23)
Combining (21) and (23), by the definition of St, we get

@n(X,y) <0, Ve, € (y)+W,. (24)
By x € X,y € Y and the constraint (18) of dual problem (D), it follows that

Aj(w)g;(x) —Aj(w)g;(y) <0, j el (25)

By assumption, a <0 = @, (a)<0, j  J. Since bgj (x,y) >0, j € J, therefore,
by (25), we have
by, (X, Y) @y (A;(W)g;(x) —4;(W)g;(y) ) <0, j € J(y). (26)
Combining (22) and (26), by the definition of ng(y) , ] € J, we obtain
A (W)on(x,y) <0, Yo,edg(y)+v;, jel. (27)
j=L

Thus, (22) and (30), we get

m
ho(W) @5 + D %j(W)o] n(X,y) <0, Voo edf(y)+Wy, ojedy;y)+w;.
j=1

This means that there exist v, € of (y) and v; € ag(y), j € J, such that
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=1

{vg Wy A (w)(v] + w})}q(x, y) <O0. (28)
By the constraint (17) of dual problem (D), it follows that the following inequality

{vg +W, + Z:kj(w)(vjT + w})]n(x, y)=0
=1

holds, which is a contradiction to (28). This completes the proof of this theorem.

It turns out that, under stronger univexity hypothesis imposed on the objective

function, it is possible to prove the stronger result.

Theorem 4.2. (Weak duality). Let x and (y,A(w)) be any feasible solutions
in the considered optimization problem (P) and its Mond-Weir dual problem (D),
respectively. Further, assume that f is a quasidifferentiable strictly univex function
at y on XUY with respect to Sy ,, =af(y)+w, and with respect to @, br and n,

where be(x,y) >0,a <0 = ®;(a)<0, each gj, j € J(y), is a quasidifferentiable
univex function at y on XUY with respect to S a9;(y)+w; and with respect to

CDQJ" bg

Theorem 4.3. (Direct duality). Let X be an optimal solution in the
considered optimization problem (P) and the constraint qualification [20] be
satisfied at x. Further, assume that, for any sets of wj € 6f(x), W €09;(X), j €,

gj(y) —
j and n, wherea<0 = Dy ()< 0, j € J. Then f(x) > f(y).

there exists A(w) = (A, (W),..., ,,(W)) € R™ depending on the specific choice of w
= (Wo,W1,...,wm), such that (X,L(w)) is feasible in its Mond-Weir dual problem
(D). Further, if all hypotheses of the weak duality theorem (Theorem 4.1) are
fulfilled, then (X, A(w)) is optimal in Mond-Weir dual problem (D).

Proof By assumption, X is an optimal solution in the considered
optimization problem (P) and the constraint qualification [20] is satisfied at X.

Further, we assume that, for any sets of w, e of(X) and W, eégj(i) , ] € J, there
exist scalars Xj(w)zo, j € J, not all zero, such that the Karush-Kuhn-Tucker

necessary optimality conditions (3) — (5) are fulfilled at x. Further, we assume
that (X, L(w)) is feasible in Mond-Weir dual problem (D). If all hypotheses of the
weak duality theorem (Theorem 4.1) are fulfilled, then (X,A(w)) is optimal in
Mond-Weir dual problem (D).

Theorem 4.4. (Converse duality). Let (y,A(w)) be an optimal solution in
Mond-Weir dual problem (D) and yeX. Further, assume that f is a
quasidifferentiable univex function at y on XuY with respect to



Sufficient optimality conditions and duality results for quasidifferent. optimization problems 195

Sy = F (¥) + W, and with respect to ®r, by, n, where b;(X,y) >0 forall x € X, a
<0 = ®(a)<0, each A;(W)g;, j € J(y), is a quasidifferentiable univex

function at y on XUY with respect to S, ., = dg;(y) +w; and with respect to Dy

9;(¥)
by, M, wherea<0 = Dy ()< 0, ) € J. Then y is optimal in problem (P).

Proof Proof of this theorem follows directly from the weak duality
theorem (Theorem 4.1).

5. Conclusions

In this paper, we have introduced a new concept of generalized convexity,
namely the definition of a univex function with respect to a convex compact set. It
turned out that it generalizes many other concepts of generalized convexity,
previously defined in the literature. Further, in the paper, a nonconvex
quasidifferentiable optimization problem with inequality constraints has been
considered in which all functions constituting it are quasidifferentiable univex
with respect to convex compact sets. Under the introduced concept generalized
convexity, the sufficient optimality conditions and several duality results have
been proved for such nonsmooth optimization problems. Namely, to prove the
results mentioned above, the functions constituting the considered
nondifferentiable optimization problems have been assumed to be
quasidifferentiable univex with respect to convex compact sets which are
Minkowski sum of their subdifferentials and superdifferentials.
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