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A DYNAMIC MODEL FOR THE IMPACT BETWEEN THE
WHEEL FLAT AND RAIL

Traian MAZILU!

Locul plan este un defect important al suprafetei de rulare a rotii unui
vehicul feroviar. El apare datoritd uzurii cand roata este blocata si alunecd pe sind
in timpul franarii. Rularea rotii cu loc plan este periculoasa din cauza fortei de
impact care solicitd atdt calea cdt §i roata si produce zgomot de impact. In articol
este prezentat modelul de studiu al interactiunii dintre roata cu loc plan §i sind. Sina
este consideratd ca o grinda infinita Euler rezematd pe un suport continuu cu doud
etaje elastice. Vehiculul este redus la un sistem cu doud mase legate elastic. Este
considerat de asemenea contactul neliniar Hertzian dintre roatd si gind. Solutia
ecuatiilor de miscare este obtinuta prin aplicare unei originale metode bazata pe
Sfunctiile Green. Influenta geometriei locului plan asupra fortei de impact este
prezentatd pentru diferite situatii de circulatie a vagonului.

The flat is a serious fault of the rolling surface of the railway wheel. It
appears when the wheel is blocked and slides on the rail during braking process due
to the wear. The rolling of the wheel flat is dangerous due to the impact force, which
applies stresses both to the track and the wheel and generates impact noise. This
article presents the model for the analysis of wheel flat/rail interaction. The rail is
considered as an infinite Euler beam supported on the continuous foundation with
two elastically layers. The vehicle is reduced at a system of two elastic connected
masses. The non-linear Hertzian wheel/rail contact is considered too. The solution
of the motion equations are obtained by using an original Green’s functions method.
The influence of the flat geometry and rail pad stiffness for different cases of the
vehicle traffic are presented.
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1. Introduction

Sometimes, during braking process, the wheel is blocked and slides along
the rail due to braking system malfunctioning. In the contact zone, the wheel suffers
severe wear and a flat appears. Usually, the flat can reach up to 50 — 60 mm but it
may reach even 100 -120 mm. At first, the flat appears to be a plane zone, but then,
as the wear progresses, its edges are becoming rounder and rounder. This is caused
by the wheel’s modified structure due to its thermal regime — high heating followed
by quick cooling — during wheel blocking.
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The flat may occur at any type of railway vehicles, including the high
speed ones. For instance, on the 14" of December 1992, one bogie of the TGV
train derailed as passing the station Machon-Loché at a speed of 270 km/h. The
incident is assumed to be caused by a flat wheel [1].

The wheel flat/rail interaction resides in a huge periodical impact force. As
the wheel speed increases, the impact force frequency increases. The rolling of
wheel flat is dangerous. It can actually damage the track — fatigue cracks on the
rails or sleepers, and the wheel - the cracks or even material losses occurring on
the rolling surfaces. As seen before, in extreme situations, the vehicle might
derail. Another consequence of a rolling wheel with flat fault is the periodic
impact noise.

The dynamics of the wheel with flat fault has begun to be studied recently.
It was studied among others by Ver [2], related to the impact noise. He introduced
the concept of critical speed, defined as the one for which the wheel/rail contact is
lost (momentary). In the quoted work, a series of basic formulas for critical speed
and impulse variations’ calculation are presented.

Newton and Clark [3] used a more complex model with the aim to study
the wheel flat/rail impact force. They have considered the vehicle, taken as a three
masses system connected through the elastic and damping elements, which rolls
on an infinite rail mounted over an elastic foundation. The non-linear elastic
Hertzian wheel/rail contact is modelled through an elastic element placed between
the wheel and the rail. The wheel flat/rail geometry is modelled as an equivalent
indentation on the rail head, the wheel is perfectly rounded. Thereby, they avoided
the difficulties related to locating the impact spot on the rail during the
experimental researches. This experimental measurements have shown that the
maximal impact force increases along with the increase of the speed until reaching
30 km/h, then it has a small decreasing until 60 km/h and increases again for
speeds beyond that limit. The theoretical results concurred with the experimental
ones for speeds up to 80 km/h.

The two axles bogie track interaction was studied by Nielsen and Igeland
[4]. The track was modelled using the finite element method and the bogie was
taken as a system of three rigid bodies, the car body, the bogie and the wheel,
connected through the elastic and damping elements of the primary and secondary
suspension. The first wheel has a flat fault and the following wheel is in perfect
condition. The speeds of losing contact for two types of flats, having the
wavelengths of 60 and 90 mm, are determined. The maximal impact force is
calculated too.

Wu and Thompson analyzed this issue in two of their works [5, 6]. They
chose as a starting point two analytic track models. In the first one, the rail is a
Timoshenko beam on a continuous two-level elastic support. The sleeper effect is
neglected. The second model considers the rail as two Timoshenko beams on a
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discrete support. The sleeper is taken as a rigid with one degree of freedom. Each
time, they calculated the parameters of an equivalent model which has the best
approximation for the frequency response of the initial model. This way, the track
system was transformed into a system of constant or variable parameters. The last
variant is considered for parametric excitation due to track stiffness variation across
a span length. The integration of the wheel/rail model equations was made using the
Runge — Kutta method.

They studied the influence of the speed and flat dimensions over the
impact force and impact noise. They also revealed that the sleeper has a marginal
effect over the impact force.

Hou, Kalousek and Dong [7] applied a finite element model in order to
study the vehicle-track system as an asymmetric system. The case of a wheel with
flat fault was studied as well. The effect of a flat wheel on the other wheel of the
same bogie was determined.

The current work comes with a different solution for solving the issue of
this kind of interaction. Starting from the idea of Wu and Thompson, that the
impact force is little influenced by the sleepers, the model of a beam on a
continuous two-layer elastic support is considered. For a model like this one,
Grassie and al. [8] revealed that there are no significant differences between the
Euler and Timoshenko beam models. Differences appear if the periodic sleeper
support is considered. As a result, the Euler beam model is adopted, because of its
simplicity. The case of the vehicle with wheel flat is analysed.

The equations of motion are integrated using the Green functions method
in original manner. This way, the errors occurring when using the Wu and
Thompson equivalent model may be avoided. On the other hand, the Green
function method is simpler and faster than the modal analysis. Using this model,
some aspects of the flat wheel/rail interaction are studied.

2. Mathematical model for railway vehicle wheel flat/rail interaction

An analytic model of the railway vehicle wheel flat/rail interaction has
been developed (fig. 1).

The particular case of a vehicle having a single suspension layer is
considered. The vehicle model consists in two masses, the wheel and the car body,
connected through the suspension. The car body mass is marked as M, and the
wheel mass as M,,. The suspension has one elastic element by the stiffness of k&
and one damping element having the damping constant of c¢. The car runs at
constant J speed and its position compared to the referential QEC is x = V¢ where ¢
stands for time. The vertical displacements of the car body and the wheel are z,(¢)
and z,(f) respectively.
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Fig 1. Mechanical model of raltway vehicle wheel fatiral mteraction: 1. car body,
<. suspension; 3. wheel; 4. rail, 5. rail pad; 6. semi-sleeper; 7. ballast, 8. contact stiffness.

The track model is a rail resting on a continuous two-layer support. The
rail is taken as a uniform infinite Euler beam with specific m, mass per length
unit, the Young’s modulus £ and the area moment of inertia /. The loss factor of
the rail is neglected. The vertical beam displacement is w(x, 7).

The rail pad is modelled as a uniform damped elastic layer. The elastic
constant k. and the damping constant ¢, are constants per unit length. They are
calculated from the corresponding parameters for discrete support by division by
the sleeper bay. The ballast is represented by a uniform damped elastic layer with
the elastic constant per unit length k; and the damping constant ¢; per unit length.
The semi-sleeper is considered a layer devoid of shear or bending stiffness with
specific m; mass per length unit and vertical displacement z,(x, 7). All elastic and
damping elements have linear characteristics.
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Fig. 2. "Wheel flat / rigid rail geotnetry.

The wheel has a flat of length 2/ and depth e. Fig. 2 presents the geometry
of the wheel having a fresh flat fault, running on a rigid rail. When the wheel steps
on the flat, the trajectory of the wheel centre is described by two juxtaposed circle
arches by the radiuses equal to the wheel radius. The wheel motion has actually
two phases. During the first one, the wheel spins around “A” and the centre O,

descends by e and reaches O, . During the second phase, the wheel spins around
“B” and its centre climbs back to its original distance, reaching O, . The spin angle

is the same for both phases of the motion and it’s small. When the elasticity of the
wheel/rail contact is considered, the relative wheel/rail displacement is equal to
the deformation in the contact zone of the two bodies. In addition to that, the
relative displacement due to the flat has to be considered.

It’s obvious that during the running over a flat, the wheel centre and the
contact point are not on the same vertical axis. The torque generated by the
vertical load is negligible though and the wheel spin is practically constant. The
wheel sliding along the rail and the friction force are negligible as well. As a
result, the wheel dynamics is dictated only by the vertical forces.

The vehicle motion is described by the matrix equation

M{zj+Cizj+Kizj= P} (1)

where M is the mass matrix, C is the viscous damping matrix, K is the stiffness
matrix and {P} is the column vector of forces on the vehicle

M, 0 1 -1 1 -1 0
M:{ ' },cq{ },sz{ },{P}{ } )
0 M, -1 1 -1 1 P.—P(t)
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P(?) is the rail reaction in the contact point and the static load is Py = g(My+M,,)
with g as the gravitational acceleration. The {P} vector has this particular form
because the elastic element from the suspension is pre-loaded by the car body
weight.

The track’s differential equations of motion can be written in matrix form

L, {aj=1p} (3)

where

laj=late.oi=[wen) 2 (0] @)
is the column vector of displacements and
{pl= P03 -10)fe} (5)

is the column vector of forces on the rail with {e} = [1 0]’ and §(.) is Dirac’s
delta function. The differential operator L, from equation (3) is defined by

4 2
EI 84+mr6_2+cr§+kr —c,ﬁ—k,
L = ox ot ot ot 6
x,t 2 . ( )
0 0 0
—c, ——k m,——+(c, +c,)—++k +k,
ot or’ ot

The wheel and the rail are solid elastic bodies and the deformation at the
contact point can be expressed by Hertz’s theory of elastic contact. According to
this theory, the relationship between the contact force P(f) and the Hertzian
deflection,

z5(f) = zy () — w(Vt,t) — zA V1), (7)
is
[P@6)/C,}" = z,()olz,(1)] ©)
where z,(V?) is the relative displacement wheel/rail due to the flat, Cy represents
the Hertzian constant and o[.] is the Heaviside function.

Wu and Thompson proposed a second degree polynomial for the relative

wheel/rail displacement due to the wheel flat [6]. Another function

z, (x)= g(l—cosnx Zxk j[cs(xk +Z—x)—c5(xk —Z—x)], ©)

“k”th

where x; is considered to be the position where the wheel steps for the time
on the flat, was proposed by Wu and Thompson, too [7].

The boundary conditions are
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lim {gx,0f=[0 of, (10)

‘x—Vt‘%oc

and the initial conditions are

{z}=0. {z}=0. fax0j=[o of . {ax0)j=[0 of  an

where {2} and {§(x,0)}are speed vectors.

An original method for solving the motion equations is applied. It is based
on the Green functions for both, the track and the vehicle.

The vector for vehicle displacement (for null initial conditions) is

2} =[9,¢ 0P} (12)
where
— [%mpm} — [t ()
0.0= " s (13)
LA RG] {Hﬂ@(t)
mw+ " N " I’I’l‘1

is the vehicle’s Green functions matrix, with

M +M M +M
t)=exp(-at)sinBt/B, o =c—2—> o =k—2—2L
©(1) = exp(-aut)sin B¢/ MM, T

,Br=w’—a’. (14)
The Green functions matrix may be calculated using the Laplace transform
applied to equation (1).
The time-domain analysis of the track has its fundament on the track’s real
Green functions

_ _ _ gw(xaaat_r) 15
lo}={o(x.1 T)}{g:(x,g,t_r)} (13)

The column vector {g} contains the track’s response in the x section at the
t-r moment, if at the T moment in the & section an impulse force occurred. The
column vector of the real Green functions is the solution for the following
equation
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L. {o}=8(x-8)d(t - 1)fe} (16)

and it may be calculated using the Fourier transform method. If the complex
Green functions for the rail are defined through the Fourier transform FT.]

_ Gw(x’arm) _ X 17
il ot |- ool (17

then, they contain the amplitudes of the track’s harmonic response in the x section
at the o angular frequency, if in the & section an impulse force occurred. The
column vector of the complex Green functions is the solution of the following
equation

L. {G}=8(x-&)e} (18)

where L., = F[L./].
The vector for the real Green functions is calculated beginning with

0)= [ Glexp(jolt-))do (19)

2m o
where j*=-1.
The calculation method for the Green functions is similar to the one
presented in reference [8].
The rail displacement at the contact point results by applying the Green
function method

wt)=[ [g (.6t —0)P(D)S(E - Vr)drde =[ g (V1.Vr,t ~t)P()dt  (20)

where g,(Vt, Vx, t - 1) is the Green function for rail displacement. In other words,
for any contact point x = V%, there is a corresponding Green function g,(Vz, Vz, ¢ -
1) which depends on t€[0, 7] and is calculated from g,(x, &, ¢ - 7).

The rail’s Green function has its property of being damped. There is a
certain 7 for which the Green function’s contribution may be neglected for ¢ - >
T (apriority t > T)

g,V Vr,t—1)=0. (21)

For numerical application purposes, a time partition - #, ¢ , ... t, with
to=0,t,=tand At=¢;- t,; where i =1 + n - has to be considered. Equations (12)
and (20) are becoming
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e)}= X[ ot ~f@)k (22)

Wit =Y [ g, 071, Vet ~0)P()de. (23)
i=1 "

The integrations will be calculated adopting the hypothesis that in the time
interval [f.1, #], the contact force P(t) and the Green functions have a linear
variation. It is obvious that the wheel and rail displacement in the contact point
are depending on the amplitude of the contact force P(z,). By substituting those
displacements in the equation of the contact force (4), a non-linear P(#,) based
equation will result. By solving it in an iterative matter, the contact force results
for each integration step. The wheel and rail displacements are resulting together
with the contact force. Finally, the following integration step might be taken.

2. Numerical application

Next, the particular case of a railway vehicle having the wheel mass M,, =
750 kg and the car body mass (distributed on each wheel) M}, = 9250 kg and static
load Py = 100 kN running with a wheel flat on a rail having the linear mass m, =
56 kg/m on concrete sleepers, is studied. Other parameters for the considered
vehicle are: k£ = 1.37 MN/m, ¢ = 90 kNs/m and wheel diameter 840 mm. The
values for the involved track parameters are: / = 23.14-10% m*, E =210 GPa, m, =
184 kg, k. =400 MN/m, ¢, = 90 kNs/m, k=257 MN/m and ¢, = 117 kNs/m.
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Fig 3. The Green's function gw(U,U,z)
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The Green function for the rail was calculated integrating equation (19)
from 0 to 10000 Hz at a step of 10 Hz. The time step Az = 40 ps and the resulting
step for rail mesh is As = VAt.
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Fig. 3 displays the rail’s response in the point where the unitary impulse is
applied. The maximal value is 5.15 pm/(Ns) and the function is damped. It’s
considered that after 7= 60 ms, the function is negligible.
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Figs. 4 and 5 are displaying the wheel/rail system’s evolution at a speed of
15 m/s, when the wheel repeatedly steps over a 72 mm long and 0.6 mm deep flat.
At the beginning of the simulation, the wheel has a transitory behaviour with the
wheel’s own frequency on the rail, which is about 70 Hz. First, the wheel steps on
the flat at 0.1 s and then, at fixed time intervals of 175.9 ms. The maximal impact
force stabilizes quickly and has very little variations after. The maximal impact
force is 166.14 kN at 1.335 s. At first impact, its amplitude is 166.55 kN.

The wheel displacement is higher than the rail displacement because
elasticity reasons. When the wheel reaches the flat zone, due to inertia, it has the
tendency of splitting apart from the rail. Thus, the contact force decreases to its
minimum of 18.46 kN. Then, the wheel is pushed back to the rail by the force
from the suspension. The rail is also pushed up by the reactions occurred in the
rail pad and the ballast. As a result of these contrary motions, the wheel/rail
impact occurs. After the impact, the motion is quickly damped. The car body
displacement is totally insignificant due to the suspension.
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The impact force depends on the dimensions of the flat fault. Its value
increases if the flat is longer or deeper. Fig. 6 displays the impact force for a speed
of 15 m/s, a 120 mm long and 1.2 mm / 1.6 mm deep flat. The impact force has
very high values, of 216.7 kN and 261.0 kN respectively. For both situations, in
phase one, the wheel is completely un-loaded for 2.03 ms and 2.73 ms
respectively.

The maximal impact force is influenced by the running speed, as shown in
fig. 7. The result of the numerical simulation in case of a single wheel is presented
as well. It is quite clear that a maximum at about 5 — 6 m/s has a strong
connection with the approach of the wheel’s own frequency to the frequency of
passing over a flat. The numerical simulation shows that the vehicle suspension
reduces the impact force at low speed especially.

The numeric results are in accordance with the experimental ones [3, 6].
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Fig & MWasmmum contact force due to flat with length 27 =72 mm and depth 2 = 0.6 mm:
=44 k1T and k,= 200 MITm2, =, f{=441 and k,= 400 MMM/m2,
+, H =100k and &= 200 MIT/m2, @, H=100kM and &, =400 M/im2.

The impact force is also influenced by the stiffness of the rail pad. The rail
on continuous two-layer pad has two corresponding own frequencies [8, 10], as
known. If dealing with a rigid rail pad, the rail receptance is:

o smaller than the rail/sleepers first own frequency at low
frequencies;

e greater than the rail/sleepers second own frequency at high
frequencies.

The excitation frequency depends on the speed. As a result, the maximal
impact force will be lower at low speeds if the rail pad is elastic, but the trend

reverses at high speeds (see figure 8). This note is valid no matter how loaded the
vehicle is.
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3. Conclusions

The flat fault is a dangerous wheel defect because it may lead to very high
overloads and unpleasant noise.

A numerical model has been developed to predict the vehicle/track
interaction due to wheel flat excitation. The Green functions method was applied
for both the rail and the vehicle, for purposes of solving the equations of motions.
The predicted results are matching the experimental ones.

The vehicle/track evolution during the wheel flat/rail interaction has been
detalied. The car body is isolated through the suspension, but the wheel and the
rail are subject to high forces. When the speed increases or the flat has larger
dimensions, the wheel/rail contact might be lost during impact. The impact force
depends on the length and the depth of the flat. The result of the numerical
simulation at the speed of 54 km/h reveals a 57 % increase of the impact force for
a 120 mm long and 1.6 mm deep flat compared to the 72 mm long and 0.6 mm
deep flat.

The study of the wheel flat/rail interaction overrates the impact force in
slow speed range, up about 70 km/h for analysed case, compared to the study of
vehicle with wheel flat/rail interaction.

As the vehicle speed increases, the impact force increases too. Although, a
relative maximum may be observed if the frequency of ‘passing over the flat’ is a
little higher than the wheel/rail first own frequency.

If the rail pad stiffness is smaller, the impact force is small at low speeds
and increases at high speeds. Combining this aspect with the one presented above,
the conclusion is that the rigid rail pad is preferred.

The time domain analysis of the flat wheel/rail interaction is interesting
not only for determining the aggressiveness of the flat fault on the wheel/rail
system, but for the noise level calculation as well, starting with the spectra of the
impact force [6].
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