
U.P.B. Sci. Bull., Series A, Vol. 82, Iss. 4, 2020 ISSN 1223-7027

CONVERGENCE TO A COMPACT SET IN FUNCTIONAL SPACES

Serpil Pehlivan1

In this paper we introduce a convergence concept for compact subset of a
sequence of functions. This convergence is called Γ-statistical uniform convergence. We

also establish necessary and sufficient conditions for Γ-statistical uniform convergence

to a compact set of cluster functions of a sequence of functions in functional spaces.
Furthermore, we investigate some properties and applications of new type convergence.
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1. Introduction

In [1], Arzelá investigated a necessary and sufficient condition under which the point-
wise limit of a sequence of real valued continuous functions on a compact interval is con-
tinuous. Several generalizations and applications of this notion have been investigated [2],
[13], [14], [15], [16], [17]. In [3] Beer and Levi proposed a new approach to this investigation,
on a metric space (X, d), through the notion of strong uniform convergence on bornologies,
when this bornology reduces to that of all nonempty finite subsets of X. In [5], a direct
proof of the equivalence of Arzelá, Alexandroff, and Beer-Levi conditions was given. If a
sequence of measurable functions defined on an interval with Lebesgue measure is pointwise
statistically convergent to f , then it is statistically convergent in measure to f , it was proved
by Steinhaus [31] and Fast in [10]. In [12] Fridy introduced the concepts of statistical (or
shortly, st) limit points and st- cluster points of a number sequence and given some prop-
erties of the sets of st-limit points and st-cluster points of a sequence of real numbers. We
introduced in [28] the concept of Γ st - convergence using the set of cluster points in a Rm
space. Later, in [20], [22], [26], [30], we introduced some applications of the concept of Γ st
- convergence, depending on the concepts of a compact set of cluster points of a sequence in
Rm space, in Turnpike theory. We studied an asymptotic behaviour of optimal paths and
optimal controls in problem of optimal control in discrete time [21]. St- convergence and
Γ st - convergence are very useful and more general tools than their ordinary counterparts,
that is, when we cannot model the behaviour of a sequence via the tools of ordinary con-
vergence, we can benefit from st - convergence and Γ st- convergence [32]. There are many
papers on st - convergence in the literature, and now it seems nearly impossible to list all of
them. Nevertheless, for the definition and various properties of st - convergence in a general
Hausdorff topological space, please see [19].

We continue to develop our work in [27] and [28]. For this purpose, first, we compare
some of the results related to the concept of st - cluster point introduced by Fridy [12]
and developed by Pehlivan et al. [28], with our results obtained in the more complicated
functions spaces. Next, using the theorem of The Arzela-Ascoli’s, we introduce the concept
of the compact set of st-uniform cluster functions in C(X), called Γ-st-uniform convergence.
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Let us outline what we have done in this work. In the second section some basic
definitions related to the theory are recalled and given some preliminary concepts of the
sets of st - limit and cluster points. In Section 3, we study st-uniform limit (in short, sul)
functions and st-uniform cluster (in short, suc) functions for sequences of functions in Y X .
We investigate some of the properties of these sets. In Section 4, we continue this study
the set of all suc - functions ΓuF is nonempty and compact in C(X) and provide additional
information about the compact set of suc functions in C(X). Finally, we propose a notion
of a new type convergence for a sequence of functions which is if F = {fk}k∈N be a sequence
st− uniformly bounded of functions in C(X) then F = {fk}k∈N is Γ-st-uniformly convergent
to the set ΓuF .

2. Notations and Definitions

We list some of the basic definitions and notations related to the theory of st-
convergence. Let A ⊂ N and

dn(A) =
1

n

n∑
k=1

χA(k).

If lim
n→∞

dn(A) exists, then it called the natural density of A and denoted by δ(A) (see, e.g.

[8], [9], [25]). A set A ⊂ N is said to be statistically dense if δ(A) = 1, and a subsequence
{xk}k∈A of a sequence {xk}k∈N is called statistically dense if δ(A) = 1 (see [19]). The
natural density may not exists for a set A, but the upper density of A always exists, and is
defined by

δ(A) = lim sup
n→∞

dn(A).

The statistical convergence is based on the concept of the natural density of A ⊂ N. This
concept was studied and generalized in various directions by Salat [29], Fridy [11], and the
others [18]. Let (X, ρ) be a metric space. A sequence x = {xk}k∈N in X is said to be

statistically convergent to a point η in X, and we write xk
st→ η, provided that

δ {k ∈ N : ρ(xk, η) ≥ ε} = 0.

Definition 2.1. Let (X, ρ) be a metric space. Then a point η ∈ X is said to be a st- cluster
point of x provided that for every ε > 0 we have δ{k ∈ N : ρ(xk, η) < ε} > 0. The set of all
st-cluster points of x is denoted by Γx.

Definition 2.2. Let (X, ρ) be a metric space. An element η ∈ X is said to be a st- limit
point of x provided that there is a set K = {kj : k1 < k2 < . . .} ⊂ N such that δ(K) > 0
and lim

j→∞
xkj = η. Denoted by (Λx) the set of all st-limit points of x.

The concepts of the sets of st- cluster and st-limit points a sequence of real numbers x =
{xk}k∈N were defined and studied some properties of these sets by Fridy [12].

Now we consider the concepts related to st- uniform convergence of a sequence of
functions on metric spaces. We investigate the sets of sul - functions and suc - functions.
We also investigate some of the properties of these sets.

3. The Sets of st- uniform limit and cluster for sequences of functions

We can write the definitions of st-uniform convergence in the following [2]: Let (X, ρ1)
and (Y, ρ2) be metric spaces. Let Y X be the set of all functions from X to Y and C(X,Y )
be the set of all continuous functions from X to Y .

Next let us define st-uniform convergence of F = {fk}k∈N to f . We write it as

sup
x∈X

ρ2 (fk(x), f(x))
st→ 0 . A sequence F = {fk}k∈N of functions in Y X is said to be
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statistically uniformly convergent to a function f in Y X in symbol: F
st
⇒ f if (∀ε > 0)

δ{k : for all x ∈ X, ρ2 (fk(x), f(x)) ≥ ε} = 0. (1)

Now we can give the definitions of st-uniform limit and cluster function

Definition 3.1. A function f in Y X is said to be a sul - function of a sequence F = {fk}
of functions in Y X provided that there is a set P = {p1 < p2 < . . . < pk < . . .} ⊂ N such
that δ(P ) > 0 and fpk(x) ⇒ f(x) for all x ∈ X. That is for every ε > 0 we have

δ{k : for all x ∈ X, ρ2 (fpk(x), f(x)) < ε} > 0. (2)

Then the function f is a sul- function and let ΛuF denotes the set of sul- functions of a
sequence F = {fk} of functions.

Definition 3.2. A function f in Y X is said to be a suc - function of a sequence F = {fk}
of functions in Y X if for every ε > 0 we have

δ{k : for all x ∈ X, ρ2 (fk(x), f(x)) < ε} > 0.

Let ΓuF denotes the set of st-uniform cluster (in short suc) functions of a sequence F = {fk}
of functions.

Example 3.1. Let F = {fk} be the sequence of functions in RR defined by

fk(x) =

{
γ(x), if k is prime

1
k(1+x2) , otherwise

for ∀x ∈ R. Then we have δ{k : for all x ∈ R fk(x) ≥ ε} = 0. Therefore the sequence
{fk} is st-uniform convergent to the constantly zero function. Since the set of prime numbers

has natural density 0, we have fk
st

⇒ 0, but a sequence {fk} of functions is not uniform
convergence. ΓuF = {f(x) = 0} = {0}. Let LuF be the set of uniform limit functions of a
sequence F = {fk} of functions and so LuF = {0, γ(x)}.

We also prove easily in the following results.

Theorem 3.1. Let LuF be the set of all uniform limit functions of a sequence F = {fk} of
functions in Y X . Then ΛuF ⊆ ΓuF ⊆ LuF .

Proof. If the function f̃ is a sul- function, then by definition there is a set P = {p1 < p2 <

. . . < pk < . . .} ⊂ N such that δ(P ) > 0 and fpk(x) ⇒ f̃(x) for all x ∈ X. We have

δ{k : for all x ∈ X, ρ2

(
fpk(x), f̃(x)

)
< ε} > 0.

SinceA = {k : for allx ∈ X, ρ2

(
fk(x), f̃(x)

)
< ε} andB = {k : for allx ∈ X, ρ2

(
fpk(x), f̃(x)

)
<

ε}, we have A ⊃ B. Hence δ{A} ≥ δ{B} and so

δ{k : for all x ∈ X, ρ2

(
fk(x), f̃(x)

)
< ε} > 0.

This mean that f̃ ∈ ΓuF therefore ΛuF ⊆ ΓuF . The second part of inclusion is clear and the
proof is complete. �

Corollary 3.1. If F = {fk}k∈N is a sequence of functions in Y X and F
st

⇒ f for x ∈ X.
Then ΛuF = ΓuF = {f}.

Theorem 3.2. Let F = {fk}k∈N and H = {hk}k∈N are two sequences of functions in Y X

such that δ{k ∈ N : for all x ∈ X, fk(x) 6= hk(x) } = 0 then ΓuF = ΓuH and ΛuF = ΛuH where
the set {k ∈ N : for all x ∈ X, fk(x) 6= hk(x) } (in short {k ∈ N : fk 6= hk } or F ≡st H).
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Proof. Let f̃ be a suc - function of the sequence F = {fk}k∈N. Then from the defini-

tion we have δ{k ∈ N : for all x ∈ X, ρ2

(
fk(x), f̃(x)

)
< ε} > 0. But note that if

δ{k ∈ N : for all x ∈ X, ρ2

(
hk(x), f̃(x)

)
< ε} = 0. Then since {k ∈ N : for all x ∈

X, ρ2

(
fk(x), f̃(x)

)
< ε} ⊂

{k ∈ N : for all x ∈ X, ρ2

(
hk(x), f̃(x)

)
< ε} ∪ {k ∈ N : fk 6= hk } so by our assumption

δ{k ∈ N : for all x ∈ X, ρ2

(
fk(x), f̃(x)

)
< ε} > 0 which is a contradiction. Therefore

δ{k ∈ N : for all x ∈ X, ρ2

(
hk(x), f̃(x)

)
< ε} > 0 and so f̃ ∈ ΓuH . Similarly we can

show that ΓuH ⊂ ΓuF and so the equality is proved.

Let f̃ be a sul - function of the sequence F = {fk}k∈N, so that there exists a set K = {k1 <

k2 < k3 < . . . < kn < . . .} ⊂ N such that δ(K) > 0 and fkn(x) ⇒ f̃(x) for all x ∈ X in
uniform topology. Since δ{k ∈ N : fk 6= hk } = 0 and

{kn ∈ N : fkn 6= hkn } ⊆ {k ∈ N : fk 6= hk }

then define M = {mk ∈ N : fmk
= hmk

} and so δ(M) 6= 0. Denoting by {mk}k∈N the

canonical enumeration of M , we obtain hmk
(x) ⇒ f̃(x) that is the function f̃ is a sul-

function of the sequence H = {hk}k∈N. Hence f̃ ∈ ΛuH . By the arbitrariness of f̃ ∈ ΛuF we
have ΛuF ⊆ ΛuH . Similarly we can prove ΛuH ⊆ ΛuF . Thus ΛuF = ΛuH . �

4. Properties of the set of suc- functions in C(X)

Now we study some properties of the set of suc - functions in C(X). Let (X, ρ) be a
compact metric space and a sequence of functions F = {fk}k∈N in C(X,R) = C(X). We
get the uniform topology on C(X). The uniform topology on C(X) is defined by

Bε(g) = {f ∈ C(X) : for all x ∈ X |g(x)− f(x)| < ε}

as a base for each f ∈ C(X) and ε > 0.

Lemma 4.1. Let ΓuF be a set of all suc- functions. Then ΓuF is a closed set in C(X).

Proof. Let f̃ ∈ ΓuF . Then Bε(f̃)∩ΓuF 6= ∅. Therefore there exists a function f ∈ B ε
2
(f̃)∩ΓuF .

Since f ∈ B ε
2
(f̃) for every x ∈ X

|f̃(x)− f(x)| < ε

2

holds. Since f ∈ ΓuF we have

B = {k ∈ N : for allx ∈ X, |fk(x)− f(x)| < ε

2
}

and δ(B) > 0. Then for each k ∈ B and all x ∈ X we have

|fk(x)− f̃(x)| ≤ |fk(x)− f(x)|+ |f(x)− f̃(x)| < ε.

Thus f̃ ∈ ΓuF . Conclude that ΓuF is a closed set in C(X). �

Now the question arises the ΛuF closed set in C(X). The following example shows that the
set ΛuF is not closed set.

Example 4.1. Let us define the functions hj from R to R for all j ∈ N by

hj (x) =

{ 1
j if x > 0

0 if x ≤ 0
.
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Let Vj =
{

2j−1 (2q + 1) : q ∈ N
}

and consider the sequence of functions F = {fk}k∈N be

defined by fk (x) = hj (x) if k ∈ Vj. For each j ∈ N we have δ (Vj) = 1
2j > 0. Then for

each j ∈ N the subsequences {fk}k∈Vj
are uniformly convergent to hj on R. Hence we have

hj ∈ ΛuF for each j ∈ N. It is clear that f /∈ ΛuF where f (x) = 0 for every x ∈ R. Since for
each ε > 0 there exists a hj ∈ Bε(f) ∩ ΛuF , f is a cluster function of the set ΛuF . However,
since f /∈ ΛuF the set ΛuF is not closed.

Now we need the The Arzelá Ascoli Theorem .

Theorem 4.1. (Arzelá -Ascoli’s Theorem. ) Let (X, ρ) be a compact metric space, and let
K be a subset of C(X). Then K is compact if and only if K is closed, uniformly bounded,
and equicontinuous (see [6], [7], [24] ).

Lemma 4.2. Let F = {fk}k∈N be a sequence of functions defined on a compact metric space
X such that fk ∈ C(X) for k ∈ N and A ⊂ C(X) be a compact set. If δ{k ∈ N : fk ∈ A} > 0
then A ∩ ΓuF 6= ∅ .

Proof. Suppose first that A is compact subset of C(X). Let A ∩ ΓuF = ∅, every function
f ∈ A is not a suc-function. There is a positive number ε = ε(f) > 0 such that

δ{k ∈ N : for allx ∈ X, |fk(x)− f(x)| < ε} = δ{k ∈ N : sup
x∈X
|fk(x)− f(x)| < ε} = 0

Let Bε(f) = {h ∈ C(X) : for all x ∈ X, |f(x) − h(x)| < ε} be an open set. Since A is a
compact set and so there exists a finite subcover of A. There exists h1, h2, . . . , hn in A such
that A ⊂

⋃
i≤nBε(hi) where

Bε(hi) = {g ∈ C(X) : for all x ∈ X, |hi(x)− g(x)| < ε }

for i = 1, 2, . . . , n.
A finite set of continuous functions is obviously equicontinuous, and therefore there exists a
η for which this implication is valid. That is ρ(u, v) < η then |hi(u)− hi(v)| < ε for 1 ≤
i ≤ n,

{k ∈ N : fk ∈ A} ⊆
⋃
i≤n

{k ∈ N : fk ∈ Bε(hi)}

=
⋃
i≤n

{k ∈ N : for all x ∈ X, |fk(x)− hi(x)| < ε }.

And so

δ{k ∈ N : fk ∈ A} ≤
n∑
i=1

δ{k ∈ N : for all x ∈ X, |fk(x)− hi(x)| < ε }.

Since δ{k ∈ N : for all x ∈ X, |fk(x) − hi(x)| < ε } = 0 for every hi ∈ A, it follows
δ{k ∈ N : fk ∈ A} = 0, which contradics to δ{k ∈ N : fk ∈ A} > 0 then A ∩ ΓuF 6= ∅ �

Remark 4.1. If the set A is not uniformly bounded, closed and equicontinuous this theorem
does not hold.

Example 4.2. We define the sequence F = {fk}k∈N by fk (x) = 1/k for every x ∈ [0, 1]
and each k ∈ N. Let A = {fk : k ∈ N}. The set A is bounded, equicontinuous, but not closed
and so it is not compact. We have

{k ∈ N : fk ∈ A} = N,

but ΓuF = {f} where f (x) = 0 for every x ∈ [0, 1] and so A∩ΓuF = ∅.
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Definition 4.1. Let F = {fk}k∈N be a sequence of functions defined on X such that fk ∈
C(X) for k ∈ N. If the sequence F = {fk}k∈N has a subsequence {fpk} such that the set
{fpk : k ∈ N} is contained in a compact set P in C(X) and δ{k : fpk ∈ P} > 0 then we say
that F = {fk}k∈N is a sequence st −uniformly bounded of functions defined in C(X). Note
that in this case we have δ{k : fk /∈ P} = 0 or δ{k ∈ N : fk ∈ P } = 1.

Thus we have the following

Theorem 4.2. If F = {fk}k∈N is a st - uniformly bounded sequence of functions in C(X)
then the set ΓuF is a nonempty and compact in C(X).

Proof. Let {fpk} be a subsequence of F such that {p1 < p2 < . . . < pk < . . .}. Since
F = {fk}k∈N is a sequence st−uniformly bounded, there exists a compact subset P of C(X)
such that {fpk : k ∈ N} ⊂ P, means that fpk ∈ P for each k. If the set ΓuF is empty then

P ∩ ΓuF = ∅.
Since {k ∈ N : fpk ∈ P} ⊂ {k ∈ N : fk ∈ P}, by Lemma 4.2 and the final expression imply
that the set δ{k ∈ N : fpk ∈ P} = 0. This result contradicts with δ{k ∈ N : fpk ∈ P} > 0.
Then the set ΓuF is a nonempty.
For the second part of the Theorem, assume that F = {fk}k∈N is a st− uniformly bounded
sequence. By the Definition 4.1 there exists a compact subset P of C(X) such that

δ{k ∈ N : fk /∈ P} = 0

and the set ΓuF is nonempty. On the other hand

F = {fk}k∈N = {k ∈ N : fk /∈ P} ∪ {k ∈ N : fk ∈ P}.

Now it is enough to show that ΓuF ⊂ P. On the contrary, suppose that there exists an f̃ ∈ ΓuF

such that f̃ /∈ P. As P is compact there exists a number ε > 0 such that {k ∈ N :
∥∥∥fk − f̃∥∥∥ <

ε} ⊂ {k ∈ N : fk /∈ P} and therefore the set δ{k ∈ N :
∥∥∥fk − f̃∥∥∥ < ε} = 0. It is contrary to

the assumption f̃ ∈ ΓuF . Then the set ΓuF is compact. �

5. Γ-st-uniform convergence to compact set

Let the sequence of functions F = {fk}k∈N in C(X) and K ⊂ C(X) be a nonempty
compact set satisfying

δ{k ∈ N : ρ(K, fk) ≥ ε} = 0

holds for every ε > 0. It is clear that K ⊂ Bε(K) for every ε > 0 and the set Bε(K) contains
almost all functions of F = {fk}k∈N. If there exists an ε1 > 0 such that

δ{k ∈ N : ρ(K0, fk) ≥ ε1} 6= 0

for each compact set K0 ⊂ K such that K \ K0 6= ∅ then we say that K is the smallest
compact set.
Now we can define

Definition 5.1. The sequence of functions F = {fk}k∈N in C(X) is Γ − st−uniformly
convergent to the compact set K. In this case,

δ{k ∈ N : ρ(K, fk) ≥ ε} = δ{k ∈ N : inf
g∈K
‖fk − g‖ ≥ ε} = 0 (3)

for every ε > 0. We will call the compact set K the Γ- st limit of F = {fk}k∈N. It is
clear that if F = {fk}k∈N is Γ-st- uniformly convergent to a singleton {f}, then we have the
sequence F is st- uniformly convergent to the function {f}.

Now we have another
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Theorem 5.1. If F = {fk}k∈N be a sequence st− uniformly bounded of functions in C(X).
The smallest nonempty closed set K which holds Equation 3 is ΓuF that is K = ΓuF .

Proof. We know from the Theorem 4.2 that ΓuF 6= ∅ and, from the Definition 5.1, the set
ΓuF satisfies δ{k : ρ(ΓuF , fk) ≥ ε} = δ{k ∈ N : infg∈Γu

F
‖fk − g‖ ≥ ε} = 0 for every ε > 0.

Now suppose that ΓuF is not minimal, then there exists a compact set K ⊂ ΓuF such that
ΓuF \K 6= ∅. In this case there exists a suc - function h, such that h /∈ K. Then there exists
an ε > 0 such that Bε(h) ∩Bε(K) = ∅. Since h is a suc - function we can write

δ{k ∈ N : ‖fk − h‖ < ε } > 0

On the other hand, we have

{k ∈ N : ‖fk − h‖ < ε} ⊂ {k : fk /∈ Bε(K)}.
Combining these results, we get δ{k : fk /∈ Bε(K)} > 0, which contradicts with Definition
5.1. This completes the proof of the Theorem. �

Corollary 5.1. Let ΓuF be a set of suc - functions of the sequence F = {fk}k∈N. If δ{k :
ρ(ΓuF , fk) ≥ ε} = 0 for every ε > 0 then the sequence F = {fk}k∈N is Γ-st uniformly
convergent to the set ΓuF .

Remark 5.1. If we take the following sequence of functions in C([0, 1]) define by fk(x) ={
k if k is even
1 if k is odd

for every x ∈ [0, 1] and k ∈ N. It is clear that the sequence of functions

is not uniformly bounded. Let K = {fk : k is even }. The set K is uniformly unbounded
closed equicontinuous. Then the set K is not compact. Hence we have

{k ∈ N : fk ∈ K} = {2, 4, 6, . . .}

and the set of suc - functions ΓuF is {1}. {1} means that f(x) = 1 for every x ∈ [0, 1].
In this case we have K ∩ ΓuF = ∅ but δ{k ∈ N : fk ∈ K} = δ{2, 4, 6, . . .} = 1

2 6= 0 i.e.
δ{2, 4, 6, . . .} 6= 0. Then we get the set of suc- functions ΓuF is {1} but,

δ{k ∈ N : ρ(ΓuF , fk) ≥ ε} = δ{k ∈ N : inf
g∈Γu

F

‖fk − g‖ ≥ ε} = 1/2

for every ε > 0. Hence we can conclude that if F = {fk}k∈N is not a sequence st −uniformly
bounded of functions defined in C(X) then the Theorem 5.1 need not be true.

Theorem 5.2. Let F = {fk}k∈N be a sequence st- uniformly bounded of functions defined
in C(X). Then there exists a sequence H = {hk}k∈N of functions in C(X) such that
(i) F ≡st H that is:

δ{k : fk 6= hk} = 0,

(ii) ΓuF = LuH .

Proof. Let εq = 1/2q. Then from Theorem 5.1 for every q we have

δ{k ∈ N : ρ(ΓuF , fk) ≥ 1/2q } = 0.

For a given q we choose a number Sq such that δ{k ∈ N : ρ(ΓuF , fk) ≥ 1/2q } < 1/q for
every k > Sq. By Theorem 4.2 the set ΓuF is nonempty and so we can take any function
f ∈ ΓuF . Define by a sequence H = {hk}k∈N for every k ∈ N, Sq < k ≤ Sq+1,

hk =

 f if ρ(ΓuF , fk) ≥ 1/2q+1

fk if ρ(ΓuF , fk) < 1/2q+1
,

We have
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(a) if 1 ≤ k ≤ S1,

{k ≤ n : fk 6= hk, } ⊆ {k ≤ n : ρ(ΓuF , fk) ≥ 1/2}.

(b) if S1 < k ≤ S2,

{k ≤ n : fk 6= hk } ⊆ {k ≤ S1 : fk 6= hk } ∪ {S1 < k ≤ n : fk 6= hk } ⊆

{k ≤ S1 : ρ(ΓuF , fk) ≥ 1/2} ∪ {S1 < k ≤ n : ρ(ΓuF , fk) ≥ 1/4} ⊆

{k ≤ S1 : ρ(ΓuF , fk) ≥ 1/4} ∪ {S1 < k ≤ n : ρ(ΓuF , fk) ≥ 1/4} =

{k ≤ n : ρ(ΓuF , fk) ≥ 1/4}
Consequently;

δ{k ≤ n : fk 6= hk } ≤ δ{k ≤ n : ρ(ΓuF , fk) ≥ 1/4} < 1/2

In general for Sq−1 < k ≤ Sq, we have δ{k ≤ n : fk 6= hk } ≤ δ{k ≤ n : ρ(ΓuF , fk) ≥
1/2q} < 1/q. Then δ{k ≤ n : fk 6= hk } = 0 as, n→∞. Thus F ≡st H.
Now we show that ΓuF = ΓuH . Let f ∈ ΓuF then for every ε > 0

δ{k ≤ n : ‖fk − f‖ < ε } > 0.

Clearly
{k ∈ N : ‖fk − f‖ < ε } = {k ∈ N : fk = hk and ‖fk − f‖ < ε } ∪ {k ∈ N : fk 6=
hk and ‖fk − f‖ < ε } ⊂ {k ∈ N : ‖hk − f‖ < ε } ∪ {k ∈ N : fk 6= hk }.
Thus

{k ≤ n : ‖fk − f‖ < ε} ⊆ {k ≤ n : ‖hk − f‖ < ε} ∪ {k ≤ n : fk 6= hk }.

From definition and δ{k ≤ n : fk 6= hk } = 0 we have δ{k ∈ N : ‖hk − f‖ < ε } > 0 and so
f ∈ ΓuH . It follows that ΓuF ⊂ ΓuH .
By analogy we can show that ΓuH ⊂ ΓuF and therefore ΓuF = ΓuH .
At last by construction of the sequence H = {hk}k∈N we observe that LuH = ΓuH . This
completes the proof. �

6. Conclusions

In this paper, we introduce a new type of convergence notion by using the notion of the
uniform convergence of a sequence of functions, namely, Gamma - statistical convergence.
This new notion is close to the set of limit points and the set of cluster points. The set of
statistical cluster points turn out to be very useful and interesting tool in turnpike theory
to study optimal paths. It has also been discussed in convex or non-convex optimal control
problems in discrete systems. In classical theory of convergence, statistical convergence
has a special place and these are also active research area. We introduce the concept of
the compact set of statistical uniform cluster functions and we also give some properties of
the compact set of statistical uniform cluster functions. We investigate the concept of new
convergence using the compact set of statistical uniform cluster functions.

Furthermore, we propose a notion of a new type convergence for a sequence of func-
tions which is the appropriate device to study of optimal paths and turnpike theory in
continuous system. It is expected that the ideas and techniques of this paper may encour-
age further research.
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