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CONVERGENCE THEOREMS FOR FAMILIES OF                          
Q-HOMEOMORPHISMS ON RIEMANN AND KLEIN 

SURFACES 

Victoria STANCIU1 

 Acest articol de sinteză prezintă rezultatele noastre recente care 
generalizează criterii de normalitate şi compacitate pentru familii de aplicaţii K - 
cvasiconforme ( K – QC ) şi K – cvasiregulate ( K – QR ), pe suprafeţe riemanienne 
sau Klein la cazurile în care: a) deformarea  este majorată de o funcţie din clasa 
BMOloc sau FMOloc, b) aplicaţiile sunt ring FMOloc - homeomorfisme ( sau - QR 
aplicaţii ), c) aplicaţiile sunt FLD – homeomorfisme. 

 
  This survey paper presents our recent results which generalize the 

normality and compactness properties of families of K – quasiconformal ( K – QC) 
and K – quasiregular    ( K - QR ) mappings on Riemann or Klein surfaces to the 
cases: a) of mappings whose distortion is dominated by a BMOloc  - or by a FMOloc 
– function, b) when instead of QC (or QR) mappings we work with  ring FMOloc - 
homeomorphisms ( or with QR mappings ), c) when the mappings are of finite length 
distortion( FLD ). 

Keywords: quasiconformal (QC), quasiregular (QR), BMOloc – QC, BMOloc –  
                   QR, FMOloc , FLD, ring Q(p) – homeomorphism, Riemann surface,  
                   Klein surface. 

1. Introduction 

Conformal mappings and analytic functions of one complex variable were 
first treated in the work of H. Grötzsch, M. A. Lavrentiev, L. V. Ahlfors, O. 
Teichmüller and others and then generalised to the spaces Rn, n ≥ 2 in the theory 
of quasiconformal (QC) and quasiregular (QR) mappings in the monographs by 
O. Lehto and K. I. Virtanen [1], L. V. Ahlfors, C.Andreian Cazacu [2] for n = 2, J. 
Väisälä [3], P. Caraman, Yu. G. Reshetnyak, M. Vuorinen and others for n ≥ 3. 
Later on, the dilatation of the QC mappings was dominated by a given measurable 
function Q, which can be BMO (bounded mean oscillation ), FMO ( finite mean 
oscillation ), L1

loc, etc. A complete list of the works with this subject can be found 
in [4] and [5]. My aim is to present in a general frame the results obtained both in 
joint with  C. Andreian Cazacu [6, 7, 8, 9 ] and alone [10, 11, 12, 13, 14, 15, 16] 
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about convergence in the 2 – dimensional case. In the following, D and D’ will 
designate domains in C and ': DDg → a mapping. 
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 is the ( maximal ) dilatation of  function  g and →D:μ C the complex dilatation, 
i.e. a measurable function with 1)( ≤zμ a.e. solution of the Beltrami equation 
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The classical geometric definition of K – QC mappings due to H. Grötzsch for n = 
2 is 

                                          )()(/)( Γ≤Γ≤Γ KMgMKM ,                                 (3) 
for  every path family Γ  in D, where the (conformal) modulus of Γ is 

                                           ∫∫Γ∈
=Γ
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,                                (4) 

 
with dm(z) the Lebesgue measure in C and ρ :C → [ 0, ∞ ] a Borel function called 
admissible for Γ ( ρ ∈ adm Γ ) with the property 

                                                               1≥∫γ ρds                                              (5) 

for each γ ∈ Γ. Here KgzK ≤),( a.e. 
   By Theorem 1.1, p. 24 in [1], or Theorem 34.3 in [3], a homeomorphism g is 
QC in the geometric sense if and only if   

                                                 )()( Γ≤Γ KMgM ,                                            (6) 
for some K∈ [1,∞ ) and for every path family Γ in D, that means that it is 
sufficient that 

                                             ∞<
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where the supremum is taken over all path families Γ in D for which M (Γ) and M 
(gΓ) are not simultaneously 0 or ∞. 
     Taking into account the relation between (3) and (6), O. Martio gives a natural 
extension of the definition of QC mappings (see [4], chap. 4, p. 81, [1], p. 221, or 
[5], p. 551 ). 
 
      Let Q: D → [ 1, ∞ ] be a measurable function. We say that a homeomorphism  

f: D → Ĉ = C ∪{ ∞ } 
is a Q (z) – homeomorphism, if   

                                ∫∫ ρ≤Γ
D

2 )z()z()z()( dmQfM                                         (8) 
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 for Γ family of paths in D and ρ ∈ adm Γ. This concept is related in a natural way 
to the theory of moduli with weights, see [17, 18]. We deal with some subclasses 
of Q (z) – homeomorphisms, which are introduced in [19 - 26 ], )(),( zQgzK ≤ , 
Q in BMOloc or FMOloc , and apply some of convergence results obtained there in 
the plane to Riemann and Klein surfaces. For the definitions see [4], chap. 5, 7, 8, 
12. 

2. Convergence theorems 

   Starting with the classical theorems on normality and compactness of 
meromorphic functions, which have been extended to QC or QR mappings ( [1], 
II, 5, p. 71), many authors generalized this topic on other classes of mappings, e. 
g. G. David, [27], P. Tukia, [28], V. Ryazanov, [20],  V. Ryazanov, U. Srebro and 
E. Yakubov [21, 22, 23, 24, 25, 26 ]. 
       Let Y and Y’ be Riemann or Klein homeomorphic surfaces, (   Ŷ, П, Y  ) and   
( Ŷ’, П’, Y’ ) their universal coverings, where П: Ŷ → Y and П’: Ŷ’ → Y’. Here Ŷ 
and Ŷ’ are either C, Δ – the unit disc or Ĉ with the corresponding metric: 
Euclidean, hyperbolic or spherical. The metrics on Ŷ and Ŷ’ induce by П and П’ 
the metrics of Y and Y’. The convergence is always taken with respect to these 
metrics. Let Q :Y → R, be a function defined on Y such that the composition                 

Π= QQ1 : Ŷ → R, be a BMOloc or FMOloc function. Then, we say that a 
mapping ': YYg →  is a Q (p) – QC ( or QR ) mapping if the lifting ĝ : Ŷ → Ŷ’ is 
a Q1( z ) – QC ( or QR ) mapping (cf. [29], p. 9 ). In this paper, homeomorphism 
(embedding ) means homeomorphism onto (into, respectively ) and QC – 
mapping is a general name for both cases. 

                                                     )(),( pQgpK ≤                                            (9) 
 holds if and only if K ( z, ĝ ) ≤ Q1( z ). 

     Let be Yp ∈0 and ''
0 Yp ∈   two arbitrary but fixed points of   Y and Y’ 

respectively. We consider the family G of mappings ': YYg →  normalized by the 
condition: 

                                               00 ')( ppg = .                                               (10)  

 Theorem  1. (  i ) If Y’ is non conformally equivalent to either C or Ĉ, then  G is 
normal if: 
           1. ∈Q  BMOloc(Y) and g from G is a Q (p) – QC mapping ; 
           2. ∈Q  FMOloc(Y) and g from G is a ring Q (p) – homeomorphism; 
           3. Gg ∈  is a FLD – homeomorphism, ∈Q  FMO(Y), with (9). 
                      ( ii ) if Y is non conformally equivalent to C or Δ, and { ng }is a 
sequence in G, which l. uniformly converges to 0g , then 0g  is a: 
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1. Q(p) – QC embedding, if Ggn ∈  is a  Q (p) – QC mapping ∈Q  
BMOloc(Y); 

2. ring  Q(p) –  embedding, if Ggn ∈  is a ring Q (p) – homeomorphism                   
∈Q  FMOloc(Y).                              

                     (iii) Let { ng } be a sequence of FLD – homeomorphisms of D into C 
with a. e. )()(),( 1 DLzQgzK locn ∈≤ , converging l. uniformly to a mapping 

→Dg :0  C. Then 0g  is either an FLD – embedding or ≡0g  const. in D . 
                    ( iv ) G is closed in the following cases: 

1. if Y’ is compact, Gg ∈  is a  Q (p) – QC mapping ∈Q  BMOloc(Y); 
2. if Y’ is non conformally equivalent to C, Gg ∈  is a  Q (p) – QC 

mapping ∈Q  BMO(Y) ( or ring Q (p) – homeomorphism ∈Q  
FMO(Y)) . 

3. if ≠Y C and there exists a function ∈C  BMOloc(Y’) ( FMO(Y’) 
respectively ) such that 1−g  is a C (p’) – QC mapping (ring C (p’) – 
homeomorphism) for every Gg ∈ . 

       These results have been extended [12, 14 ] to the families G’ and G” of 
BMOloc(Y) Q (p) – QC mapping ( FMOloc(Y)  ring Q (p) – homeomorphism ) 

': YYg →  which map a given compact subset YM ⊂  into, respectively onto, 
another given compact subset '' YM ⊂ . 
     Remark 1. The follwing example shows that the conclusion of Theorem 1, 
does not hold in the case excluded by its hypotheses. 
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mappings, where Q1(z) = max{ }∈2),(zQ BMO (C) by [29], p.2. This shows that  
{ }ng  converges l. u. in C to a constant 00 ≡g ,hence G is not closed. 
      Example 2. Δ='Y , Y = C or Δ . Let }{ nr  be an increasing sequence of 
numbers nrn <<0  tending to infinity if Y = C or 10 << nr  tending to 1 if Y = Δ . 
Define Δ→Ygn :  by 
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2,1 ≥≤<− Nrzr NN , is BMOloc( Y ), since it is l. bounded. Thus ng  is a Q ( z ) – 
qc homeomorphism and the sequence }{ ng  tends to 0 l. u. in Y. Indeed, in any 

disk B ( 0, r ), nrr < , 
n
zzgn =)(  for Nn ≥ . 

      By using [23], Corollary 5.6, p. 15, a normality criterion was proved for 
BMOloc – QR (or for ring FMOloc – QR ) mappings in [13] and [15]. 
   The BMO – QR solutions of (2) are obtained by Stoilow’s factorization 
theorem, which says that every open and discrete mapping g: D → Ĉ admits a 
representation 
                                                            ϕhg =                                                   (11) 
where ϕ is an embedding and h a meromorphic function in ϕ (D) ( [30], V, 5, p. 
120 ). The conclusion of  Theorem 1 does not hold for the class of Q(p) – QR 
mappings, as follows from   
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       Theorem 2. Let X and X’ be two homeomorphic Riemann surfaces, X’ is non 
conformally equivalent to either C or Ĉ, 1010 ,,1,0,', ζζζ ≠≠=∈∈ zzjXXz jj  
and ∈Q  BMOloc(X)     ( ∈Q  FMOloc(X)). If Φ is a family of Q ( z ) – QC ( ring 
Q(z) – QR ) mappings  ': XXf →  such that 1,0,)(1 ==− jzf jjζ , then Φ is 
normal. 
       Remark 2. The conclusion of Theorem 2 is not true if either (i) X’ = Ĉ or (ii) 
X’ = C, as follows from 
       Example 4. (i) If fn: Ĉ → Ĉ, fn(z) = nz then fn are Q(z) – QR maps such that 

0)0(1 =−
nf , ∞=∞− )(1

nf , but 
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the family of Q(z) –           QR maps from Ĉ to Ĉ which having 0 and ∞ as fixed 
points, is not normal. 
(ii)Take fn: C → C, )1()( zn
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The proof method is to lift the problem to the universal coverings, obtain 
the results there, and then factorize, using [31] , Proposition 1 and 2, p. 173 . 
  

3. Conclusions 

Theorems 1 and 2 open prospects of generalizations to wider classes, e. g. 
to strong ring     Q ( z ) – homeomorphisms or super Q ( z ) – homeomorphisms. 
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