
U.P.B. Sci. Bull., Series C, Vol. 73, Iss. 2, 2011 ISSN 1454-234x

SECURITY INFRASTRUCTURE FOR WIRELESS SENSOR
NETWORKS

Laura GHEORGHE1, Răzvan RUGHINIŞ2, Nicolae ŢĂPUŞ3

Applicaţiile critice cum ar fi monitorizarea militară şi medicală folosesc
reţelele de senzori wireless cu scopul detecţiei evenimentelor specifice. De aceea,
este important ca aceste reţele să fie protejate împotriva atacurilor. În acest articol,
propunem o infrastructură de securitate pentru reţele de senzori wireless, care oferă
autentificare, integritate, prevenţia intruziunilor, protecţie împotriva atacurilor de
tip replay şi asigurarea fiabilităţii comunicaţiei. Protocolul a fost implementat în
kernelul sistemului de operare TinyOS şi testat folosind simulatorul TOSSIM în
cadrul mai multor scenarii de atac. Protocolul s-a dovedit capabil de a bloca
încercările de injectare de pachete suspecte sau de replay a packetelor.

Critical applications such as military and medical monitoring use Wireless
Sensor Networks with the purpose of detecting specific events. Therefore, it is
important to protect the network against malicious attacks. In this paper, we
propose a Security Infrastructure for Wireless Sensor Networks, which provides
authentication, integrity, intrusion prevention, anti-replay protection and reliability.
The protocol is implemented in TinyOS and tested with TOSSIM in several attack
scenarios. It proves to be able to reject malicious attempts to inject and replay
plackets.

Keywords: Wireless Sensor Networks, security, authentication, anti-replay,
integrity, reliability, attack, intrusion detection

1. Introduction

Wireless Sensor Networks (WSNs) are composed of small devices, called
sensor nodes that have several distinctive characteristics such as low energy
consumption, low processing power, limited memory and small radio range.
These nodes have the ability to organize themselves into a network and perform
sensing and communication operations in order to monitor a certain environment
[1].

1Assist., Faculty of Automatic Control and Computers, University POLITEHNICA of Bucharest,

Romania, e-mail: laura.gheorghe@cs.pub.ro
2 Conf., Faculty of Automatic Control and Computers, University POLITEHNICA of Bucharest,

Romania, e-mail: razvan.rughinis@cs.pub.ro
3 Prof., Faculty of Automatic Control and Computers, University POLITEHNICA of Bucharest,

Romania, e-mail: ntapus@cs.pub.ro

104 Laura Gheorghe, Răzvan Rughiniş, Nicolae Ţăpuş

There are at least five features that should be considered when designing
WSN solutions: scalability, security, reliability, self-healing and robustness [2].
Depending on the application, these requirements are more or less critical.

In military or medical applications, security is a critical requirement
because attackers can intercept and inject malicious packets in the network and
this could compromise the whole network [3]. Attackers can steal valuable
information or manipulate the network for malicious purposes [4].

A certain amount of resources is required when implementing a security
solution, including memory space, processing power and energy [5]. Therefore,
traditional security methods cannot be implemented in sensor networks. The
solutions designed for Wireless Sensor Networks should take in consideration
their specific constrains.

The security requirements of WSNs must also be considered when
designing a new security protocol. These requirements are: confidentiality,
integrity, authenticity, freshness, reliability, availability and energy-efficiency [6].
In this paper, we present a security infrastructure that meets the following key
requirements: authenticity, integrity, freshness, reliability and energy-efficiency.

2. Related Works

Among the most relevant solutions for security issues in WSNs, one can
count TinySec (2004), LEAP (2003), and SPINS (2002).

TinySec, designed by Karlof et al. [7] is included in the TinyOS as a link-
layer security architecture, addressing essential requirements such as
authentication and integrity, semantic security (employing an Initialization
Vector) and confidentiality. Anti-replay protection was not included as it was
deemed better to address it at higher levels of the communication protocol stack.

LEAP (Localized Encryption and Authentication Protocol) represents a
key management protocol for WSNs, designed by Zhu et al.[8]. It has been
subsequently implemented in TinyOS as LEAP+ and then used on Berkley Mica2
motes [9]. LEAP relies on four key categories that differentiate among message
types in WSNs. There is a Individual Key, which each node shares with the base
station. The base station uses Group Keys to communicate securely, by
encryption, with nodes. Nodes and their neighbors employ Cluster Keys, while
pairs of immediate neighbors use Pairwise Keys.

SPINS, designed by Perrig et al. [10] consists of two components: SNEP
and μTESLA, implemented to run on TinyOS. SNEP, which has been
subsequently replaced by TinySec, provided authentication, integrity, freshness
and confidentiality. μTESLA makes authenticated broadcasts possible by a
Message Authentication Code (MAC), and it also provides confidentiality by

Security infrastructure for Wireless Sensor Networks 105

encryption – emulating asymmetry by a delayed discosure of symmetric keys, and
freshness through nonce.

3. Authentication and Anti-replay Security Protocol Design

The Authentication and Anti-replay Security Protocol (AASP) aims at
providing authenticity, anti-replay, integrity and intrusion prevention for WSNs.
In order to meet these requirements, two methods are designed: an anti-replay
method, and an authentication connection [11].

3.1. Anti-replay Method

We designed an anti-replay method that uses Message Authentication
Code (MAC) and assumes that the attacker is an outsider that does not know the
secret key.

The protocol mechanism consists in including in the current message the
MAC computed using the last packet sent between the same source and
destination node. This mechanism bounds the packet to its context. The MAC is
recomputed and checked at the destination node. If it is correct, the packet is
accepted, if not, the packet is dropped.

The MAC is computed from a payload (M), a shared key (K), and a
collision-resistant hash function (H), using the HMAC algorithm [12].

In the case of a re-play attack the MAC computed at the destination node
would not match the MAC found in the packet.

However, the first packet sent between the same source and destination
will be always accepted at the destination if we use only this anti-replay
mechanism. For this reason, we introduce the authentication connection that
should be created before any data packet is accepted

3.2. Authentication Connection

An authentication connection has to be established before transferring any
data packet between a particular source and destination node. In order to obtain an
authentication connection, both nodes have to authenticate to each other using an
authentication handshake that consists in four steps. The proposed protocol is
connection oriented because of the establishment of this authentication
connection.

Both handshake and data packets have to be created and verified using the
anti-replay method described in the previous subsection, for providing strong
authentication and anti-replay protection.

The authentication handshake is initiated by the node that wants to send a
message to another node. The message consists in a standard “Authentication

106 Laura Gheorghe, Răzvan Rughiniş, Nicolae Ţăpuş

request” message that is sent to the destination node. The destination recognizes
the request and generates a random value called Challenge and sends it to the
source node. The source node computes the MAC of the Challenge value and
sends it to the destination node. The packet also contains the MAC of the
Authentication request value as it is build using the anti-replay method. The
destination node recomputes the MACs and valides them. If they are correct, the
node has to compute the MAC using both the Authentication request and the
Challenge value in order to authenticate itself. The MACs are validated by the
source node and if they are correct, the authentication connection is established. In
this moment, both the source and destination node have authenticated each other
and data packets can be exchanged. The Auth field will be 0 until the connection
is created and 1 afterwards.

4. Protocol Implementation

TinyOS is an open-source, event-driven and component-base operating
system for sensor networks [13]. We implemented our security protocol in the
kernel of TinyOS within two layers using three implementation components are
three wiring components.

The first layer, called the MAC layer, is placed between the
ActiveMessage layer and the AMSender and AMReceiver components. The
second layer, called the Authentication layer, is placed between the operating
system kernel and the application layer.

The MAC layer consists in two implementation components and two
wiring components. The first component is placed under the AMSender
component and receives all traffic that is sent by that particular node. This
component is used to compute and store the MAC for each packet.

The second component is placed under the AMReceiver and is able to
analyze and alter all traffic destined to the current node. It has the role to compute
and verify the MAC for each packet. Every time it receives a valid packet, it
computes and stores the MAC of that packet. Then, it compares the stored value
with the one found in the next received packet. If the value is incorrect, the packet
is not sent further to the AMReceiver component, so it is blocked or sent with a
modified Auth field towards the Authentication layer where it will be dropped.
So, we can either drop packets at the MAC or at the Authentication layer.

The Authentication layer consists in an implementation component and a
wiring component. It is used by the application layer for secure data delivery. The
component initiates and performs the authentication handshake, not permitting
any data traffic from the application layer until the authentication connection has
been established. The layer is able to store and validate all handshake messages
and to block data packets until the connection is established.

Security infrastructure for Wireless Sensor Networks 107

The state of each connection is stored in the Authentication layer of the
source and destination node. The connection initiator knows that it has initiated
the connection with a particular node and will be able to reject unrequested
Challenge messages. Both of them store the challenge value used in the
handshake, so they will be able to check the validity of the third and forth
handshake messages. The replayed handshake messages will be detected and
rejected by the Authentication layer.

The packet has a simple security header consisting in the P_MAC and the
Auth fields. The message field represents the packet payload. The network and
link layers will add headers of their own, but they are out of the scope for this
paper.

We describe the functionality implemented in TinyOS. We represent
packets in the format [P_MAC, Auth, Message]. We consider that node X wants
to communicate with node Y and initiates the conversation.

Node X Application layer generates a data packet. When receiving the
data packet, the Authentication layer stores it and generates an Authentication
Request (AR) packet [0, 0, AR] destined to node Y.

When node Y receives the AR, if it has no authentication connection with
node X, it generates a random Challenge (C) and sends it to the source node [0, 0,
C]. Node Y stores C for further computations.

Node X receives the Challenge and if it does not have an authentication
connection with node Y, it generates the third handshake message by computing
the two MACs. The packet [MAC(AR, K), 0, MAC(C, K)] is sent to node Y. The
Challenge is stored by node X for the verification of the forth handshake packet.

When node Y receives the packet, it computes the MACs and verifies
them. If they are valid, the node generates the forth handshake message [MAC(C,
K), 0, MAC(AR, C, K)]. Node X receives the packet and verifies it. If the forth
packet is valid, the authentication connection is established. In the next packets,
the auth field will be equal to 1.

 When node X and Y have an authentication connection and one of them
receives a handshake packet from the other, it rejects it with the alert: “Node
already authenticated”. If they do not have an authentication connection and one
of them sends a data packet, the packet is rejected with the alert: “Node not
authenticated”.

Whenever the P_MAC field is found incorrect, the packet is dropped with
the alert: “Incorect MAC”. The detection is made at the MAC layer.

5. Experimental Results

TOSSIM is tool that is able to simulate TinyOS applications in a precise
manner [14]. We are able to run some attack simulations using this particular

108 Laura Gheorghe, Răzvan Rughiniş, Nicolae Ţăpuş

simulator. In this paper we present some of the attack scenarios that were
analyzed and simulated.

We assume that the attacker is an outsider, an external device that does not
have the cryptographic keys of the network. However, the protocol format cannot
be obfuscated from the attacker, so we assume that he is able to interpret and build
coherent protocol messages.

In the first scenario, the attacker sends an authentication request to a
particular node and receives a Challenge. The attacker is not able to compute a
valid MAC, so the third handshake message should be rejected at the destination
with the alert: “Not a valid handshake packet”, as presented in Fig. 1. The packet
is recognized as invalid at both MAC and Authentication layers because both
P_MAC and the payload contain incorrect MACs.

Fig. 1. Not a valid handshake packet

In the second scenario, a malicious node poses as a node that already has

an authentication connection with the target node (source address spoofing) and
tries to send an invalid data packet. The P_MAC field does not contain the MAC
of the last message because the attacker cannot compute a correct value, so the
packet is dropped at the destination with the alert: “Incorrect MAC”, as observed
in Fig. 2.

Fig. 2. Not a valid handshake packet

In the third scenario, the attacker tries to replay a packet from a valid

conversation. The P_MAC field is not matching the MAC of the previous packet
in the target conversation, so the packet is dropped with the alert: “Incorrect
MAC”, similar to Fig. 2.

In the forth scenario, the attacker tries to replay a handshake message. The
Authentication layer is able to recognize this packet and can generate a more

X Y

[RandomValue, 0, MaliciousData] Incorrect MAC.
Invalid packet is dropped.

X Y

[0, 0, AR]

[0, 0, C]

[RandomValue, 0, RandomValue] Not a valid handshake packet.
Invalid packet is dropped.

Security infrastructure for Wireless Sensor Networks 109

specific alert: “Replayed handshake message”. However, both layers are able to
recognize this packet as invalid.

In the fifth scenario, the attacker poses as an authenticated node and tries
to send an “Authentication request” message to its connection partner. The target
rejects the message with the alert: “Node already authenticated”. If we would
permit this kind of re-authentication, it would easily be used by attackers to tear
down connections. This problem should be solved using connection timeout. If an
authentication connection is desynchronized or one of the nodes looses connection
data, re-authentication would be possible after the connection times out.

The AASP protocol has proved itself resistant to many types of injection
and replay attacks. However, the de-synchronization problem appears when
packets are lost. We describe the problem and its solution in the subsequent
sections.

6. Reliability Mechanisms

The main problem regarding the basic functionality of AASP is related to
packet loss. The wireless medium is not a perfect one; therefore it is not possible
to avoid packet loss. When packets are lost, the anti-replay mechanism is de-
synchronized.

In Fig. 3, we present the effect of packet loss upon the authentication
connection. Message i contains the MAC of message i-1, and node Y compares
this MAC with the one computed from the previous valid packet. If they are
equal, the packet is considered correct and the MAC of message i is computed and
stored. Message i+1 contains the MAC of message i, but it is lost on its way to
destination. Message i+2 contains the MAC of message i+1 and node Y compares
the stored MAC of message i with the MAC found in the packet, of message i+1.
The values are not equal, so the packet is considered invalid and dropped. All
subsequent messages will be dropped by node Y and the connection is considered
de-synchronized.

Fig. 3. Anti-replay mechanism de-synchronization

X Y

[MAC (msgi-1), msgi]

[MAC (msgi), msgi+1]

[MAC(msgi+1), msgi+2] Incorrect hash - Hash(msgi) expected.
Invalid packet is dropped.

110 Laura Gheorghe, Răzvan Rughiniş, Nicolae Ţăpuş

SPINS deals with the same problem. They use, for the anti-replay
mechanism, a counter that is incremented at each packet. The anti-replay
mechanism is de-synchronized when packets are lost, because the destination
expects one counter and the received packet is based on another counter.

In order to recover from de-synchronization, the lost packets have to be re-
sent by the source node. Therefore, a retransmission mechanism has to be
implemented. The packet retransmission can be accomplished by either positive
or negative acknowledgments. The positive acknowledgements are more reliable
but they consume more energy than the negative ones.

In the case of positive acknowledgements, the destination node has to send
an acknowledgement for each valid packet that it has received, as in Fig. 4.

Fig. 4. Positive ACK

The source node waits a pre-defined period of time to receive the
acknowledgement and when it times out, it resends the packet. Only when it
receives the acknowledgement for the current packet, it will send the next packet.
The acknowledgement has to contain the sequence number of the acknowledged
packet.

In the case when acknowledgements are lost, the packet is resent anyway
and it will be considered re-played message. Therefore, losing data packets is less
harmful then losing data packets.

In the case of negative acknowledgements, the destination node detects
lost packets only when it receives out-of-order packets, which are packets with a
sequence number greater than the expected one. When the destination detects
packet loss, it sends a negative acknowledgement to the source node.The source
node will re-send all packets with the sequence number equal and greater than the
expected one, and less then the received one. The destination node will store the

X Y

[Message i]

[Message i+1]

[Message i+1]

[ACK Message i]

[ACK Message i+1]

ACK Timeout

Security infrastructure for Wireless Sensor Networks 111

out-of-order packet until the lost ones are recovered and they are all checked by
the anti-replay mechanism. The mechanism is described in Fig. 5.

Fig. 5. Negative ACK

Different sensor network applications require different reliability level.

Critical application require all messages to be received correct and without delay,
while habitat monitoring can tolerate packet loss and delay.

When comparing the two packet recovery methods in the context of sensor
network applications, both of them present advantages and disadvantages. We
compare them in terms of energy consumption, reliability and delay in the case of
packet loss, as presented in Table 1.

Table 1
Comparison between positive and negative acknowledgements

ACK type Positive Negative
Consumed energy Greater Less
Reliability Greater Less
Delay – low packet loss Greater Less
Delay- high packet loss Less Greater

In terms of energy consumption, the negative ACKs are more efficient

than the positive ones, because they are sent only when an out of order packet is
received by the destination.

X Y

[Message i]

[Message i+2]

[Message i+3]

[NACK (i+1, i+3)]

[Message i+1]

[Message i+1]

[Message i+2]

Stored msgi+3

Delivered msgi+1

Delivered msgi+2

Delivered msgi+3

Delivered msgi

112 Laura Gheorghe, Răzvan Rughiniş, Nicolae Ţăpuş

However, the positive ACKs provide a greater level of reliability because
they are tracking the state of delivery for each packet and are able to detect packet
loss faster than negative ACKs. The negative ACKs method permits the loss of
several packets before detection and recovery. Positive ACKs method performs
recovery from the first lost packet.

The delay depends on the amount of lost packets. In the case of low packet
loss, the positive ACKs introduce greater delay then negative ones because the
source has to wait for every packet to be acknowledged.

In the case of high packet loss, the negative ACKs introduce greater delay
than positive ones, because a large amount of packets can be lost before the
destination identifies the problem and sends a negative ACK.

8. Implementing Acknowledgements

For implementing this optimization we introduce a new field in the
protocol header, called ACK/NACK flag that is represented on one bit. The
packet is acknowledgement when the ACK flag is set.

In the case of the handshake packets, acknowledgments can be
piggybacked in the actual messages. However, be cannot use the same procedure
for data packets because in sensor networks the traffic is mostly unidirectional,
from the sensor nodes to the base station. Therefore, we need separate
acknowledgement packets for data messages.

The positive ACK packets contain the sequence number of the
acknowledged packet in order to specify which packet has reached destination.
The negative ACK packets contain two sequence numbers: the sequence number
of the expected packet, which is the first lost packet, and the sequence number of
the out-of-order packet that was received at the destination. Based on this
information, the source node has to re-send all lost packets.

When using positive ACKs, the source node has to store only the last
packet sent until the ACK is received. In the case of negative ACKs, the node has
to store a pre-determined number of packets that can be requested by the
destination node.

For the positive ACKs we need a single timer to implement the ACK
timeout and resend the packet. If the ACK is received before timeout, the next
packet is sent and the timer is reset. If the ACK is not received before timeout, the
packet is re-sent and the timer is reset.

For the negative ACKs we need a timer at the destination. This timer is set
when the negative ACK is sent to the source node. If the lost packets are not
received until timeout, the negative ACK is resent. If they are received, the timer
is stopped.

Security infrastructure for Wireless Sensor Networks 113

We implemented this optimization at the Authentication layer in two
different variants: one for positive and one for negative ACKs. The
implementation uses a TinyOS timer and structures that store packets that can be
recovered.

9. Testing Acknowledgements

For testing ACKs we took a section of a bigger topology, more exactly:
node 1 and 3. Node 3 wants to communicate with node 1, which is the base
station, and sends an Authentication Request. It receives from node 1 a Challenge
and sends the proper response. Node 1 also authenticates itself by sending the
correct handshake response. In Fig. 6 we can observe the handshake packets and
the piggybacked ACKs. The connection is successfully established.

Fig.6. Authentication handshake

After the authentication connection has been established, data can be

exchanged between the two nodes. Node 3 starts sending sensed data towards
node 1. As we can observe in Fig. 7, the auth field is 1 and the ack field is 0 for
the data packets.

Fig.7. Normal flow of packets

Node 1 sends an ACK for each valid data packet. The ACK packets have

the auth and ack fields set to 1 and the payload contains the sequence number of
the acknowledged packet. For the data messages, the payload is not displayed in
the output.

(3): AuthLayer: Packet sent [seq=1 auth=1 ack=0 (3->1)]
(1): AuthLayer: Packet received [seq=1 auth=1 ack=0 (3->1)]
(1): AuthLayer: Packet sent [payload=1 auth=1 ack=1 (1->3)]
(3): AuthLayer: Packet received [payload=1 auth=1 ack=1 (1->3)]

(3): AuthLayer: Packet sent [payload=124 MAC=0 auth=0 ack=0 (3->1)]
(1): AuthLayer: Packet received [payload=124 MAC=0 auth=0 ack=0 (3->1)]
(1): AuthLayer: Packet sent [payload=198 MAC=0 auth=0 (1->3)]
(3): AuthLayer: Packet received [payload=198 MAC=0 auth=0 ack=1 (1->3)]
(3): AuthLayer: Packet sent [payload=64671 MAC=65040 auth=0 (3->1)]
(1): AuthLayer: Packet received [payload=64671 MAC=65040 auth=0 ack=1 (3->1)]
(1): AuthLayer: Packet sent [payload=47653 MAC=64671 auth=0 (1->3)]
(1): AuthLayer: Managed to authenticate myself to node 3
(3): AuthLayer: Packet received [payload=47653MAC=64671 auth=0 ack=1 (1->3)]
(3): AuthLayer: Managed to authenticate myself to node 1

114 Laura Gheorghe, Răzvan Rughiniş, Nicolae Ţăpuş

Fig.8. Packet recovery

In the case of packet loss, the timer is fired after the pre-defined period of

time and the packet is resent, as presented in Fig. 8.

10. Discussion

The acknowledgement timeout period should be determined
experimentally when deploying the application, because it depends on the
network dimension, density, environment conditions, and other factors.

The timeout period should be large enough to permit the data packets and
the acknowledgements to travel the longest path from a sensor node to the base
station. Therefore, the timeout should be greater than twice the period it takes a
packet to travel the longest path.

The application reliability, energy consumption and delay requirements
should be taken into consideration when choosing between the two packet
recovery methods and when adjusting the timeout period. A tradeoff between
energy consumption and reliability should be considered depending on the
application requirements.

A similar attack to SYN Flood attack can be reproduced using ARs. The
malicious node sends AR packets with spoofed source addresses to the same
target node in order to determine the generation of a large number of Challenge
messages and to create half-opened connections. This attack is very dangerous
because it prevents the destination sensor to sleep. We developed a mechanism
that detects flood attacks called the Storm Control Mechanism [15].

Our security protocol is able to fight against external attackers that do not
possess the secret keys. However, it is not able to protect against compromised
nodes. The solution is to use a trust and reputation model and we developed a
lightweight solution for sensor networks [16].

11. Conclusion

This paper presents an innovative Security Infrastructure for Wireless
Sensor Networks whose main features are authentication, anti-replay, integrity,
intrusion detection, and reliability.

Strong authentication is provided by the use of a MAC and by establishing
an authentication connection between the communicating nodes. The MAC is
computed using a shared key between source and destination nodes; therefore,

(3): AuthLayer: Packet sent [seq=7 auth=1 ack=0 (3->1)]
(3): AuthLayer: Timeout ack node 1
(3): AuthLayer: Packet re-sent [seq=7 auth=1 ack=0 (3->1)]
(1): AuthLayer: Packet received [seq=7 auth=1 ack=0 (3->1)]

Security infrastructure for Wireless Sensor Networks 115

external attackers cannot compute a valid MAC because they do not possess that
key. An end-to-end authentication connection between two nodes is required in
order to exchange data packets between two nodes. The connection is built by a
four-step handshake which requires both nodes to authenticate to each other.

Anti-replay protection is assured by a mechanism in which the MAC is
computed on the basis of packet context information, specifically the last packet
sent between the source and destination nodes and the sequence number. Integrity
protection is granted by computing the MAC as a function of the contents of the
current packet.

Reliability is provided by using positive or negative acknowledgements
according to application requirements, taking into account that positive
acknowledgements provide greater reliability with higher energy consumption and
delay than negative ones.

The Security Infrastructure has been implemented in the kernel of TinyOS
and several attack scenarios have been simulated using TOSSIM. Evaluation tests
indicate that the protocol is resistant to injection and replay attacks. Further
research is required to estimate the performance of this solution regarding
resource consumption, on variables such as energy, bandwidth, memory, and
processor power.

R E F E R E N C ES

[1] J. Zheng, A. Jamalipour, “Wireless Sensor Networks: A Networking Perspective”, Wiley-IEEE
Press, 2009

[2] D. Westhoff, J. Girao, A. Sarma, “Security Solutions for Wireless Sensor Networks”, NEC
Technical Journal, vol. 1, 2006, pp. 2-6

[3] T. Kavitha and D. Sridharan, “Security Vulnerabilities In Wireless Sensor Networks: A
Survey”, Journal of Information Assurance and Security, vol. 5, 2010, pp. 31-44

[4] T. Zia, A. Zomaya, “Security issues in wireless sensor networks”, International Journal of
Communications, vol. 2, 2006, pp. 106-115

[5] J.P. Walters, Z. Liang, W. Shi, V. Chaudhary, “Wireless Sensor Network Security: A Survey”,
Security in Distributed, Grid, Mobile, and Pervasive Computing, CRC Press, 2007

[6] Y. Qian, K. Lu, D. Tipper, “Towards Survivable and Secure Wireless Sensor Networks”, 2007
IEEE International Performance, Computing, and Communications Conference, Apr. 2007,
pp. 442-448

[7] C. Karlof, N. Sastry, D. Wagner, “TinySec: a link layer security architecture for wireless sensor
networks”, Proceedings of the 2nd international conference on Embedded networked sensor
systems, ACM, 2004, pp. 162-175

[8] S. Zhu, S. Setia, S. Jajodia, “LEAP: efficient security mechanisms for large-scale distributed
sensor networks”, Proceedings of the 10th ACM conference on Computer and
communication security - CCS ’03, New York, New York, USA: ACM Press, 2003, pp. 62-
72

[9] S. Zhu, S. Setia, S. Jajodia, “LEAP+: Efficient security mechanisms for large-scale distributed
sensor networks”, ACM Transactions on Sensor Networks, vol. 2, Nov. 2006, pp. 500-528

116 Laura Gheorghe, Răzvan Rughiniş, Nicolae Ţăpuş

[10] A. Perrig, R. Szewczyk, J. Tygar, V. Wen, D.E. Culler, “SPINS: Security protocols for sensor
networks”, Wireless networks, vol. 8, 2002, pp. 521-534

[11] L. Gheorghe, R. Rughinis, R. Deaconescu, N. Tăpus, “Authentication and Anti-replay
Security Protocol for Wireless Sensor Networks”, The Fifth International Conference on
Systems and Networks Communications, ICSNC 2010, 2010, pp. 7-13

[12] B. Arazi, “Message authentication in computationally constrained environments”, IEEE
Transactions on Mobile Computing, vol. 8, 2009, p. 968–974

[13] P Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo, D. Gay, J. Hill, M.
Welsh, E. Brewer, D. Culler, “TinyOS: An Operating System for Sensor Networks”,
Ambient Intelligence, 2005, pp. 115-148

[14] P. Levis, N. Lee, M. Welsh, D. Culler, “TOSSIM: Accurate and scalable simulation of entire
TinyOS applications”, Proceedings of the 1st international conference on Embedded
networked sensor systems, ACM, 2003, pp. 126-137

[15] L. Gheorghe, R. Rughinis, R. Deaconescu, N. Tăpus, “Reliable Authentication and Anti-
replay Security Protocol for Wireless Sensor Networks”, The Second International
Conferences on Advanced Service Computing, SERVICE COMPUTATION 2010, 2010,
pp. 208-214

[16] R. Rughinis, L. Gheorghe, “Storm Control Mechanism in Wireless Sensor Networks”, 9th
RoEduNet IEEE International Conference, IEEE, 2010, pp. 430-435.

