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SOME RELATIONS ON HERMITE-HERMITE MATRIX 
POLYNOMIALS 
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The main purpose of this paper is to define a new extension of Hermite-

Hermite matrix polynomials (HHMP) and derive some properties such as 
recurrence relations and matrix differential equation for generalized Hermite-
Hermite matrix polynomials. We derive addition and multiplication theorem, and 
summation formula for generalized HHMP. Furthermore, via integral transform, the 
new families of Chebyshev-Chebyshev, Legendre-Legendre, Chebyshev-Hermite and 
Legendre-Hermite matrix polynomials are introduced, from which a variety of 
interesting results follows as special cases.  
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1. Introduction and preliminaries 

 
 Special functions, as a branch of mathematics, is of utmost importance to 

scientists, physics, engineering, mathematical physics and engineers in many 
areas of applications. In the recent papers, matrix polynomials have significant 
emergent. Some mathematician have obtained some properties for orthogonal 
matrix polynomials and special matrix functions via some properties in the theory 
of  orthogonal polynomials and special functions, see [1, 2, 3, 4, 5, 6, 7, 9, 10, 16, 
17, 18, 19, 20, 21, 22]. The Hermite, Legendre and Gegenbauer matrix 
polynomials have been studied in many previous papers [11, 15]. The first author 
has studied the Hermite-Hermite matrix polynomials [12, 13, 17]. The reason of 
interest for this family of Hermite polynomials is due to their main mathematical 
significance and to these polynomials have applications in physics. 

Our main aim in this paper is to take in consideration a new matrix 
polynomials, namely the class of the generalized HHMP taking advantage 
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of the recently treated in [12]. In this paper, the generalized HHMP are 
defined, the four terms matrix recurrence relation is satisfied, their 
connections with matrix differential equation of third order is established in 
section 2. In section 3, we define generalized Legendre and Chebyshev 
matrix polynomials of first and second kind and give an integral 
representation. Finally, we define the Legendre-Hermite and Chebyshev-
Hermite-type matrix polynomials of the first and second kind in section 4. 

In this paper, its spectrum )(Aσ  for A  in ԧேൈே will symbolize the 
set of all the eigenvalues of A . Its two-norm will be symbolized by 2|||| A  

and given by ԡܣԡଶ ൌ ௫ஷ଴݌ݑݏ
ԡ஺௫ԡమ
ԡ௫ԡమ

 where ԡݕԡଶ ൌ ሺݕுݕሻଵ
ଶൗ  is the 

Euclidean norm of y  for a vector ݕ א ԧே. If )(zu  and )(zv  are 
holomorphic functions are defined in an open set Ω  of the complex plane 
and P , Q  are matrices in ԧேൈே with Ω⊂)(Pσ  and Ω⊂)(Qσ , such that 

QPPQ = , via the matrix functional calculus in [8], we have 
 ).()(=)()( PuQvQvPu  
 If 0D  is the complex plane cut along the negative real axis and 

)(log z  denotes the principle logarithm of z , then z  represents 
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zzz . If A  is a matrix in ԧேൈே with 0)( DA ⊂σ , then 
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⎜
⎝
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1exp==2
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AAA  denotes the image by z  of matrix functional 

calculus acting on the matrix A . 
         In [6],  for ),( nkA  and ),( nkB  are matrices in ԧேൈே, we have 

∑ ∑ ,ሺ݇ܣ ݊ሻ ൌ ∑ ∑ ,ሺ݇ܣ ݊ െ ݉݇ሻ
ቂ ೙

೘ቃ
௞ୀ଴  ; ݉ א Գஶ

௡ୀ଴
ஶ
௞ୀ଴

ஶ
௡ୀ଴ .       (1.1) 

Similarly to (1.1), we can write  

∑ ∑ ,ሺ݇ܣ ݊ሻ ൌ ∑ ∑ ,ሺ݇ܣ ݊ ൅ ݉݇ሻஶ
௞ୀ଴  ; ݉ א Գ.ஶ

௡ୀ଴
ቂ ೙

೘ቃ
௞ୀ଴

ஶ
௡ୀ଴          (1.2) 

 Let A  be a matrix in ԧேൈே such that 
ܴ݁ሺݖሻ ൐ 0 for ݖ׊ א  ሻ.    (1.3)ܣሺߪ

This matrix is denoted as positive stable. Then the Hermite matrix 
polynomials ),( AxHn  are defined via the generating matrix function [7] 

∑ ,ݔ௡ሺܪ ሻܣ ௧೙

௡!
ൌ exp൫ܣ2√ݐݔ െ ൯ܫଶݐ ; ሺݔ, ሻݐ א Թଶ.ஶ

௡ୀ଴        (1.4) 
Here I  is the identity matrix or unit matrix in ԧேൈே. Furthermore, in 

[7] thn  Hermite matrix polynomials have  the property 
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 In the following, we are devoted to a more substantive effort in 
proofs of some known properties as well as new expansions formulae 
related to these generalized HHMP.  

 
2. Generalized Hermite-Hermite matrix polynomials 

 
 If A  is a positive stable in ԧேൈே  and ߚ ב Ժି, the generalized 

HHMP is defined as the series  
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 where the Pochhammer symbol is defined in [14]  
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 where θ  is a zero matrix or null matrix in ԧேൈே. 
By using (1.2), (1.4) and (2.1), we get 
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 We obtain a generating function for the generalized HHMP: 
 .)2(exp);;1(=),,( 22

11 ItAxttFAtxF −+− βαβ  (2.2) 
 Here ),,( AtxF  is a entire matrix function of the complex variable t . 

Because of this, the function has the Taylor series about 0=t  and the series 
converges for all values of x  and t . 

Writing )( x−  instead of x  and )( t−  instead of t  in (2.2), we get 
).,(1)(=),( AxHAxH nH

n
nH −−  

 By Kummer’s first formula [14], we get 
.);1;1()(exp=);;1( 2

11
22

11 tFttF −+++− βαβαβ   (2.3) 
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 Thus the generalized HHMP possess the generating function  
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 We get an explicit representation for the generalized HHMP: 
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 From the series, we get 
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 and, in the same manner,  
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 It follow from the series (2.8)-(2.12) that there exists a relation as  
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 (2.13) 
 in which the constants a , b , c , d  are determined by the identity in 
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 Since, by (2.7), 
!
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AxHAx nH
nΨ , we find that the polynomials ),( AxHnH  

satisfy the pure recurrence relation  
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When βα = , the ),( AxHnH  degenerates into the Hermite matrix polynomials 

),( AxHn , for which we already know the pure recurrence relation  
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 It is now evident that if βα = , (2.19) is an iteration of (2.18). 
Theorem 2.1. For a positive stable A  in ԧேൈே , we get  
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theorem.  
Theorem 2.2. The generalized HHMP satisfy the following relation  
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         Proof. Differentiating (2.2) with respect to x  and using (2.2) yields  
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 For nr ≤≤0  make iteration (2.22) implies (2.20) for the proof. 
In the next result, the generalized HHMP seem as finite series solution of 

third order matrix differential equation.  
Theorem 2.3. For a positive stable A  in ԧேൈே, the generalized HHMP are 

solutions of the matrix differential equation of third order  
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 Substituting from (2.24) into (2.17) yields  
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 From (2.25), we obtain (2.23).  
Now, we recall some significant properties of the generalized HHMP such 

as the addition and multiplication theorem.  
Theorem 2.4. The generalized HHMP satisfy the addition formula as 

follows: for ݕ א Թ, 
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         Proof.  By using the generating function (2.2) and (1.2), we have  
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 Comparing the coefficients of nt , (2.26) is derived.  
Theorem 2.5. The generalized HHMP satisfy the multiplication formula as: 

for ߤ א Թ, 
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          Proof.  Using (1.2) and (2.2), we have 
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 Therefore, we have the desired result. 
In the next section, we have shown that the new integral 

representations are a fairly useful tool to obtain new families of matrix 
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polynomials.  
 

3. Generalized Legendre and Chebyshev matrix polynomials 
 
 We generate Legendre-Legendre and Chebyshev-Chebyshev matrix 

polynomials by using the properties in previous section. 
Now, a version of Legendre-Legendre matrix polynomials will be 

given via the generalized HHMP. The Legendre matrix polynomials in [20] 
are defined by  
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 Therefore, the Legendre-Legendre matrix polynomials are given as  
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          via the generalized HHMP. 
          Thus, the following theorem can be written. 
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Theorem 3.1. The integral expressions (3.3) and (3.4) hold true for a positive 
stable A in ԧேൈே.  
 In a similar manner, we can also define the generalized Legendre-Legendre-type 
matrix polynomials by using their integral representation. 
For positive stable matrices A  and B  in ԧேൈே and BAAB = , now we give 
generalized Legendre-Legendre-type matrix polynomials defined by the following 
relation:  
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 By using Gamma function, we can write  
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 Therefore, the Chebyshev-Chebyshev matrix polynomials of the second kind are 
given as  
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via the integral representation for Chebyshev-Chebyshev matrix polynomials of 
the second kind. Here the Chebyshev matrix polynomials of the second kind in [1] 
are given as  
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 Now, we give the Chebyshev-Chebyshev matrix polynomials of the first kind as  
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via the integral transform of the generalized HHMP. Here the Chebyshev matrix 
polynomials of the first kind in [6] are given as 
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Thus, the following theorem can be written. 
              Theorem 3.2. The integral expressions (3.7), (3.8), (3.9) and (3.10) hold 
true for a positive stable A in ԧேൈே.  
 In a similar manner, we can now generalize the above Chebyshev-Chebyshev 
matrix polynomials. 

For  positive stable matrices A  and B in ԧேൈே and BAAB = , then we define 
two new Chebyshev-Chebyshev-type matrix polynomials:  
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Taking βα =  in (3.3), (3.7) and (3.9), the generalized Legendre and Chebyshev 
matrix polynomials reduce to the special case of the Legendre and 
Chebyshev matrix polynomials (see [1, 6, 20]).  

In the next section, we have shown that new integral representations are a fairly 
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useful tool to obtain new families of matrix polynomials.  
 
4. Connections between Hermite-Hermite, Chebyshev-Hermite and 

Legendre-Hermite matrix polynomials 
 
 In this part, we generate Chebyshev-Hermite and Legendre-Hermite matrix 

polynomials by using properties in previous section. 
The generalized HHMP of two variables for a positive stable A in ԧNൈN and 

,ݔ ݕ א Թ are defined as follows:  
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Now, a version of Legendre-Hermite matrix polynomials will be defined via the 
generalized HHMP of two variables. By using (4.1) and (2.1), it follows that  
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The series and the integral can be transputed since the summation in right is finite. 
Using Gamma function, we see  
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Thus, the Legendre-Hermite matrix polynomials are defined by  
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 via the generalized HHMP of two variables. 
 Thus, the following theorem can be written. 
Theorem 4.1. The integral expressions (4.3) and (4.4) hold true for a positive 
stable A in ԧேൈே. 
  Now, we can also give generalized Legendre-Hermite-type matrix polynomials 
by using their integral representation. 
Let A , B , 1−AB  be positive stable in ԧேൈே, and BAAB = . Then we give 
generalized Legendre-Hermite-type matrix polynomials:  
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Now, we define a version of Chebyshev-Hermite matrix polynomials via explict 
formula for the generalized HHMP of two variables. By (4.1) and (2.1), it follows 
that  
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 Using Gamma function, we can write  
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 Thus, the Chebyshev-Hermite matrix polynomials of the second kind is given as 
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 In a similar manner, we have a definition of the Chebyshev-Hermite matrix 
polynomials of the first kind: 
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 Thus, the following theorem can be written.  
Theorem 4.2. The integral expressions (4.7), (4.8), (4.9) and (4.10) hold true for 
a positive stable A in ԧேൈே. 
 In a similar manner, we can now generalize the above Chebyshev-Hermite matrix 
polynomials. 
If A, B , 1−AB  are positive stable in ԧேൈே and BAAB = , we have two new 
Chebyshev-Hermite-type matrix polynomials:  
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