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A DYNAMIC MODEL FOR THE IMPACT BETWEEN THE 
WHEEL FLAT AND RAIL  

Traian MAZILU1 
  
 

Locul plan este un defect important al suprafeţei de rulare a roţii unui 
vehicul feroviar. El apare datorită uzurii când roata este blocată şi alunecă pe şină 
în timpul frânării. Rularea roţii cu loc plan este periculoasă din cauza forţei de 
impact care solicită atât calea cât şi roata şi  produce zgomot de impact. În articol 
este prezentat modelul de studiu al interacţiunii dintre roata cu loc plan şi şină. Şina 
este considerată ca o grindă infinită Euler rezemată pe un suport continuu cu două 
etaje elastice. Vehiculul este redus la un sistem cu două mase legate elastic. Este 
considerat de asemenea contactul neliniar Hertzian dintre roată şi şină. Soluţia 
ecuaţiilor de mişcare este obţinută prin aplicare unei originale metode bazată pe 
funcţiile Green. Influenţa geometriei locului plan asupra forţei de impact este 
prezentată pentru diferite situaţii de circulaţie a vagonului.  

The flat is a serious fault of the rolling surface of the railway wheel. It 
appears when the wheel is blocked and slides on the rail during braking process due 
to the wear. The rolling of the wheel flat is dangerous due to the impact force, which 
applies stresses both to the track and the wheel and generates impact noise. This 
article presents the model for the analysis of wheel flat/rail interaction. The rail is 
considered as an infinite Euler beam supported on the continuous foundation with 
two elastically layers. The vehicle is reduced at a system of two elastic connected 
masses. The non-linear Hertzian wheel/rail contact is considered too. The solution 
of the motion equations are obtained by using an original Green’s functions method. 
The influence of the flat geometry and rail pad stiffness for different cases of the 
vehicle traffic are presented. 
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1. Introduction 
 

Sometimes, during braking process, the wheel is blocked and slides along 
the rail due to braking system malfunctioning. In the contact zone, the wheel suffers 
severe wear and a flat appears.  Usually, the flat can reach up to 50 – 60 mm but it 
may reach even 100 -120 mm. At first, the flat appears to be a plane zone, but then, 
as the wear progresses, its edges are becoming rounder and rounder. This is caused 
by the wheel’s modified structure due to its thermal regime – high heating followed 
by quick cooling – during wheel blocking. 
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The flat may occur at any type of railway vehicles, including the high 
speed ones. For instance, on the 14th of December 1992, one bogie of the TGV 
train derailed as passing the station Mâchon-Loché at a speed of 270 km/h. The 
incident is assumed to be caused by a flat wheel [1].  

The wheel flat/rail interaction resides in a huge periodical impact force. As 
the wheel speed increases, the impact force frequency increases. The rolling of 
wheel flat is dangerous. It can actually damage the track – fatigue cracks on the 
rails or sleepers, and the wheel - the cracks or even material losses occurring on 
the rolling surfaces. As seen before, in extreme situations, the vehicle might 
derail. Another consequence of a rolling wheel with flat fault is the periodic 
impact noise.  

The dynamics of the wheel with flat fault has begun to be studied recently. 
It was studied among others by Ver [2], related to the impact noise. He introduced 
the concept of critical speed, defined as the one for which the wheel/rail contact is 
lost (momentary). In the quoted work, a series of basic formulas for critical speed 
and impulse variations’ calculation are presented.  

Newton and Clark [3] used a more complex model with the aim to study 
the wheel flat/rail impact force. They have considered the vehicle, taken as a three 
masses system connected through the elastic and damping elements, which rolls 
on an infinite rail mounted over an elastic foundation. The non-linear elastic 
Hertzian wheel/rail contact is modelled through an elastic element placed between 
the wheel and the rail. The wheel flat/rail geometry is modelled as an equivalent 
indentation on the rail head, the wheel is perfectly rounded. Thereby, they avoided 
the difficulties related to locating the impact spot on the rail during the 
experimental researches. This experimental measurements have shown that the 
maximal impact force increases along with the increase of the speed until reaching 
30 km/h, then it has a small decreasing until 60 km/h and increases again for 
speeds beyond that limit. The theoretical results concurred with the experimental 
ones for speeds up to 80 km/h.  

The two axles bogie track interaction was studied by Nielsen and Igeland 
[4]. The track was modelled using the finite element method and the bogie was 
taken as a system of three rigid bodies, the car body, the bogie and the wheel, 
connected through the elastic and damping elements of the primary and secondary 
suspension. The first wheel has a flat fault and the following wheel is in perfect 
condition. The speeds of losing contact for two types of flats, having the 
wavelengths of 60 and 90 mm, are determined. The maximal impact force is 
calculated too.  

Wu and Thompson analyzed this issue in two of their works [5, 6]. They 
chose as a starting point two analytic track models. In the first one, the rail is a 
Timoshenko beam on a continuous two-level elastic support. The sleeper effect is 
neglected. The second model considers the rail as two Timoshenko beams on a 
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discrete support. The sleeper is taken as a rigid with one degree of freedom. Each 
time, they calculated the parameters of an equivalent model which has the best 
approximation for the frequency response of the initial model. This way, the track 
system was transformed into a system of constant or variable parameters. The last 
variant is considered for parametric excitation due to track stiffness variation across 
a span length. The integration of the wheel/rail model equations was made using the 
Runge – Kutta method.  

They studied the influence of the speed and flat dimensions over the 
impact force and impact noise. They also revealed that the sleeper has a marginal 
effect over the impact force. 

Hou, Kalousek and Dong [7] applied a finite element model in order to 
study the vehicle-track system as an asymmetric system. The case of a wheel with 
flat fault was studied as well. The effect of a flat wheel on the other wheel of the 
same bogie was determined. 

The current work comes with a different solution for solving the issue of 
this kind of interaction. Starting from the idea of Wu and Thompson, that the 
impact force is little influenced by the sleepers, the model of a beam on a 
continuous two-layer elastic support is considered. For a model like this one, 
Grassie and al. [8] revealed that there are no significant differences between the 
Euler and Timoshenko beam models. Differences appear if the periodic sleeper 
support is considered. As a result, the Euler beam model is adopted, because of its 
simplicity. The case of the vehicle with wheel flat is analysed. 

The equations of motion are integrated using the Green functions method 
in original manner. This way, the errors occurring when using the Wu and 
Thompson equivalent model may be avoided. On the other hand, the Green 
function method is simpler and faster than the modal analysis. Using this model, 
some aspects of the flat wheel/rail interaction are studied.  

2. Mathematical model for railway vehicle wheel flat/rail interaction 

An analytic model of the railway vehicle wheel flat/rail interaction has 
been developed (fig. 1). 

The particular case of a vehicle having a single suspension layer is 
considered. The vehicle model consists in two masses, the wheel and the car body, 
connected through the suspension. The car body mass is marked as Mb and the 
wheel mass as Mw. The suspension has one elastic element by the stiffness of k 
and one damping element having the damping constant of c. The car runs at 
constant V speed and its position compared to the referential Ωξζ is x = Vt where t 
stands for time. The vertical displacements of the car body and the wheel are zb(t) 
and zw(t) respectively. 
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The track model is a rail resting on a continuous two-layer support. The 
rail is taken as a uniform infinite Euler beam with specific mr mass per length 
unit, the Young’s modulus E and the area moment of inertia I. The loss factor of 
the rail is neglected. The vertical beam displacement is w(x, t). 

The rail pad is modelled as a uniform damped elastic layer. The elastic 
constant kr and the damping constant cr are constants per unit length. They are 
calculated from the corresponding parameters for discrete support by division by 
the sleeper bay. The ballast is represented by a uniform damped elastic layer with 
the elastic constant per unit length kb and the damping constant cb per unit length. 
The semi-sleeper is considered a layer devoid of shear or bending stiffness with 
specific ms mass per length unit and vertical displacement zs(x, t). All elastic and 
damping elements have linear characteristics. 
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The wheel has a flat of length 2l and depth e. Fig. 2 presents the geometry 

of the wheel having a fresh flat fault, running on a rigid rail. When the wheel steps 
on the flat, the trajectory of the wheel centre is described by two juxtaposed circle 
arches by the radiuses equal to the wheel radius. The wheel motion has actually 
two phases. During the first one, the wheel spins around “A” and the centre wO  
descends by e and reaches '

wO . During the second phase, the wheel spins around 
“B” and its centre climbs back to its original distance, reaching ''

wO . The spin angle 
is the same for both phases of the motion and it’s small. When the elasticity of the 
wheel/rail contact is considered, the relative wheel/rail displacement is equal to 
the deformation in the contact zone of the two bodies. In addition to that, the 
relative displacement due to the flat has to be considered. 

It’s obvious that during the running over a flat, the wheel centre and the 
contact point are not on the same vertical axis. The torque generated by the 
vertical load is negligible though and the wheel spin is practically constant. The 
wheel sliding along the rail and the friction force are negligible as well. As a 
result, the wheel dynamics is dictated only by the vertical forces. 

The vehicle motion is described by the matrix equation 
 

                                     { } { } { } { }PzKzCzM =++                                 (1) 
 
where M is the mass matrix, C is the viscous damping matrix, K is the stiffness 
matrix and {P} is the column vector of forces on the vehicle  
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P(t) is the rail reaction in the contact point and the static load is P0 = g(Mb+Mw) 
with g as the gravitational acceleration. The {P} vector has this particular form 
because the elastic element from the suspension is pre-loaded by the car body 
weight. 

The track’s differential equations of motion can be written in matrix form 
 
                                              { } { }pqL =tx ,                                                  (3) 

where 
                                     { } { } [ ]t

s txztxwtx ),(),(),( == qq                               (4)  
 
is the column vector of displacements and 
 

                                              { } { }ep )()( VtxtP −δ=                                         (5) 
 
is the column vector of forces on the rail with {e} = [1  0] t and δ(.) is Dirac’s 
delta function. The differential operator Lx,t from equation (3) is defined by 
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The wheel and the rail are solid elastic bodies and the deformation at the 
contact point can be expressed by Hertz’s theory of elastic contact. According to 
this theory, the relationship between the contact force P(t) and the Hertzian 
deflection,    

                                          zδ(t) = zw (t) – w(Vt,t) – zr(Vt),                               (7) 
is                                                                           

                                            [ ] [ ])()(/)( 3/2 tztzCtP H δδ σ=                                  (8) 
where zr(Vt) is the relative displacement wheel/rail due to the flat, CH  represents 
the Hertzian constant and σ[.] is the Heaviside function.   

Wu and Thompson proposed a second degree polynomial for the relative 
wheel/rail displacement due to the wheel flat [6]. Another function   

 

                     ( ) ( )[ ]xlxxlx
l
xxexz kk

k
rk −−σ−−+σ⎟

⎠
⎞

⎜
⎝
⎛ −

π−= cos1
2

)( ,         (9) 

where xk is considered to be the position where the wheel steps for the “k”th time 
on the flat, was proposed by Wu and Thompson, too [7]. 

The boundary conditions are  
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and the initial conditions are 
 

             { } 0=z , { } 0=z , { } [ ]Tx 00)0,( =q , { } [ ]Tx 00)0,( =q           (11) 
 
where { }z  and { })0,(xq are speed vectors. 

An original method for solving the motion equations is applied. It is based 
on the Green functions for both, the track and the vehicle. 

The vector for vehicle displacement (for null initial conditions) is  
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is the vehicle’s Green functions matrix, with  
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The Green functions matrix may be calculated using the Laplace transform 

applied to equation (1).  
The time-domain analysis of the track has its fundament on the track’s real 

Green functions  
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The column vector {g} contains the track’s response in the x section at the 

t-τ moment, if at the τ moment in the ξ section an impulse force occurred. The 
column vector of the real Green functions is the solution for the following 
equation  
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                                  { } { }egL )()(, τ−δξ−δ= txtx                                  (16) 
 
and it may be calculated using the Fourier transform method. If the complex 
Green functions for the rail are defined through the Fourier transform F[.] 
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then, they contain the amplitudes of the track’s harmonic response in the x section 
at the ω angular frequency, if in the ξ section an impulse force occurred. The 
column vector of the complex Green functions is the solution of the following 
equation 

                                      { } { }eGL )ξ(δω, −= xx
                                           (18) 

 
where Lx,ω = F[Lx,t].  

The vector for the real Green functions is calculated beginning with  
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where j2 = -1. 
The calculation method for the Green functions is similar to the one 

presented in reference [8]. 
The rail displacement at the contact point results by applying the Green 

function method  
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where gw(Vt, Vτ, t - τ) is the Green function for rail displacement. In other words, 
for any contact point x = Vt, there is a corresponding Green function gw(Vt, Vτ, t - 
τ) which depends on τ∈[0, t] and is calculated from gw(x, ξ, t - τ). 

The rail’s Green function has its property of being damped. There is a 
certain T for which the Green function’s contribution may be neglected for t - τ > 
T (apriority t ≥ T) 

 
                                           0),,( ≅τ−τ tVVtg w .                                        (21) 

 
For numerical application purposes, a time partition -  t0, t1 , … tn with         

t0 = 0, tn = t and Δt = ti - ti-1 where i = 1 ÷ n  - has to be considered. Equations (12) 
and (20) are becoming  



A dynamic model for the impact between the wheel flat and rail 53

 

                         { } { }∑∫
= −

τττ−=
n

i

t

t nn

i

i
tt

1 1
d)()()( Pgz                                (22) 

                                                           

                       ∑∫
= −

τττ−τ=
n

i

t

t nnwnn

i

i
PtVVtgtVtw

1 1
d)(),,(),( .                        (23) 

 
The integrations will be calculated adopting the hypothesis that in the time 

interval [ti-1, ti], the contact force P(τ) and the Green functions have a linear 
variation. It is obvious that the wheel and rail displacement in the contact point 
are depending on the amplitude of the contact force P(tn). By substituting those 
displacements in the equation of the contact force (4), a non-linear P(tn) based 
equation will result. By solving it in an iterative matter, the contact force results 
for each integration step. The wheel and rail displacements are resulting together 
with the contact force. Finally, the following integration step might be taken.  

 
2. Numerical application 

 
Next, the particular case of a railway vehicle having the wheel mass Mw = 

750 kg and the car body mass (distributed on each wheel) Mb = 9250 kg and static 
load P0 = 100 kN running with a wheel flat on a rail having the linear mass mr = 
56 kg/m on concrete sleepers, is studied. Other parameters for the considered 
vehicle are: k = 1.37 MN/m, c = 90 kNs/m and wheel diameter 840 mm. The 
values for the involved track parameters are: I = 23.14·10-6 m4, E = 210 GPa, ms = 
184 kg, kr = 400 MN/m, cr = 90 kNs/m, kb = 257 MN/m and cb = 117 kNs/m.  

 
The Green function for the rail was calculated integrating equation (19) 

from 0 to 10000 Hz at a step of 10 Hz. The time step Δt = 40 μs and the resulting 
step for rail mesh is Δs = VΔt.  
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Fig. 3 displays the rail’s response in the point where the unitary impulse is 
applied. The maximal value is 5.15 μm/(Ns) and the function is damped. It’s 
considered that after T = 60 ms, the function is negligible.  
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Figs. 4 and 5 are displaying the wheel/rail system’s evolution at a speed of 
15 m/s, when the wheel repeatedly steps over a 72 mm long and 0.6 mm deep flat. 
At the beginning of the simulation, the wheel has a transitory behaviour with the 
wheel’s own frequency on the rail, which is about 70 Hz. First, the wheel steps on 
the flat at 0.1 s and then, at fixed time intervals of 175.9 ms. The maximal impact 
force stabilizes quickly and has very little variations after. The maximal impact 
force is 166.14 kN at 1.335 s. At first impact, its amplitude is 166.55 kN. 

The wheel displacement is higher than the rail displacement because 
elasticity reasons. When the wheel reaches the flat zone, due to inertia, it has the 
tendency of splitting apart from the rail. Thus, the contact force decreases to its 
minimum of 18.46 kN. Then, the wheel is pushed back to the rail by the force 
from the suspension. The rail is also pushed up by the reactions occurred in the 
rail pad and the ballast. As a result of these contrary motions, the wheel/rail 
impact occurs. After the impact, the motion is quickly damped. The car body 
displacement is totally insignificant due to the suspension. 
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The impact force depends on the dimensions of the flat fault. Its value 
increases if the flat is longer or deeper. Fig. 6 displays the impact force for a speed 
of 15 m/s, a 120 mm long and 1.2 mm / 1.6 mm deep flat. The impact force has 
very high values, of 216.7 kN and 261.0 kN respectively. For both situations, in 
phase one, the wheel is completely un-loaded for 2.03 ms and 2.73 ms 
respectively. 

The maximal impact force is influenced by the running speed, as shown in 
fig. 7. The result of the numerical simulation in case of a single wheel is presented 
as well. It is quite clear that a maximum at about 5 – 6 m/s has a strong 
connection with the approach of the wheel’s own frequency to the frequency of 
passing over a flat. The numerical simulation shows that the vehicle suspension 
reduces the impact force at low speed especially. 

The numeric results are in accordance with the experimental ones [3, 6].   

The impact force is also influenced by the stiffness of the rail pad. The rail 
on continuous two-layer pad has two corresponding own frequencies [8, 10], as 
known. If dealing with a rigid rail pad, the rail receptance is:  

• smaller than the rail/sleepers first own frequency at low 
frequencies; 

• greater than the rail/sleepers second own frequency at high 
frequencies. 

The excitation frequency depends on the speed. As a result, the maximal 
impact force will be lower at low speeds if the rail pad is elastic, but the trend 
reverses at high speeds (see figure 8). This note is valid no matter how loaded the 
vehicle is. 
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3. Conclusions 
 

The flat fault is a dangerous wheel defect because it may lead to very high 
overloads and unpleasant noise. 

A numerical model has been developed to predict the vehicle/track 
interaction due to wheel flat excitation. The Green functions method was applied 
for both the rail and the vehicle, for purposes of solving the equations of motions. 
The predicted results are matching the experimental ones.  

The vehicle/track evolution during the wheel flat/rail interaction has been 
detalied. The car body is isolated through the suspension, but the wheel and the 
rail are subject to high forces. When the speed increases or the flat has larger 
dimensions, the wheel/rail contact might be lost during impact. The impact force 
depends on the length and the depth of the flat. The result of the numerical 
simulation at the speed of 54 km/h reveals a 57 % increase of the impact force for 
a 120 mm long and 1.6 mm deep flat compared to the 72 mm long and 0.6 mm 
deep flat. 

The study of the wheel flat/rail interaction overrates the impact force in 
slow speed range, up about 70 km/h for analysed case, compared to the study of 
vehicle with wheel flat/rail interaction. 

As the vehicle speed increases, the impact force increases too. Although, a 
relative maximum may be observed if the frequency of ‘passing over the flat’ is a 
little higher than the wheel/rail first own frequency. 

If the rail pad stiffness is smaller, the impact force is small at low speeds 
and increases at high speeds. Combining this aspect with the one presented above, 
the conclusion is that the rigid rail pad is preferred. 

The time domain analysis of the flat wheel/rail interaction is interesting 
not only for determining the aggressiveness of the flat fault on the wheel/rail 
system, but for the noise level calculation as well, starting with the spectra of the 
impact force [6]. 
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