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SECURITY INFRASTRUCTURE FOR WIRELESS SENSOR 
NETWORKS 

Laura GHEORGHE1, Răzvan RUGHINIŞ2, Nicolae ŢĂPUŞ3 

Applicaţiile critice cum ar fi monitorizarea militară şi medicală folosesc 
reţelele de senzori wireless cu scopul detecţiei evenimentelor specifice. De aceea, 
este important ca aceste reţele să fie protejate împotriva atacurilor. În acest articol, 
propunem o infrastructură de securitate pentru reţele de senzori wireless, care oferă 
autentificare, integritate, prevenţia intruziunilor, protecţie împotriva atacurilor de 
tip replay şi asigurarea fiabilităţii comunicaţiei. Protocolul a fost implementat în 
kernelul sistemului de operare TinyOS şi testat folosind simulatorul TOSSIM în 
cadrul mai multor scenarii de atac. Protocolul s-a dovedit capabil de a bloca 
încercările de injectare de pachete suspecte sau de replay a packetelor. 

Critical applications such as military and medical monitoring use Wireless 
Sensor Networks with the purpose of detecting specific events. Therefore, it is 
important to protect the network against malicious attacks. In this paper, we 
propose a Security Infrastructure for Wireless Sensor Networks, which provides 
authentication, integrity, intrusion prevention, anti-replay protection and reliability. 
The protocol is implemented in TinyOS and tested with TOSSIM in several attack 
scenarios. It proves to be able to reject malicious attempts to inject and replay 
plackets.  

Keywords: Wireless Sensor Networks, security, authentication, anti-replay, 
integrity, reliability, attack, intrusion detection 

1. Introduction 

Wireless Sensor Networks (WSNs) are composed of small devices, called 
sensor nodes that have several distinctive characteristics such as low energy 
consumption, low processing power, limited memory and small radio range. 
These nodes have the ability to organize themselves into a network and perform 
sensing and communication operations in order to monitor a certain environment 
[1]. 
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There are at least five features that should be considered when designing 
WSN solutions: scalability, security, reliability, self-healing and robustness [2]. 
Depending on the application, these requirements are more or less critical.  

In military or medical applications, security is a critical requirement 
because attackers can intercept and inject malicious packets in the network and 
this could compromise the whole network [3]. Attackers can steal valuable 
information or manipulate the network for malicious purposes [4]. 

A certain amount of resources is required when implementing a security 
solution, including memory space, processing power and energy [5]. Therefore, 
traditional security methods cannot be implemented in sensor networks. The 
solutions designed for Wireless Sensor Networks should take in consideration 
their specific constrains. 

The security requirements of WSNs must also be considered when 
designing a new security protocol. These requirements are: confidentiality, 
integrity, authenticity, freshness, reliability, availability and energy-efficiency [6]. 
In this paper, we present a security infrastructure that meets the following key 
requirements: authenticity, integrity, freshness, reliability and energy-efficiency.  

2. Related Works 

Among the most relevant solutions for security issues in WSNs, one can 
count TinySec (2004), LEAP (2003), and SPINS (2002). 

TinySec, designed by Karlof et al. [7] is included in the TinyOS as a link-
layer security architecture, addressing essential requirements such as 
authentication and integrity, semantic security (employing an Initialization 
Vector) and confidentiality. Anti-replay protection was not included as it was 
deemed better to address it at higher levels of the communication protocol stack. 

LEAP (Localized Encryption and Authentication Protocol) represents a 
key management protocol for WSNs, designed by Zhu et al.[8]. It has been 
subsequently implemented in TinyOS as LEAP+ and then used on Berkley Mica2 
motes [9]. LEAP relies on four key categories that differentiate among message 
types in WSNs. There is a Individual Key, which each node shares with the base 
station. The base station uses Group Keys to communicate securely, by 
encryption, with nodes. Nodes and their neighbors employ Cluster Keys, while 
pairs of immediate neighbors use Pairwise Keys. 

SPINS, designed by Perrig et al. [10] consists of two components: SNEP 
and μTESLA, implemented to run on TinyOS. SNEP, which has been 
subsequently replaced by TinySec, provided authentication, integrity, freshness 
and confidentiality. μTESLA makes authenticated broadcasts possible by a 
Message Authentication Code (MAC), and it also provides confidentiality by 
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encryption – emulating asymmetry by a delayed discosure of symmetric keys, and 
freshness through nonce.  

3. Authentication and Anti-replay Security Protocol Design 

The Authentication and Anti-replay Security Protocol (AASP) aims at 
providing authenticity, anti-replay, integrity and intrusion prevention for WSNs. 
In order to meet these requirements, two methods are designed: an anti-replay 
method, and an authentication connection [11]. 

3.1. Anti-replay Method 

We designed an anti-replay method that uses Message Authentication 
Code (MAC) and assumes that the attacker is an outsider that does not know the 
secret key.  

The protocol mechanism consists in including in the current message the 
MAC computed using the last packet sent between the same source and 
destination node. This mechanism bounds the packet to its context.  The MAC is 
recomputed and checked at the destination node. If it is correct, the packet is 
accepted, if not, the packet is dropped. 

The MAC is computed from a payload (M), a shared key (K), and a 
collision-resistant hash function (H), using the HMAC algorithm [12]. 

In the case of a re-play attack the MAC computed at the destination node 
would not match the MAC found in the packet. 

However, the first packet sent between the same source and destination 
will be always accepted at the destination if we use only this anti-replay 
mechanism. For this reason, we introduce the authentication connection that 
should be created before any data packet is accepted 

3.2. Authentication Connection 

An authentication connection has to be established before transferring any 
data packet between a particular source and destination node. In order to obtain an 
authentication connection, both nodes have to authenticate to each other using an 
authentication handshake that consists in four steps. The proposed protocol is 
connection oriented because of the establishment of this authentication 
connection.  

Both handshake and data packets have to be created and verified using the 
anti-replay method described in the previous subsection, for providing strong 
authentication and anti-replay protection. 

The authentication handshake is initiated by the node that wants to send a 
message to another node. The message consists in a standard “Authentication 



106                                       Laura Gheorghe, Răzvan Rughiniş, Nicolae Ţăpuş 

request” message that is sent to the destination node. The destination recognizes 
the request and generates a random value called Challenge and sends it to the 
source node. The source node computes the MAC of the Challenge value and 
sends it to the destination node. The packet also contains the MAC of the 
Authentication request value as it is build using the anti-replay method. The 
destination node recomputes the MACs and valides them. If they are correct, the 
node has to compute the MAC using both the Authentication request and the 
Challenge value in order to authenticate itself. The MACs are validated by the 
source node and if they are correct, the authentication connection is established. In 
this moment, both the source and destination node have authenticated each other 
and data packets can be exchanged. The Auth field will be 0 until the connection 
is created and 1 afterwards. 

4. Protocol Implementation 

TinyOS is an open-source, event-driven and component-base operating 
system for sensor networks [13]. We implemented our security protocol in the 
kernel of TinyOS within two layers using three implementation components are 
three wiring components.  

The first layer, called the MAC layer, is placed between the 
ActiveMessage layer and the AMSender and AMReceiver components. The 
second layer, called the Authentication layer, is placed between the operating 
system kernel and the application layer.  

The MAC layer consists in two implementation components and two 
wiring components. The first component is placed under the AMSender 
component and receives all traffic that is sent by that particular node. This 
component is used to compute and store the MAC for each packet.  

The second component is placed under the AMReceiver and is able to 
analyze and alter all traffic destined to the current node. It has the role to compute 
and verify the MAC for each packet. Every time it receives a valid packet, it 
computes and stores the MAC of that packet. Then, it compares the stored value 
with the one found in the next received packet. If the value is incorrect, the packet 
is not sent further to the AMReceiver component, so it is blocked or sent with a 
modified Auth field towards the Authentication layer where it will be dropped. 
So, we can either drop packets at the MAC or at the Authentication layer. 

The Authentication layer consists in an implementation component and a 
wiring component. It is used by the application layer for secure data delivery. The 
component initiates and performs the authentication handshake, not permitting 
any data traffic from the application layer until the authentication connection has 
been established. The layer is able to store and validate all handshake messages 
and to block data packets until the connection is established. 
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The state of each connection is stored in the Authentication layer of the 
source and destination node. The connection initiator knows that it has initiated 
the connection with a particular node and will be able to reject unrequested 
Challenge messages. Both of them store the challenge value used in the 
handshake, so they will be able to check the validity of the third and forth 
handshake messages. The replayed handshake messages will be detected and 
rejected by the Authentication layer. 

The packet has a simple security header consisting in the P_MAC and the 
Auth fields. The message field represents the packet payload. The network and 
link layers will add headers of their own, but they are out of the scope for this 
paper. 

We describe the functionality implemented in TinyOS. We represent 
packets in the format [P_MAC, Auth, Message]. We consider that node X wants 
to communicate with node Y and initiates the conversation.  

Node X Application layer generates a data packet. When receiving the 
data packet, the Authentication layer stores it and generates an Authentication 
Request (AR) packet [0, 0, AR] destined to node Y. 

When node Y receives the AR, if it has no authentication connection with 
node X, it generates a random Challenge (C) and sends it to the source node [0, 0, 
C]. Node Y stores C for further computations.  

Node X receives the Challenge and if it does not have an authentication 
connection with node Y, it generates the third handshake message by computing 
the two MACs. The packet [MAC(AR, K), 0, MAC(C, K)] is sent to node Y. The 
Challenge is stored by node X for the verification of the forth handshake packet.  

When node Y receives the packet, it computes the MACs and verifies 
them. If they are valid, the node generates the forth handshake message [MAC(C, 
K), 0, MAC(AR, C, K)]. Node X receives the packet and verifies it. If the forth 
packet is valid, the authentication connection is established.  In the next packets, 
the auth field will be equal to 1. 

 When node X and Y have an authentication connection and one of them 
receives a handshake packet from the other, it rejects it with the alert: “Node 
already authenticated”. If they do not have an authentication connection and one 
of them sends a data packet, the packet is rejected with the alert: “Node not 
authenticated”. 

Whenever the P_MAC field is found incorrect, the packet is dropped with 
the alert: “Incorect MAC”. The detection is made at the MAC layer.  

5. Experimental Results 

TOSSIM is tool that is able to simulate TinyOS applications in a precise 
manner [14]. We are able to run some attack simulations using this particular 
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simulator. In this paper we present some of the attack scenarios that were 
analyzed and simulated. 

We assume that the attacker is an outsider, an external device that does not 
have the cryptographic keys of the network. However, the protocol format cannot 
be obfuscated from the attacker, so we assume that he is able to interpret and build 
coherent protocol messages.  

In the first scenario, the attacker sends an authentication request to a 
particular node and receives a Challenge. The attacker is not able to compute a 
valid MAC, so the third handshake message should be rejected at the destination 
with the alert: “Not a valid handshake packet”, as presented in Fig. 1. The packet 
is recognized as invalid at both MAC and Authentication layers because both 
P_MAC and the payload contain incorrect MACs. 

 
Fig. 1. Not a valid handshake packet 

 
In the second scenario, a malicious node poses as a node that already has 

an authentication connection with the target node (source address spoofing) and 
tries to send an invalid data packet. The P_MAC field does not contain the MAC 
of the last message because the attacker cannot compute a correct value, so the 
packet is dropped at the destination with the alert: “Incorrect MAC”, as observed 
in Fig. 2. 

 
Fig. 2. Not a valid handshake packet 

 
In the third scenario, the attacker tries to replay a packet from a valid 

conversation. The P_MAC field is not matching the MAC of the previous packet 
in the target conversation, so the packet is dropped with the alert: “Incorrect 
MAC”, similar to Fig. 2. 

In the forth scenario, the attacker tries to replay a handshake message. The 
Authentication layer is able to recognize this packet and can generate a more 

X Y

[RandomValue, 0, MaliciousData] Incorrect MAC. 
Invalid packet is dropped. 

X Y

[0, 0, AR] 

[0, 0, C] 

[RandomValue, 0, RandomValue] Not a valid handshake packet. 
Invalid packet is dropped. 
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specific alert: “Replayed handshake message”. However, both layers are able to 
recognize this packet as invalid. 

In the fifth scenario, the attacker poses as an authenticated node and tries 
to send an “Authentication request” message to its connection partner. The target 
rejects the message with the alert: “Node already authenticated”. If we would 
permit this kind of re-authentication, it would easily be used by attackers to tear 
down connections.  This problem should be solved using connection timeout. If an 
authentication connection is desynchronized or one of the nodes looses connection 
data, re-authentication would be possible after the connection times out. 

The AASP protocol has proved itself resistant to many types of injection 
and replay attacks. However, the de-synchronization problem appears when 
packets are lost. We describe the problem and its solution in the subsequent 
sections.  

6. Reliability Mechanisms 

The main problem regarding the basic functionality of AASP is related to 
packet loss. The wireless medium is not a perfect one; therefore it is not possible 
to avoid packet loss. When packets are lost, the anti-replay mechanism is de-
synchronized. 

In Fig. 3, we present the effect of packet loss upon the authentication 
connection. Message i contains the MAC of message i-1, and node Y compares 
this MAC with the one computed from the previous valid packet. If they are 
equal, the packet is considered correct and the MAC of message i is computed and 
stored. Message i+1 contains the MAC of message i, but it is lost on its way to 
destination. Message i+2 contains the MAC of message i+1 and node Y compares 
the stored MAC of message i with the MAC found in the packet, of message i+1. 
The values are not equal, so the packet is considered invalid and dropped. All 
subsequent messages will be dropped by node Y and the connection is considered 
de-synchronized.  

 
Fig. 3. Anti-replay mechanism de-synchronization 

 

X Y

[MAC (msgi-1), msgi] 

[MAC (msgi), msgi+1] 

[MAC(msgi+1), msgi+2] Incorrect hash  - Hash(msgi) expected. 
Invalid packet is dropped. 
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SPINS deals with the same problem. They use, for the anti-replay 
mechanism, a counter that is incremented at each packet. The anti-replay 
mechanism is de-synchronized when packets are lost, because the destination 
expects one counter and the received packet is based on another counter.  

In order to recover from de-synchronization, the lost packets have to be re-
sent by the source node. Therefore, a retransmission mechanism has to be 
implemented. The packet retransmission can be accomplished by either positive 
or negative acknowledgments. The positive acknowledgements are more reliable 
but they consume more energy than the negative ones. 

In the case of positive acknowledgements, the destination node has to send 
an acknowledgement for each valid packet that it has received, as in Fig. 4.  

 
Fig. 4. Positive ACK 

The source node waits a pre-defined period of time to receive the 
acknowledgement and when it times out, it resends the packet. Only when it 
receives the acknowledgement for the current packet, it will send the next packet. 
The acknowledgement has to contain the sequence number of the acknowledged 
packet.  

In the case when acknowledgements are lost, the packet is resent anyway 
and it will be considered re-played message. Therefore, losing data packets is less 
harmful then losing data packets.  

In the case of negative acknowledgements, the destination node detects 
lost packets only when it receives out-of-order packets, which are packets with a 
sequence number greater than the expected one. When the destination detects 
packet loss, it sends a negative acknowledgement to the source node.The source 
node will re-send all packets with the sequence number equal and greater than the 
expected one, and less then the received one. The destination node will store the 

X Y

[Message i] 

[Message i+1] 

[Message i+1] 

[ACK Message i] 

[ACK Message i+1] 

ACK Timeout 
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out-of-order packet until the lost ones are recovered and they are all checked by 
the anti-replay mechanism. The mechanism is described in Fig. 5. 

 
Fig. 5. Negative ACK 

 
Different sensor network applications require different reliability level. 

Critical application require all messages to be received correct and without delay, 
while habitat monitoring can tolerate packet loss and delay.  

When comparing the two packet recovery methods in the context of sensor 
network applications, both of them present advantages and disadvantages. We 
compare them in terms of energy consumption, reliability and delay in the case of 
packet loss, as presented in Table 1. 

Table 1 
Comparison between positive and negative acknowledgements 

ACK type Positive Negative 
Consumed energy Greater Less 
Reliability Greater Less 
Delay – low packet loss Greater Less 
Delay- high packet loss Less Greater 

 
In terms of energy consumption, the negative ACKs are more efficient 

than the positive ones, because they are sent only when an out of order packet is 
received by the destination. 

X Y

[Message i] 

[Message i+2] 

[Message i+3] 

[NACK (i+1, i+3)] 

[Message i+1] 

[Message i+1] 

[Message i+2] 

Stored msgi+3 

Delivered msgi+1 

Delivered msgi+2 

Delivered msgi+3 

Delivered msgi 
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However, the positive ACKs provide a greater level of reliability because 
they are tracking the state of delivery for each packet and are able to detect packet 
loss faster than negative ACKs. The negative ACKs method permits the loss of 
several packets before detection and recovery. Positive ACKs method performs 
recovery from the first lost packet.  

The delay depends on the amount of lost packets. In the case of low packet 
loss, the positive ACKs introduce greater delay then negative ones because the 
source has to wait for every packet to be acknowledged.  

In the case of high packet loss, the negative ACKs introduce greater delay 
than positive ones, because a large amount of packets can be lost before the 
destination identifies the problem and sends a negative ACK. 

8. Implementing Acknowledgements 

For implementing this optimization we introduce a new field in the 
protocol header, called ACK/NACK flag that is represented on one bit. The 
packet is acknowledgement when the ACK flag is set.  

In the case of the handshake packets, acknowledgments can be 
piggybacked in the actual messages. However, be cannot use the same procedure 
for data packets because in sensor networks the traffic is mostly unidirectional, 
from the sensor nodes to the base station. Therefore, we need separate 
acknowledgement packets for data messages. 

The positive ACK packets contain the sequence number of the 
acknowledged packet in order to specify which packet has reached destination. 
The negative ACK packets contain two sequence numbers: the sequence number 
of the expected packet, which is the first lost packet, and the sequence number of 
the out-of-order packet that was received at the destination. Based on this 
information, the source node has to re-send all lost packets.  

When using positive ACKs, the source node has to store only the last 
packet sent until the ACK is received. In the case of negative ACKs, the node has 
to store a pre-determined number of packets that can be requested by the 
destination node. 

For the positive ACKs we need a single timer to implement the ACK 
timeout and resend the packet. If the ACK is received before timeout, the next 
packet is sent and the timer is reset. If the ACK is not received before timeout, the 
packet is re-sent and the timer is reset.  

For the negative ACKs we need a timer at the destination. This timer is set 
when the negative ACK is sent to the source node. If the lost packets are not 
received until timeout, the negative ACK is resent. If they are received, the timer 
is stopped.  
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We implemented this optimization at the Authentication layer in two 
different variants: one for positive and one for negative ACKs. The 
implementation uses a TinyOS timer and structures that store packets that can be 
recovered.  

9. Testing Acknowledgements 

For testing ACKs we took a section of a bigger topology, more exactly: 
node 1 and 3. Node 3 wants to communicate with node 1, which is the base 
station, and sends an Authentication Request. It receives from node 1 a Challenge 
and sends the proper response. Node 1 also authenticates itself by sending the 
correct handshake response.  In Fig. 6 we can observe the handshake packets and 
the piggybacked ACKs. The connection is successfully established. 

 

 
Fig.6. Authentication handshake 

 
After the authentication connection has been established, data can be 

exchanged between the two nodes. Node 3 starts sending sensed data towards 
node 1. As we can observe in Fig. 7, the auth field is 1 and the ack field is 0 for 
the data packets.  

 

 
Fig.7. Normal flow of packets 

 
Node 1 sends an ACK for each valid data packet. The ACK packets have 

the auth and ack fields set to 1 and the payload contains the sequence number of 
the acknowledged packet. For the data messages, the payload is not displayed in 
the output. 

 

(3): AuthLayer: Packet sent [seq=1 auth=1 ack=0 (3->1)] 
(1): AuthLayer: Packet received [seq=1 auth=1 ack=0 (3->1)] 
(1): AuthLayer: Packet sent [payload=1 auth=1 ack=1 (1->3)] 
(3): AuthLayer: Packet received [payload=1 auth=1 ack=1 (1->3)] 

(3): AuthLayer: Packet sent [payload=124 MAC=0 auth=0 ack=0 (3->1)] 
(1): AuthLayer: Packet received [payload=124 MAC=0 auth=0 ack=0 (3->1)] 
(1): AuthLayer: Packet sent [payload=198 MAC=0 auth=0 (1->3)] 
(3): AuthLayer: Packet received [payload=198 MAC=0 auth=0 ack=1 (1->3)] 
(3): AuthLayer: Packet sent [payload=64671 MAC=65040 auth=0 (3->1)] 
(1): AuthLayer: Packet received [payload=64671 MAC=65040 auth=0 ack=1 (3->1)] 
(1): AuthLayer: Packet sent [payload=47653 MAC=64671 auth=0 (1->3)] 
(1): AuthLayer: Managed to authenticate myself to node 3 
(3): AuthLayer: Packet received [payload=47653MAC=64671 auth=0 ack=1 (1->3)] 
(3): AuthLayer: Managed to authenticate myself to node 1 
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Fig.8. Packet recovery 

 
In the case of packet loss, the timer is fired after the pre-defined period of 

time and the packet is resent, as presented in Fig. 8.  

10. Discussion 

The acknowledgement timeout period should be determined 
experimentally when deploying the application, because it depends on the 
network dimension, density, environment conditions, and other factors.  

The timeout period should be large enough to permit the data packets and 
the acknowledgements to travel the longest path from a sensor node to the base 
station. Therefore, the timeout should be greater than twice the period it takes a 
packet to travel the longest path.  

The application reliability, energy consumption and delay requirements 
should be taken into consideration when choosing between the two packet 
recovery methods and when adjusting the timeout period. A tradeoff between 
energy consumption and reliability should be considered depending on the 
application requirements.  

A similar attack to SYN Flood attack can be reproduced using ARs. The 
malicious node sends AR packets with spoofed source addresses to the same 
target node in order to determine the generation of a large number of Challenge 
messages and to create half-opened connections. This attack is very dangerous 
because it prevents the destination sensor to sleep. We developed a mechanism 
that detects flood attacks called the Storm Control Mechanism [15]. 

Our security protocol is able to fight against external attackers that do not 
possess the secret keys. However, it is not able to protect against compromised 
nodes. The solution is to use a trust and reputation model and we developed a 
lightweight solution for sensor networks [16]. 

11. Conclusion 

This paper presents an innovative Security Infrastructure for Wireless 
Sensor Networks whose main features are authentication, anti-replay, integrity, 
intrusion detection, and reliability.  

Strong authentication is provided by the use of a MAC and by establishing 
an authentication connection between the communicating nodes. The MAC is 
computed using a shared key between source and destination nodes; therefore, 

(3): AuthLayer: Packet sent [seq=7 auth=1 ack=0 (3->1)] 
(3): AuthLayer: Timeout ack node 1 
(3): AuthLayer: Packet re-sent [seq=7 auth=1 ack=0 (3->1)] 
(1): AuthLayer: Packet received [seq=7 auth=1 ack=0 (3->1)] 
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external attackers cannot compute a valid MAC because they do not possess that 
key. An end-to-end authentication connection between two nodes is required in 
order to exchange data packets between two nodes. The connection is built by a 
four-step handshake which requires both nodes to authenticate to each other.  

Anti-replay protection is assured by a mechanism in which the MAC is 
computed on the basis of packet context information, specifically the last packet 
sent between the source and destination nodes and the sequence number. Integrity 
protection is granted by computing the MAC as a function of the contents of the 
current packet.  

Reliability is provided by using positive or negative acknowledgements 
according to application requirements, taking into account that positive 
acknowledgements provide greater reliability with higher energy consumption and 
delay than negative ones.  

The Security Infrastructure has been implemented in the kernel of TinyOS 
and several attack scenarios have been simulated using TOSSIM. Evaluation tests 
indicate that the protocol is resistant to injection and replay attacks. Further 
research is required to estimate the performance of this solution regarding 
resource consumption, on variables such as energy, bandwidth, memory, and 
processor power.  
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