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ON THE TIME/FREQUENCY SIMULTANEOUS ALIGNMENT 
OF THE SIGNALS COMPORTMENT 

 
Lia ROTARIU1 

 
 

 În această lucrare, conceptul de “atom-frecvenţă” (T/F),  elaborat de J. 
von Neumann şi D. Gabor, este punctat în termeni matematici; de asemenea, unele 
proprietăţi ale transformatei Fourier cu fereastră sunt scoase în evidenţă 
(Proposition 2 şi Proposition 3); în final este prezentată o aplicaţie a undinelor 
pentru descrierea mecanismului fiziologic al urechii umane în timp-frecvenţă. 
 

 In this paper , the “atom-frequency” (T/F) concept, elaborated by J. von 
Neumann and D. Gabor,  is pointed out in mathematical terms; also, some 
properties of Fourier transformation with window are marked out (Proposition 2 
and Proposition 3);  finally, we give an application of wavelets for (T/F) human ear 
physiological mechanism description. 
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           1. Introduction 
 
           If CRu →:  is a )(1 RL -class function, ad-hoc called signal, then we 
assign its Fourier transformation CRu →:ˆ  , which is a continuous and bounded 
function, defined by  
 

                                                           ,)()(ˆ ∫
∞

∞−

= tuu ω                                              (1) 

this improper integral being convergent for any R∈ω . The function û is called 
the frequency spectrum of the signal u , and |)(ˆ|)( ωω uA = , the frequency 
amplification of u . 
            An insufficiency of the classic Fourier transformation is constituted by the 
fact that we have to know the values of u  for entire time axis (according to (1)) if 
we want to calculate the spectrum )( 0ωu in only one frequency R∈0ω  . 
Applying the Fourier inversion formula in adequate conditions (for example, if u  
is a continuous function and )()( 21 RLRLu ∪⊂ ) , 
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                                                           , )(ˆ
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=                             (2) 

it turns out that to determinate the sample )( 0tu  for a time moment Rt ∈0 it is 
necessary to know the spectrum )(ˆ ωu in entire frequency band. 
           Thus, we consider the pairs ),( 00 ωt , simultaneous taken, and analyse the 
time/frequency comportment of some signals in their neighbourhood.    
 
 
            2. Time-Frequency Atoms 

 
            It is considered a plan related to an orthogonal fixed point where by 
abscissa is mentioned the generic time t , and by ordinate line, the generic 
frequency ω . To represent a signal in an orthogonal plane ω0t  means to take 
simultaneous its time duration and its frequency ratio (human voice case). We fix 
a pair RRt ×∈),( 00 ω . 
            Intuitively, an )/( FT  atom around the point  ),( 00 ωt  is any signal u  
(from )()( 21 RLRL ∪  )  with compact support, which contains 0t (so u  is null out 
of  the support); moreover, û  has to have compact support, which contains 0ω  (so 
frequencies )(ˆ ωu are insignificant out of the support). According to the 
indeterminism principle, such a non-zero signal doesn’t exist, no matter how 
small are the supports of  u  and û .   
            John  von Neumann called FT /  atom any family of functions by the form 

)}({ 0
0 ttue ti −⋅ω , with RRt ×∈),( 00 ω , where )(tu  is a fixed function (from  

)()( 21 RLRL ∪ -class). Distributing the points  ),( 00 ωt uniformly in the ωtO  plan , 
J. von Neumann  has recommanded, in the Signals Theory, to use an 
orthonormated base in the Hilbert space )(2 RL  relative to the dot product 

dttgtfgf )()(, ⋅>=< ∫
∞

∞−

, made of FT /  atoms. 

 

            Proposition 1. Let be 
t

ttu
π

πsin)( =   (for 0≠t ) and 1)0( =u . The FT /  

atoms  
                                                 )()( 2 ktuetu lt

lk −⋅= π  ; ,, Zlk ∈                            (3) 
(corresponding to the values ,0 kt =  lπω 20 = ), make an orthonormated base for 

)(2 RL . 
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                   Proof. Using the Parseval formula, it results immediately that 
kglppglk uu δδ ⋅>=< , . 

            We have a representation by the form ∑=
lk

lklk tuctf
,

)()(  for any signal 

)(2 RLf ∈ ; the coefficients lkc  are immediately deduced from >=< lklk ufc , , for 
any Zlk ∈, . Therefore, any continual (analogical) signal f  is identified by the 
sequence lkc , which is an illustration of the delator phenomenon named 
analogical/digital conversion of the signals. 
            For the signal )(tu  from Proposition 1 (called „attenuated sine”), we have 

                                                            
⎩
⎨
⎧ ⊂     

=
restin    ,0

),,(if,1
)(ˆ

ππω
ωu  

and for any Zlk ∈, fixed, it results that 

∫ ∫
∞

∞−

∞

∞−

−− ⋅−⋅=⋅= ;)()()(ˆ 2 dtektuedtetuu tiiltti
lklk

ωπωω  

making a change of variable, τ=− kt , we obtain  
)2(ˆ)(ˆ )2( lueu lik

lk πωω πω −⋅= −− , 
for any Zlk ∈, . The graphics of the functions u  and û  are indicated in                    
Fig. 1; a), b). 
 

 

 

 

 

   

 

 
                 a)                                           Fig. 1.                                                                b) 

            The signal )(ˆ tu  has a good position in 0=t  and it is insignificant out of 
the system ]1,1[− ; )( ktu −  is the translation of u  with k  time units and 
it is well localized in the point k . Therefore, )(tulk  is well localized in k  and it is 

)t(uy =

y

t3− 1−2− 1 2 3

y

0π− π
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insignificant out of the interval ]1,1[ +− kk , for Zk ∈ . 
            In the same way, )2(ˆ lu πω −  is null for ],[2 πππω −∉− l , hence )(ˆ ωlku  is 
null out of the interval ]2,2[ ll ππππ ++− , which means that )(ˆ ωlku  is well 
localized around the lπ2 frequency. 
            Let us consider now rectangles from the ωtO  plan, hachured like in Fig. 2 
and centered in the points )2,( lk π , with Zlk ∈, . In this way, the time/frequency 

FT /  plan, identified with the ωtO  plan, is parried with rectangles, like in Fig. 2. 

 
Fig. 2. 

             These kind of rectangles can be covered between themselves (so that they 
can’t make a plan partition). 
            The orthonormated base lku , Zkl ∈, from the Proposition 1 presents six 
disadvantages, which are connected with weak convergence in dots products 
calculus >< lkut., , necessary for signals digital representation. Also, the fact that 
all the FT /  atoms have the same duration is an impediment in some type of 
applications (for example, in Geophysics or Radar). That’s why we proposed 
some other kind of orthonormated bases for )(2 RL . 
 
            3. FT /  Transformation 
 
            D. Gabor proposed the replacement of the discret values Zlk ∈, with 
continuous variables R∈τξ , , considering FT /  atoms by the type 
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)()( τξ
ξτ −⋅= twetw ti , where )()( 2 RLtw ∈  is a signal with the norm 

π2
1

2
=w  

(called window). For any signal )(2 RLu ∈ , a function with two real variables, 

uW , defined by 

                           ,)()(,),( ∫
∞

∞−

− −⋅⋅>==< dttwetuwuW ti
u τξτ ξ

ξτ                            (4) 

was called the FT /  transformation of u , with the window w  fixed (or 
equivalent of Fourier transformation with window). 
            It may be remarked the analogy with the relation (1). D. Gabor proved , 
knowing uW  (similarly with (2)), the recuparation of u  formula, namely 

                                            ∫∫ ⋅=
2

.)(),()(
R u ddtwWtu ξτξτ ξτ                                (5) 

 
            Note: If 1≡w  (constant function), we have )(ˆ),( ξξτ uWu =  (Fourier 
classic transformation) and if τ=w  (Dirac distribution), then 

ξττξτ i
u euW −⋅= )(),( . In the two cases, w  doesn’t belong to the space )(2 RL . 

            We fix R∈τ  and 0>a . We choose a window RRw →:  which has to 

have its support contained in the interval ],[ a+−− ττ . Then, for 
a
nπξ 2

= , Zn ∈ , 

we have (according to (4))  

∫ ∫
∞

∞−

−−
⋅−⋅=⋅−⋅=

a t
a
int

a
in

u dtetwtudtetwtu
a

nW
0

22

)()()()()2,(
ππ

ττπτ . 

 
            Proposition 2. Let be )(2 RLu ∈  and  nc  the Fourier complex coefficients 

of the function )()( τ−⋅ twtu  restricted to the interval ],0[ a  and then extended to 
R  by its periodicity. In these conditions , 

                                                  nu ca
a

nW ⋅=)2,( ππ , for any Zn ∈ .                    (6) 

                   Proof. The demonstration results directly from definitions. 
            Therefore, knowing uW , we can determinate the coefficients nc  using the 
relation (6); the signal )(tu is recovered from its Fourier coefficients: 

∑
∈

⋅=
Zn

t
a

in

n ectu
π2

)( . 

In other words, choosing convenable windows, from data about the signal )(tu , 
we can find out local data about its FT /  transformation, uW , and conversely. 
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            Now we fix a window w . For any fixed Rt ∈ω, , we can consider the 
function CRht →:,ω  defined by 

                                                       ωτ
ω ττ i

t etwh ⋅−= )()(, . 

For any vector )(2 RLh ∈ , we note with *h  the functional defined by 
>=< hxh ,* . With these notations , we can write: 

 
            Proposition 3. For any window w , we have the relation 

∫∫ =⋅
2

*
,,R tt Idtdhh ωωω , 

where I is the identity on the Hilbert space )(2 RL . 
                   Proof. Let us take )(2 RLu ∈ , arbitrary fixed. We have to prove that 
                                               ∫∫ ⋅=

2
)()( )( *

,,R tt dtduhhu ωττ ωω .                             (7) 

Be it )()()( twuut −⋅= τττ . Then )(ˆ),( τω tu utW = , and, according to the relation 

(2), it results that ∫
∞

∞−

⋅= ωω
π

τ τω detWu i
ut ),(

2
1)( . If we multiplicate with )( tw −τ  

and integrate related with t , we obtain  

                          ∫ ∫∫
∞

∞−

∞

∞−

∞

∞−

⋅−=−⋅ ,)(),(
2
1)()( ωτω
π

ττ τω detwtWdtdttwu i
ut  

which means 

                                     ∫∫ ⋅=⋅
2

)(),(
2
1)( ,

2

2 R tu dtdhtWwu ωτω
π

τ ω ; 

we also know that 
π2

1
2

=w . That’s why we can write now the following 

relation: 
                                              ∫∫ ⋅=

2
),()()( ,R ut dtdtWhu ωωττ ω  . 

But  

                           ∫ ∫
∞

∞−

∞

∞−

− =⋅=⋅⋅−= ττττττω ω
ωτ duhdeutwtW t

i
u )()()()(),( ,  

                                          )(, *
,, uhhu tt ωω >==< , 

and the relation (7) is now proved. 
 
            Corollary. For any signal )(2 RLu ∈ , its energy 2

2
)( uuE =  is given by 

the formula 
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∫∫=
2

2|),(|)(
R u dtdtWuE ωω . 

                   Proof. We have )()(),(),(|),(| *
,

*
,

2 uhuhtWtWtW ttuuu ωωωωω ⋅=⋅= ; so, 

∫∫ =
2

22|),(|
R u udtdtW ωω . 

            The size 2|),(| ωtWu  has the next phisycal interpretation: it is the energy 
density of the signal u  related to the time unit in FT /  plan. 
 
            Note: The FT / transformation works with a fixed duration of the 
window, meaning that we have to consider only )( btw − translations of the 
window if we want to calculate ),( ξbWu ; this can be an inconvenient in FT /  
analysis of some signals )(tu  with high variations in short intervals of time (like 
in Geophysics, Radar, Human voice, etc.). This was one of the reasons which 
determinated us to propose more flexible windows, which can be translatated and  
also, delated (or contracted); this fact marked the appearance of the wavelet 
concept. 
            We fix a window-function RR →Ψ :  so that )(tΨ  and )(ttΨ  belong to 

)(2 RL ; moreover, 0)0(ˆ =Ψ ; the function Ψ was called wavelet. For any signal 
)(2 RLu ∈ , we define the transformation of u  by the wavelet Ψ as the next 

function of two real variables ba, , with 0>a : 

                                     ∫
∞

∞−

⎟
⎠
⎞

⎜
⎝
⎛ −

Ψ⋅= dt
a

bttu
a

baWu )(1),( .                                   (8) 

Applying the Parseval classic relation, we obtain 

                               ∫
∞

∞−

− =Ψ⋅⋅= ωωω
π

ω daeuabaW ib
u )(ˆ)(ˆ

2
),(  

                                             ∫
∞

∞−

− Ψ⋅⋅= ωωω
π

ω daeua ib )(ˆ)(ˆRe . 

This relation shows the connection with the FT /  transformation. 
 
 
            4.  Application 

 
            Let x  be the location of  a sensitive cell in the spiral shell cortex of the 
human ear. We suppose that the audio signal received in x , )(tg x , is the 
convolution of an acoustic signal )(tu  with a linear filter which depends by the 
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location x , and has the transfer function )(ωxH . Then, in the frequency domain, 
we have the relation 
                                               )()(ˆ)(ˆ ωωω xx Hug ⋅= .                                           (9) 
            Suppose that by the spiral shell geometry itself we have a delay in 
frequency, i.e. there exists a function G  so that )ln()( ωω −= xGH x . If we note 

xea −= , results that 
a

x 1ln=  and we consider a wavelet )(tΨ  with 

                                                      ⎟
⎠
⎞

⎜
⎝
⎛=Ψ

ω
ω 1ln)(ˆ G .                                          (10) 

Then, using (9), results )(ˆ)(ˆ)(ˆ ωωω ug xx ⋅Ψ=  and from the inversion Fourier 
formula (2), we obtain the relation 

∫
∞

∞−

=⋅Ψ⋅= ωωω
π

ω duaetg ti
x )(ˆ)(ˆ

2
1)(  
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⎠
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⎝
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Ψ⋅=Ψ⋅ τττωωω
π

ω d
a
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a

deau ti )(1)(ˆ)(ˆ
2
1 . 

Using again the Parseval relation, results that the reception at the sensorial cell 
localized in x  is given by  
                                                   ),()( 2/ xx

x etWetg −−= . 
            The construction of the )(tW wavelet with the property (10) is still an open 
problem. 
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