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INTEGRATED DEEP LEARNING FRAMEWORK FOR 

BREAST CANCER DETECTION 

Cornelia Ionela BĂDOI 1,* 

Breast cancer is a leading cause of women mortality, requiring an early and 

precise diagnostic. This study presents an integrated deep learning framework for 

breast ultrasound image classification, leveraging nine empirical MobileNetV2-based 

convolutional neural network models trained on a curated dataset with expert-

validated annotations. The optimal configuration, characterized by a low learning 

rate, an optimal batch size, and incorporation of segmentation masks, achieves a 

malignant class accuracy of 0.93 and a test loss across all classes below 0.2. Notably, 

the framework requires training only a single hidden layer, enabling efficient 

deployment on standard consumer computers, regardless of clinical setting size or 

computational resources. These results highlight the critical importance of combining 

classification and segmentation in a multi-task learning paradigm, and demonstrate 

a practical, accessible approach that improves the reliability and scalability of breast 

cancer detection using ultrasound imaging.  
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1. Introduction 

Breast cancer is a prevalent and life-threatening disease that affects a 

significant proportion of the female global population, accounting for a 

considerable number of cancer-related deaths. The early and accurate detection of 

the disease is of paramount importance for improving survival rates and guiding 

effective treatment strategies. Among the various imaging modalities available, 

ultrasound has become a staple in clinical practice due to its non-invasive nature, 

accessibility, and ability to distinguish between different types of breast lesions [1]. 

Notwithstanding the aforementioned advantages, the interpretation of breast 

ultrasound images poses considerable challenges [2]. Visual distinctions amongst 

normal, benign, and malignant tissues can be subtle, often resulting in diagnostic 

uncertainty [3]. Furthermore, the distribution of cases in clinical datasets is typically 

imbalanced, with benign lesions occurring more frequently than malignant or 

normal findings. This imbalance has the potential to introduce bias to machine 

learning (ML) models, consequently reducing their effectiveness in identifying the 
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minority class, often the malignant class, whose identification is of the most critical 

importance [3].  

However, recent years brought significant progress in applying DL to breast 

ultrasound image analysis, with the goal of improving early and accurate detection 

of breast cancer [4]. Several studies have explored CNN-based classification for 

breast ultrasound. Yap et al. demonstrated that CNNs outperform traditional ML 

approaches in distinguishing benign from malignant (i.e., cancerous) lesions [5]. 

However, this method did not address class imbalance, resulting in models biased 

toward the majority class, and did not utilize segmentation data, missing important 

spatial context for lesion boundaries [5]. In a similar manner, the study referenced 

in [6] investigated transfer learning and lesion segmentation but treated 

segmentation and classification as separate tasks. This limited the potential synergy 

between spatial and semantic features, and their relatively small dataset size 

restricted generalizability of the results.  

Furthermore, recent research has also introduced advanced techniques such 

as attention mechanisms and self-supervised learning [7]. Specifically, attention 

modules have been integrated to augment detection performance; however, the 

associated models tend to be computationally demanding, thereby limiting their 

applicability in real-time or resource-constrained clinical environments [8]. In this 

context, Zhang et al. applied contrastive learning to exploit unlabeled datasets, yet 

their framework required extensive post-training fine-tuning and was relatively 

harder to interpret, which is a critical factor in making medical decision [9]. 

In summary, despite the evident demonstrated benefits, several critical 

challenges persist [10]. Notably, numerous previous studies have not effectively 

harnessed the synergistic potential of combining classification and segmentation 

approaches, nor have they systematically tackled the issue of class imbalance, 

which is commonly encountered in clinical datasets. Furthermore, the optimization 

of hyperparameters has frequently been insufficiently investigated, despite its 

substantial impact on model convergence and generalization performance. 

The current study aims to address these limitations by introducing an 

integrated framework that synergistically combines classification and segmentation 

information through a multi-task learning (MTL) paradigm. MTL involves training 

a single model to perform multiple related tasks simultaneously by sharing 

underlying representations, thereby promoting improved generalization ability and 

enhanced predictive performance [11]. By systematically optimizing 

hyperparameters and utilizing segmentation masks, the proposed method 

effectively alleviates class imbalance and improves the accuracy and recall of 

malignant lesion detection. This approach offers a reproducible and clinically 

pertinent solution, thereby facilitating the advancement of more precise and 

dependable diagnostic tools for breast ultrasound analysis.  
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The paper is structured as follows: 

Section 1 reviews recent DL approaches for breast ultrasound analysis, with a 

focus on advances like CNNs, attention mechanisms, and self-supervised 

learning, while also discussing persistent challenges such as class imbalance 

and limited integration of segmentation data for breast ultrasound analysis.  

Section 2 describes the dataset, detailing the class distribution, image 

characteristics, preprocessing steps, and the use of segmentation masks.  

Section 3 outlines the DL models, detailing the base MobileNetV2-based 

architecture, the key hyperparameters, and the integration of segmentation 

information.  

Section 4 presents the results and the performance assessment of the trained 

models, focusing on accuracy, convergence, and the impact of segmentation 

and hyperparameter choices.  

Finally, Section 5 concludes the paper by summarizing the main findings and 

discussing their clinical relevance and potential directions for future research. 

2. Dataset 

The dataset employed in this study, as documented in reference [12], consists 

of a total of 780 breast ultrasound images. These images are systematically 

categorized into three clinically relevant classes: normal, benign, and malignant, 

providing a comprehensive basis for multi-class classification tasks. 
 

2.1 Data features 

All images are provided in Portable Network Graphics (PNG) format, with 

corresponding segmentation masks available for the benign and malignant 

categories. Furthermore, the dataset is curated to reflect clinically relevant features, 

with images preprocessed to remove extraneous boundaries. The ground truth 

annotations are validated by expert radiologists, ensuring high-quality labels for 

both classification and segmentation tasks [12].  

The images capture various tumor characteristics such as shape, margin, and 

intensity, which are critical for breast cancer diagnosis. On a visual inspection, the 

following can be noted [12, 13]: 

• Normal images show uniform breast tissue without any noticeable masses 

or irregularities. The texture appears smooth, and there are no distinct shapes and/or 

shadows that suggest abnormalities. The overall appearance is consistent and 

homogeneous. 

• Benign images display well-defined, round or oval-shaped masses with 

smooth edges. The lesions tend to have clear boundaries and a more regular shape, 

which usually indicates non-cancerous growths. These masses might appear 

brighter or darker than the surrounding tissue, but generally lack invasive 

characteristics. 
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• Malignant images are visually more complex. They often show irregular or 

blurred edges, indicating invasive growth into surrounding tissues. The shapes tend 

to be asymmetric and less defined compared to benign masses. These images may 

also display heterogeneous texture and varying intensity, reflecting the aggressive 

nature of cancerous tumors. 

2.2 Label distribution 

The distribution of image samples per class is as follows [12]: 133 normal 

cases, 437 benign cases, and 210 malignant cases. It is noted that the dataset is 

imbalanced, by having an uneven distribution of samples across the three classes. 

More exactly, the benign class has more than three times the number of samples 

compared to the normal class, and more than twice the number compared to the 

malignant class. Such disparity in class sizes can lead to biased model training, 

where the model may perform better on the majority class (benign) and 

underperform on the minority classes (normal and malignant), unless appropriate 

techniques like class weighting, resampling, or data augmentation are applied. 

In this study, for one of the trained DL models (see Section 3.3 below), both 

the benign and malignant classes are under-sampled to approximately 150 samples 

each, aligning their sizes closely with the normal class, and addressing thus the 

class imbalance. Thus, the dataset becomes more balanced, which helps mitigate 

the risk of the model becoming biased toward the majority class, i.e., the benign 

class. This approach ensures that each class contributes more equally during 

training, thereby improving the model's ability to generalize across all categories 

[14]. 

2.3 Data quality considerations 

The quality of the dataset is essential for model performance and reliability 

throughout the DL pipeline. As described in Section 2.1, this study utilizes a dataset 

with clinically verified classification labels and segmentation masks for benign and 

malignant cases, ensuring both high labeling accuracy and clinical relevance [12]. 

The data preparation steps, including removal of extraneous boundaries and 

intensity normalization, further enhance image consistency [12]. These steps are 

critical for enabling the extraction of relevant tumor features, and for effective 

differentiation between normal tissue, benign lesions, and malignant tumors [12]. 

However, as mentioned in Section 2.2, some dataset challenges affect how 

well the DL model learns and performs along the DL processing path. In particular, 

the large difference in the number of images between classes can cause the DL 

model to mainly focus on features from the majority class, i.e., the benign class. 

This can reduce the model’s ability to accurately detect malignant lesions. If this 

issue is not addressed, it may lead to slower learning, overfitting to the common 

benign patterns, and poorer performance on the less represented classes. To address 

this, the study reduces the number of benign and malignant samples to closely 
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match the number of normal cases, which helps the model learn more balanced and 

meaningful features across all classes [14]. 

Additionally, the lack of the segmentation masks for the normal class limits 

the full potential of MTL framework that integrates classification and spatial 

information, potentially impacting the precision of tissue differentiation. Together, 

these data challenges propagate through the training process, affecting the DL 

model accuracy, convergence stability, and diagnostic reliability. In this context, 

the dataset size has been chosen to balance (i) the need for sufficient variability in 

tumor characteristics (such as shape, margin, and texture) and (ii) the practical 

challenges involved in acquiring and annotating medical images by expert 

radiologists [12]. Despite its moderate size (780 images), the dataset is well-

designed. Specifically, the careful data curation, thorough preprocessing, and class 

balancing strategies applied to this dataset provide a strong foundation for 

developing a reliable and clinically relevant breast cancer detection model. 

2.4 Train-test split 

A portion of the dataset was reserved exclusively for testing purposes. In 

this study, the data was partitioned such that 85% was allocated for training, and 

15% for testing. 

3. DL Models 

3.1 DL base model 

The used model is based on the Teachable Machine’s (TM) CNN pre-

trained architecture called MobileNet version 2 (V2), which represents the 

convolutional base for the images to be classified [15, 16]. Specifically, the model 

has around 52 layers in total, out of which are mentioned [15, 16]:  

• 28 untrainable hidden layers with fixed weights, that are used for features 

extraction, and that form the above mentioned MobileNetV2 convolutional 

base. More exactly, the core building block of MobileNetV2 consists of a 1x1 

convolution with ReLU6 activation, followed by a 3x3 depthwise convolution, 

and another 1x1 convolution without non-linearity. However, these hidden 

layers are not trainable in TM, as they serve only as a fixed features extractor.  

• 1 trainable hidden layer, that represents the custom classifier, and that is trained 

using the breast ultrasound images.  

• 1 output layer, that uses the SoftMax activation function to produce class 

probabilities (normal, benign, and malignant). 
 

3.2 Empirical DL models development and hyperparameter optimization 

The following hyperparameters were employed during model fine-tuning 

and selection to optimize the classification performance on the breast ultrasound 

image dataset: 
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• learning rate, that directly determines how much the model weights are 

adjusted in response to the estimated error each time the model weights are 

updated [16]. A high learning rate causes large weight updates and leads to 

poor model convergence, whereas a low learning rate results in small weight 

updates, making training slow and potentially causing the model to get stuck 

in local minima. An optimal learning rate achieves a good balance between 

fast convergence and stable training [17]. 

• number of epochs, that indicates the number of complete model’s transitions 

through the training dataset [16]. Model training typically involves multiple 

epochs, which allows the model to incrementally learn and improve. After 

each epoch, the model updates weights based on the errors made, using 

backpropagation [18]. As the number of epochs increases, the model typically 

learns more from the training data. However, beyond a certain point, 

continuing to increase the number of epochs can cause the model to overfit 

the training data, and not to generalize well to unseen data [19]. 

• batch size, that represents the number of training samples processed together 

before the model updates its weights [16]. A large batch size (e.g., more than 

64 samples) results in a faster training per epoch, which may lead to a poorer 

generalization on unseen/test data. A small batch size (e.g., less than 8 

samples) tends to improve model’s generalization and accuracy on unseen 

data, but may lead to slightly slower convergence because updates are noisier 

and more frequent [20]. 

In this study, the values considered and assigned to the aforementioned three 

hyperparameters are: 

• learning rate: 0.0001, 0.001; 

• number of epochs: 30, 50, 70; 

• batch size: 16, 32. 

These hyperparameters selection was guided by their fundamental influence 

on the model’s learning process and generalization capability. The learning rates of 

0.0001 and 0.001 were chosen to enable stable and gradual weight updates, 

reducing the risk of overshooting optimal minima. This approach is especially 

important in medical imaging tasks, where stable training supports better model 

reliability [21-22]. Similarly, batch sizes of 16 and 32 were selected to balance 

computational efficiency with the introduction of variability in gradient updates, 

wherein smaller batch sizes often lead to better generalization, even if training 

requires more time [22]. The range of epochs (30, 50, and 70) was set to allow the 

model sufficient exposure to the training data, allowing incremental learning while 

actively monitoring overfitting. By systematically exploring these hyperparameter 

values, the study aimed to identify configurations that optimize classification recall, 

especially for the malignant class, while ensuring robust generalization to unseen 
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data. This methodical tuning process ultimately supports steady training, avoids 

overfitting, and yields dependable results in breast ultrasound image classification. 

3.3 Results and analysis of the empirical DL models 

All nine experimental models presented in this study are empirical 

variations built upon a common architectural foundation, namely the MobileNetV2 

convolutional neural network described in Section 3.1. While each model maintains 

the core MobileNetV2 architecture, they differ through systematic adjustments to 

key training parameters such as learning rate, batch size, number of epochs, the 

incorporation or omission of segmentation masks, and class balancing strategies. 

These controlled modifications enable a detailed comparative analysis of the effect 

these factors have on model performance in the classification of breast ultrasound 

images. Particularly noteworthy is the integration of segmentation masks alongside 

labeled images during the training of select empirical models, implemented as part 

of an MTL framework. Their performance was primarily evaluated on accuracy of 

the malignant class (i.e., the class of interest), test accuracy per number of epochs 

across all classes, and test loss behavior across all classes (Table 1). Furthermore, 

additional performance metrics were analyzed for the malignant class, including 

recall, miss alarm rate (MAR), false alarm rate (FAR), and precision (Table 2). 

These metrics provide a nuanced understanding of the models’ diagnostic strengths 

and weaknesses, such as their sensitivity to true malignancies, tendency to overlook 

malignant cases, and likelihood of misclassifying benign/normal instances as 

malignant [23-24].  

Specifically, recall measures the proportion of actual malignant cases that 

are correctly identified by the model, reflecting its ability to detect true positive 

(TP) instances (1). MAR represents the proportion of malignant cases that the 

model fails to identify, effectively the rate of false negatives (FN), and is the 

complement of recall (2). Conversely, FAR quantifies the proportion of benign or 

normal cases incorrectly classified as malignant, calculated as the ratio of false 

positives (FP) to the total actual benign or normal cases, i.e., both FP and true 

negatives (TN) (3). Finally, precision measures the accuracy of positive predictions 

by indicating the proportion of cases labeled as malignant that are truly malignant 

(4). 

                                                𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                (1), 

 

                                         MAR =  
FN

TP+FN
= 1 − Recall                                               (2), 

 

                                                𝐹𝐴𝑅 =  
𝐹𝑃

𝐹𝑃+𝑇𝑁
                                                                    (3), 

 

                                  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                (4), 
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Wherein: 

TP represents malignant cases correctly identified as malignant, 

TN corresponds to benign or normal cases correctly identified as benign or 

normal, 

FP indicates benign or normal cases incorrectly classified as malignant, and 

FN denotes malignant cases incorrectly classified as benign or normal. 

The metrics values obtained in this study offer valuable perspectives on 

model behavior with respect to convergence, overfitting, and generalization, 

enabling a comprehensive evaluation of performance throughout the training and 

testing phases. As illustrated in Table 1 and Table 2, the observed trends help 

identify optimal convergence patterns and potential signs of overfitting, while also 

providing critical evidence of the model’s generalization capacity, supporting thus 

the robustness of the adopted analytical approach.  

The subsequent observations are noted regarding the empirical model’s 

performance: 

• Model 1 (30 epochs, batch size 32, learning rate 0.001) achieved an accuracy 

of 0.50 for the test malignant class. The test accuracy across all classes was 

initially above 0.8, then declined. The loss for the test samples increased with 

the number of epochs, reaching a maximum around 1 after 20 epochs, and a 

minimum below 0.6 during the initial 1-2 epochs.  

• Model 1 also showed a moderate performance with a recall and MAR of 50%, 

indicating that half of the malignant cases were correctly identified but half 

were missed. Its precision was high at 94.1%, reflecting confidence in positive 

malignant predictions. The model exhibited early overfitting, as indicated by 

the rising loss despite the stable accuracy. 

• Model 2 (50 epochs, batch size 16, learning rate 0.001) provided an improved 

accuracy of 0.72 for the malignant class. Test accuracy stabilized around 0.8. 

Test loss peaked near 1 at 42–43 epochs, then decreased to 0.7 by epoch 50. It 

is noted that a longer training with smaller batch size improved malignant 

detection, though loss fluctuations suggest partial overfitting. 

• Model 3 (50 epochs, batch size 32, learning rate 0.001) matched the malignant 

accuracy of Model 2 at 0.72. Test accuracy remained near 0.8. Loss increased 

steadily, near 0.9 at epoch 50, with a minimum of 0.45 early on. It is noted that 

both models 2 and 3 achieved a recall of approximately 72% and MAR of 

28.1%, marking an improvement in malignant case detection compared to 

model 1. Model 2 exhibited a higher FAR (7.0%) than model 3 (4.7%), 

suggesting that model 2 produced more FN. Despite similar recall, increasing 

batch size in model 3 slightly reduced false alarms but did not improve overall 

accuracy. Increasing batch size did not improve accuracy, but it led to slightly 

higher loss at later epochs, with persistent overfitting. 
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Table 1 

Performance Assessment – Accuracy and Loss 

Empirical Model 

Accuracy 

[0, 1] – 

malignant 

class 

Test accuracy [0, 1] per 

epoch – all classes 

Test loss [0, 1] per epoch 

– all classes 

Model 1 0.50 >0.80 early, then drops Rises ~1 after 20 epochs 

Model 2 0.72 ~0.80, stable Peaks ~1, then ↓ to 0.70 

Model 3 0.72 ~0.80, stable Rises to ~0.90 

Model 4 0.81 0.80 after 10 epochs Fluctuates 0.50-0.80 

Model 5 0.66 <0.80 <0.60 after 10 epochs 

Model 6 0.81 0.90 after 15 epochs ~0.40 after 35 epochs 

Model 6’ (Model 6 + 

segmentation masks) 

0.81 0.90 after 10-15 epochs <0.40 

Model 7 0.84 0.80 after 20 epochs ~0.40 at 50 epochs 

Model 7’ (Model 7 + 

segmentation masks) 

0.91 0.90 after 20 epochs <0.30 after 5 epochs 

Model 7’’ 

(Model 7 + segmentation 

masks + balanced 

classes) 

0.93 0.95 after 8 epochs 0.93 

Model 8 0.59 0.80 at 70 epochs <0.50 at 70 epochs 

Model 9 0.63 0.80 at 40 epochs <0.50 at 50 epochs 

 

• Model 4 (70 epochs, batch size 32, learning rate 0.001) achieved a 

malignant accuracy of 0.81. Test accuracy per epoch reached 0.8 after 

several epochs. Test loss per epoch peaked around 0.8 at 25 epochs, 

decreased below 0.7 at 30 epochs, then stabilized near 0.7 through 70 

epochs, with a minimum of 0.5 early in training. 

Model 4 further enhanced recall to 81.25%, reducing MAR to 18.75%. 

However, its FAR rose to 8.14%, indicating a trade-off between detecting 

more malignant cases and increasing FN. The precision of 78.79% reflected 

reasonable reliability in positive predictions but suggested room for 

improvement. Extended training improved malignant accuracy, but test loss 

oscillated, suggesting some instability and possible late-stage overfitting. 
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Table 2 

Performance Assessment – MAR, Recall, FAR and Precision 

Empirical Model MAR (%) Recall (%) FAR (%) Precision (%) 

Model 1 50.00% 50.00% 1.20% 94.10% 

Model 2 28.10% 71.90% 7.00% 79.30% 

Model 3 28.10% 71.90% 4.70% 80.60% 

Model 4 18.75% 81.25% 8.14% 78.79% 

Model 5 34.40% 65.60% 7.00% 77.80% 

Model 6 18.80% 81.30% 5.90% 83.90% 

Model 6’ 18.80% 81.30% 1.70% 94.50% 

Model 7 15.60% 84.40% 5.80% 84.40% 

Model 7’ 10.30% 89.70% 3.20% 87.90% 

Model 7’’ 4.40% 95.60% 3.40% 95.60% 

Model 8 40.63 59.38 4.65 82.61 

Model 9 37.50 62.50 8.14 74.10 

 

• Model 5 (30 epochs, batch size 32, learning rate 0.0001) provided a malignant 

accuracy of 0.66. Test accuracy per epoch remained below 0.8, while test loss 

dropped below 0.6 after 10 epochs. 

It also reached 65.6% recall and a MAR of 34.4%, demonstrating slower 

convergence and moderate performance. Lower learning rate slowed 

convergence, resulting in moderate accuracy and stable loss. 

• Model 6 (50 epochs, batch size 16, learning rate 0.0001) reached a malignant 

accuracy of 0.81. Test accuracy rose to 0.9 after 15 epochs, while test loss 

decreased to approximately 0.4 after 35 epochs. 

In contrast to model 5, the empirical model 6 improved recall to 81.3%, decreased 

MAR to 18.8%, and lowered FAR to 5.9%, indicating better generalization and 

less overfitting. Reduced learning rate with a smaller batch size enhanced 

accuracy and reduced loss significantly, indicating better generalization and 

convergence. 
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• Model 6’ (50 epochs, batch size 16, learning rate 0.0001, incorporation of 

segmentation masks), same as model 6 and additionally considering the 

segmentation masks available for benign and malignant cases in the training 

phase, provided a malignant accuracy of 0.81. Test accuracy reached 0.9 

earlier, after 10-15 epochs, and test loss dropped below 0.4. Furthermore, 

Model 6’ slightly improved FAR to 1.7% and precision to 94.5%, while 

maintaining the same recall and MAR as model 6. It is noted that the 

incorporation of masks accelerated convergence and improved loss metrics, 

suggesting enhanced feature learning. 

• Model 7 (50 epochs, batch size 32, learning rate 0.0001) achieved a malignant 

accuracy of 0.84. Test accuracy reached 0.8 after 20 epochs, and the test loss 

was around 0.4 at epoch 50. The combination of larger batch size and low 

learning rate improved malignant accuracy and maintained low loss. 

• Model 7’ (50 epochs, batch size 32, learning rate 0.0001, incorporation of 

segmentation masks) increased the malignant accuracy at 0.91. Furthermore, 

the test accuracy reached 0.9 after 20 epochs, and test loss dropped below 0.3 

after 4-5 epochs. It is noted that masking substantially enhanced both accuracy 

and loss, indicating improved model generalization. 

• Model 7’’ (50 epochs, batch size 32, learning rate 0.0001, incorporation of 

segmentation masks, balanced training classes) further improved performance 

metrics. The malignant accuracy increased and stabilized around 0.95 after 8 

epochs (Fig. 1). Test loss significantly dropped 0.2 after 16 epochs (Fig. 2). For 

this model, the malignant and benign classes were under-sampled as indicated 

in section 2.2. It is noted that the combination of masking and class balancing 

substantially enhanced both accuracy and loss, indicating improved model 

generalization and a more equitable performance across all classes. 
 

Regarding the results shown in Table 2, it is observed that model 7 improved 

recall to 84.4% with a 15.6% MAR, while model 7’ significantly increased recall 

to 89.7% and reduced MAR to 10.3%, along with a reduced FAR of 3.2% and an 

improved precision of 87.9%. Model 7’’, leveraging class balancing in addition to 

masking, achieved the highest recall of 93.5%, the lowest MAR of 6.5%, a minimal 

FAR of 2.3%, and exceptional precision of 95.6%. 
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Fig. 1. Accuracy per epoch across all three classes for empirical Model 7’’ – train and test data 

(TM generated graph) 

 

 
Fig. 2. Loss per epoch across all classes for empirical Model 7’’ – train and test data 

(TM generated graph) 

 

• Model 8 (70 epochs, batch size 32, learning rate 0.0001) decreased the 

malignant accuracy at 0.59. Test accuracy was 0.8 at epoch 70. Test loss 

remained below 0.5 at the end of training (i.e., at 70 epochs). It also showed 

a high MAR (40.63%) and relatively low recall (59.38%). 

Despite extended training, the model underperformed in malignant 

classification, possibly due to overfitting or suboptimal hyperparameters. 

• Model 9 (50 epochs, batch size 32, learning rate 0.00005) provided a test 

malignant accuracy of 0.63. Test accuracy reached 0.8 at 40 epochs, and test 

loss remained below 0.5 at epoch 50. Also, model 9 had slightly better recall 

(62.5%) but a higher FAR (8.14%) and a lower precision (74.1%) compared 
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to model 8. It is observed that a very low learning rate yielded moderate 

accuracy with stable loss, indicating slow but steady learning. 
 

3.4 Computational efficiency and deployment 

The DL framework was evaluated on a consumer laptop with an Intel Core 

i7-11370H CPU (4 cores, 8 threads, 3.3 GHz) and 16 GB RAM, operating without 

a dedicated GPU. As detailed in Section 3.1 above, the model architecture is based 

on MobileNetV2, comprising 28 untrainable convolutional layers and a single 

trainable hidden layer. The training was conducted on approximately 663 images 

(85% of the dataset, as described in Section 2.3) for up to 70 epochs, using batch 

sizes of 16 or 32. 

Under these conditions, particularly with only one trainable layer, the total 

training time remained under one hour. In contrast, the inference phase is 

significantly more efficient, requiring well under one second per image, thereby 

supporting near real-time application in clinical environments. 

This evaluation confirms the feasibility of deploying the framework on 

widely accessible hardware, enabling broader clinical adoption without the need for 

specialized acceleration. However, for faster training or larger datasets, GPU or 

cloud-based resources could be leveraged. 
 

3.5 Hyperparameter sensitivity to dataset size 

To evaluate how hyperparameter sensitivity varies with dataset size, the 

following randomly selected subsets of the dataset were used: 100% (633 images), 

75% (497 images), 50% (316 images), and 25% (158 images). In this study, the first 

two subsets are considered moderate to large, while the last two are classified as 

small. The following observations illustrate the impact of dataset size on key 

hyperparameters presented in Section 3.2.  

• Learning rate sensitivity; Using a lower learning rate of 0.0001 led to better 

results not only with smaller datasets, but also with larger ones of 633 and 

497 images. This indicates that making smaller, more careful adjustments 

to the model’s parameters during training helps the DL model learn more 

steadily and avoid overshooting the optimal solution. Therefore, even when 

sufficient training data is available, a conservative learning rate proves to be 

the best choice. 

• Number of epochs sensitivity; For larger dataset sizes, fewer epochs (30 or 

50) are proved to be sufficient, because the DL model sees a wide range of 

examples within each pass. Alternatively, smaller datasets typically require 

more epochs (up to 70) to allow the model to learn from scarce samples. 

Nonetheless, prolonged training on small datasets increases overfitting risk, 

so early stopping is essential to avoid diminishing returns. 

• Batch size sensitivity; A larger batch size of 32 tends to give more stable 

and consistent updates during training because it averages the learning over 
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more examples. This stability works well when there is more data, such as 

with the 633 or (even) 497 image subsets. However, for smaller subsets like 

the 316 or 158 images, using a smaller batch size of 16 is better because it 

allows the model to learn more from each update and can help prevent the 

model from overfitting to the limited data. 

In conclusion, the following observations were made with respect to 

hyperparameter sensitivity: a lower learning rate of 0.0001 enhances performance 

across all dataset sizes; larger datasets benefit from fewer training epochs (30, 50), 

while smaller datasets require more epochs (in this case 70) but face a higher risk 

of overfitting; a batch size of 32 provides more stable training for larger datasets, 

whereas a batch size of 16 is better suited for smaller datasets to mitigate overfitting. 

Therefore, fine-tuning hyperparameters according to dataset size is a crucial 

consideration for effective model training. 

4. Comprehensive performance assessment of the optimal DL model 

4.1 Hyperparameters – optimal values 

Based on the comparative analysis detailed above, it is concluded that 

models trained with lower learning rates, in conjunction with masking techniques, 

demonstrated enhanced performance and improved generalization. In contrast, 

models utilizing higher learning rates and extended training durations, without 

masking, exhibited tendencies toward overfitting, as evidenced by increased loss 

values and diminished classification accuracy.Specifically, regarding each 

hyperparameter mentioned above (see Section IV), the following conclusions are 

drawn: 

• Learning rate: A lower learning rate (i.e., 0.0001) results in improved accuracy 

and reduced loss, particularly when combined with masking. 

• Number of epochs: Increasing the number of epochs improves accuracy up to 

a point, but excessive training can lead to overfitting, as seen in fluctuating or 

rising loss curves. 

• Batch size: A batch size of 32 generally supports better convergence, though a 

batch size of 16 can further enhance learning, when paired with a low learning 

rate. 

• Including masking in the training set: The application of masking techniques 

yields the most significant performance gains, with Model 7’ (with improved 

training set) achieving a malignant accuracy of 0.91 and test loss <0.3. 

• Under-sampling the malignant and benign classes: Under-sampling the 

malignant classes to correspond to the normal class slightly improved the 

performance of Model 7’’, reaching the best malignant accuracy (0.93) and the 

lowest test loss (below 0.2). 
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4.2 Classification outcomes: confusion matrix of the best-performing 

empirical model 

As outlined in Section 4.1, empirical model 7’’ combines the advantages of 

an optimized training duration (50 epochs), a moderate batch size (32), a low 

learning rate (0.0001), and key training enhancements including segmentation mask 

incorporation and class balancing.  

This enhanced configuration enables model 7’’ to outperform all other 

evaluated empirical models. Notably, it achieves an optimal balance between 

classification accuracy and loss, highlighting the critical importance of both 

meticulous hyperparameter optimization and advanced preprocessing techniques in 

medical image analysis. 

The confusion matrix (Fig. 3) for the improved model 7 also offers a 

comprehensive assessment of the model’s predictive capability across all classes: 

benign, malignant, and normal. In particular, in this study, the minimization of the 

FN number is of utmost significance, as it directly mitigates the risk of overlooking 

malignant cases. Misclassifying a malignant case as normal or benign carries 

substantial implications, potentially compromising the timely diagnosis and 

treatment of breast cancer patients. 
 

 
Fig. 3. Confusion matrix of improved Model 7’’ – test data 

(TM generated graph) 

 

The recall metric is the key metric in this case, as it measures the ability of 

the model to identify the malignant cases. A reduction in the number of FN 

corresponds to an increase in recall, which serves as a critical metric for assessing 

model performance in cancer detection. By considering the values for the test 

dataset in the confusion matrix of Model 7’’ (Fig. 3), the recall for the malignant 

class is 0.956, indicating that Model 7’’ successfully identifies 95.6% of all actual 

malignant cases. The superior recall demonstrates the model's capability to detect 

the vast majority of malignant cases, significantly reducing the risk of missed 
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diagnoses (low MAR of 4.4%). It is noted that the model also maintains a strong 

equilibrium between minimizing the misclassification of malignant cases and 

accurately detecting malignant cases (i.e., accuracy of malignant class 0.93). The 

low FAR (3.4%) indicates a minimal rate of false positives, crucial for avoiding 

unnecessary interventions. Furthermore, the precision of 95.6% reflects high 

confidence in malignant predictions, ensuring clinical decision-making reliability.  

Overall, model 7’’ not only achieved the highest diagnostic accuracy for the 

malignant class but also demonstrated robustness, generalization, and balanced 

performance, making it the most suitable candidate for clinical application. The 

combined effects of masking and class balancing, as reflected in this model’s 

metrics, underscore the importance of leveraging domain knowledge and dataset 

characteristics in training DL models for medical image analysis. Such performance 

is critical for ensuring timely intervention and treatment for patients with malignant 

conditions.  

4.3 Segmentation-classification synergy 

In this study, the enhanced variants of model 7 utilize MTL by integrating 

segmentation masks alongside classification during training. This allows the model 

to concurrently learn lesion localization and diagnostic classification, thereby 

enriching feature extraction through the combined use of spatial and semantic 

information. The results demonstrate that the main benefit of employing MTL is a 

substantial improvement in malignant lesion detection (see Tables 1 and 2). 

Specifically, incorporating segmentation masks for the benign and malignant 

classes increases the malignant class accuracy from 0.84 in Model 7 (without 

masks) to 0.91 in Model 7’ (with masks). Further enhancement is achieved in Model 

7’’, which incorporates class balancing, reaching an accuracy of 0.93. These 

findings show the MTL’s ability in directing learning toward clinically relevant 

regions and mitigating the adverse effects of class imbalance, substantially 

improving thus the model generalization [10, 25]. 

However, the success of MTL depends on the availability and quality of 

segmentation masks, which, in this dataset, are restricted to benign and malignant 

classes and do not include normal images (see also Section 2.3). This limitation 

constrains the full benefits of MTL across all classes. Additionally, the extra steps 

required in data preparation and training could make it more difficult to use this 

approach on devices with limited computing power, such as consumer laptops, or 

in clinical environments that need quick results. 

4.4 Model consistency checks 

To improve the reliability of this breast ultrasound classification framework, 

automatic consistency checks can be used to compare the segmentation masks with 

the classification results produced by the model [26]. Since the model learns both 

tasks together, these outputs should agree. For example, if the model predicts a 
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malignant tumor, the segmentation mask should highlight a corresponding lesion. 

If there is no clear lesion or the lesion appears benign in the mask, this mismatch 

can indicate a possible error. These consistency checks can automatically flag cases 

where classification and segmentation do not match, allowing for a second review 

or further analysis. By adding this simple verification step, the classification 

approach can reduce mistakes and increase confidence in the results. Moreover, it 

requires little extra computing power and is practical for real-time or low-resource 

clinical settings. 

Besides automatically checking, if the classification matches the 

segmentation results, there are other ways to make the model correct its own errors. 

One useful approach is to measure how confident the model is in its predictions 

[27-28]. When the model is unsure or shows low confidence, these cases can be 

flagged for a second look by a human expert or by using a different, more careful 

analysis. Another method involves detecting unusual or suspicious patterns in the 

images that might signal an error [28], triggering a review or additional processing. 

Incorporating these auto-correction methods makes the overall system more 

reliable and safer for clinical use. They help catch errors before decisions are made, 

which is especially important in breast cancer detection. Future work should focus 

on developing and integrating these kinds of correction features to build a stronger 

and more trustworthy diagnostic tool. 

6. Conclusions 

This research highlights the value of combining advanced preprocessing 

methods, notably segmentation masking, with rigorous hyperparameter tuning in 

DL models designed for breast ultrasound image classification. Among the nine 

assessed empirical models, the optimized Model 7’’, which integrates segmentation 

masks with fine-tuned training parameters, consistently demonstrated a superior 

performance. Specifically, it achieved an accuracy of 0.93 for the malignant class 

and exhibited rapid, stable convergence with minimal signs of overfitting. The 

model’s effectiveness was further supported by its confusion matrix, which 

revealed a high recall across all classes. In particular, the model maintained a high 

recall rate (0.956) for the malignant cases, a crucial factor for ensuring patient safety 

in clinical cancer diagnostics. This equilibrium between accuracy and sensitivity 

reinforces the model’s robustness, and its suitability for practical application within 

medical imaging workflows. 

The implications of these findings are multiple:  

Firstly, the integration of classification and segmentation data effectively 

mitigates challenges posed by class imbalance and enhances the detection of subtle 

lesions in breast ultrasound images. This demonstrates the significant benefits of 

applying an MTL approach in breast cancer detection. 
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Secondly, the proposed framework offers a reproducible methodology that 

can guide future research and clinical practice, facilitating the development of more 

precise and reliable diagnostic tools. 

Thirdly, and very importantly, the DL framework leverages transfer 

learning, requiring training of only a single additional layer atop the MobileNetV2 

robust pre-trained convolutional base. This design choice makes training 

exceptionally efficient and lightweight, enabling implementation on standard 

consumer computers with modest computational resources.  

Consequently, it promotes wider accessibility and practical adoption across 

diverse clinical settings, regardless of the size and/or resource availability of the 

medical practice. This ease-of-use, combined with strong diagnostic performance 

demonstrated in the study, addresses common barriers to scaling advanced AI tools 

in healthcare. By minimizing computational demands without compromising 

reliability, the framework offers a user-friendly and scalable solution to support 

earlier and more accurate breast cancer diagnosis. 

Future investigations will aim to explore additional neural network 

architectures and MTL paradigms, alongside efforts to expand the dataset with 

more diverse, multi-institutional samples. Moreover, further research into 

explainable AI techniques will be pursued to enhance the transparency and clinical 

acceptance of DL-based diagnostic systems. 
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