

AN APPROXIMATE EVALUATION OF THE PHENOMENOLOGICAL AND STATE COEFFICIENTS FOR VISCO-ANELASTIC MEDIA WITH MEMORY

Armando CIANCIO¹

In a previous paper we have studied some properties of the phenomenological and state coefficients for a viscoanelastic medium of order one with memory. In that case we have used sometimes numerical approximation. In this paper we study the same coefficients by mean of approximate dynamic moduli expression for low and high frequency and we obtain some properties for viscous coefficients which are connected only on the choice of maximum value of the region of low frequency. In particular we show that the frequency corresponding to minimum value of the viscous coefficient is function of the maximum frequency value in the region of low frequency. Analogous studies have been performed in the region of high frequency. It is shown that the physical implications of the results are in agreement with experiments.

Keywords: Relaxation phenomena. Dynamic moduli. Viscoanelastic media.

1. Introduction

In the last 20 years of the last century a thermodynamic theory of non-equilibrium was proposed and developed through the introduction of tensorial internal variables characterizing the entropy production.

Various irreversible phenomena (viscoanelasticity and plasticity) have been analyzed and rheological equations (stress-strain relations) are obtained in different materials in order to establish differential equations which describe the mechanical properties of continua under investigations [12]-[21].

Recently [1]-[11], the thermomechanical model, proposed in that theory, has been analyzed by the applications of the linear response theory in which a harmonic shear deformation is assumed as cause and the relative stress as effect and, in particular, numerical values of the phenomenological coefficients which are involved in the production of entropy are obtained and the results are compared with experimental data.

In this paper we consider shear phenomena in viscoanelasticity media and using the linear response theory the coefficients, which occur in the rheological equation of the theory, are calculated as functions of the frequency.

The trend of these coefficients is described both for the high and for the low frequency and the conformity of the results with the related experimental data obtained in the case of a polymeric material (poly-isobutylene) confirm the validity of the mathematical model.

¹ Aggregated Professor, Dept.of Mathematics, University of Messina, Italy,
e-mail: a.ciancio@unime.it

2. Thermodynamical model for viscoanelastic media with memory

In several papers [17]-[21] it was shown that, by introducing the internal variables which characterize the entropy production and using the general method of non-equilibrium thermodynamics, the total strain ε_{ik} ($i, k = 1, 2, 3$) can be splitted in two parts:

$$\varepsilon_{ik} = \varepsilon_{ik}^{(el)} + \varepsilon_{ik}^{(in)} \quad (1)$$

where $\varepsilon_{ik}^{(el)}$ can be considered as the elastic strain tensor and $\varepsilon_{ik}^{(in)}$ is the sum of an arbitrary number, say n , of partial inelastic tensors.

In [20],[21] viscoanelastic media of order one ($n = 1$) were considered and by introducing the assumption that the specific entropy s is a function of the specific energy u , the tensor of the total strain ε_{ik} and the partial inelastic strain $\varepsilon_{ik}^{(1)}$, i.e.

$$s(u, \varepsilon_{ik}, \varepsilon_{ik}^{(1)}) \quad , \quad (2)$$

the following Gibbs relation is obtained ²

$$\rho T ds = \rho du - \tau_{ik}^{(eq)} d\varepsilon_{ik} + \tau_{ik}^{(1)} d\varepsilon_{ik}^{(1)} \quad , \quad (3)$$

where

$$T^{-1} = \frac{\partial}{\partial u} s(u, \varepsilon_{ik}, \varepsilon_{ik}^{(1)}) \quad , \quad (4)$$

$$\tau_{ik}^{(eq)} = -\rho T \frac{\partial}{\partial \varepsilon_{ik}} s(u, \varepsilon_{ik}, \varepsilon_{ik}^{(1)}) \quad , \quad (5)$$

and

$$\tau_{ik}^{(1)} = \rho T \frac{\partial}{\partial \varepsilon_{ik}^{(1)}} s(u, \varepsilon_{ik}, \varepsilon_{ik}^{(1)}) \quad . \quad (6)$$

In (4)-(6) T is the temperature, $\tau_{ik}^{(eq)}$ is the equilibrium-stress tensor (which is of a thermoelastic nature) and $\tau_{ik}^{(1)}$ is the affinity stress tensor conjugated to $\varepsilon_{ik}^{(1)}$.

The viscous stress tensor $\tau_{ik}^{(vi)}$ is defined by

$$\tau_{ik}^{(vi)} = \tau_{ik} - \tau_{ik}^{(1)} \quad , \quad (7)$$

where τ_{ik} is the mechanical stress tensor which occurs in the first law of thermodynamics:

$$\rho \frac{du}{dt} = -\text{div} \mathbf{j}^{(q)} + \tau_{ik} \frac{d\varepsilon_{ik}}{dt} \quad , \quad (8)$$

² we use the Einstein's convection for the indices.

where $\mathbf{j}^{(q)}$ is the heat flux.

By utilizing this last equation and the Gibbs relation (3), the entropy production $\sigma^{(s)}$ can be written in the following form:

$$\sigma^{(s)} = T^{-1} \left(-T^{-1} \mathbf{j}^{(q)} \cdot \text{grad} T + \tau_{ik}^{(vi)} \frac{d \varepsilon_{ik}}{d t} + \tau_{ik}^{(1)} \frac{d \varepsilon_{ik}^{(1)}}{d t} \right) . \quad (9)$$

Neglecting cross effects among viscous and anelastic flows in [20]-[21] it was shown that the deviator of the viscous stress tensor, $\tilde{\tau}_{ik}^{(vi)}$, satisfies the following phenomenological equation:

$$\tilde{\tau}_{ik}^{(vi)} = \eta_s^{(0,0)} \frac{d \tilde{\varepsilon}_{ik}}{d t} . \quad (10)$$

In equation (10) $\eta_s^{(0,0)}$ is the shear viscosity and $\tilde{\varepsilon}_{ik}$ is the deviator of the total strain.

From (9) and applying the general method of non-equilibrium thermodynamic, the following rheological equation for viscoanelastic media of order one is determined:

$$\frac{d \tilde{\tau}_{ik}}{d t} + R_0^{(\tau)} \tilde{\tau}_{ik} = R_0^{(\varepsilon)} \tilde{\varepsilon}_{ik} + R_1^{(\varepsilon)} \frac{d \tilde{\varepsilon}_{ik}}{d t} + R_2^{(\varepsilon)} \frac{d^2 \tilde{\varepsilon}_{ik}}{d t^2} \quad (11)$$

where

$$\begin{cases} R_0^{(\tau)} = a^{(1,1)} \eta_s^{(1,1)} \\ R_0^{(\varepsilon)} = a^{(0,0)} (a^{(1,1)} - a^{(0,0)}) \eta_s^{(1,1)} \\ R_1^{(\varepsilon)} = a^{(0,0)} + a^{(1,1)} \eta_s^{(0,0)} \eta_s^{(1,1)} \\ R_2^{(\varepsilon)} = \eta_s^{(0,0)} \end{cases} \quad (12)$$

in which $a^{(0,0)}$ and $a^{(1,1)}$ are state coefficients related to the elastic and anelastic properties of the medium, while $\eta_s^{(1,1)}$ is the coefficient related to irreversible anelastic shear phenomena. In [20]-[21], from stability considerations, it was shown that the following inequalities hold:

$$a^{(0,0)} \geq a^{(1,1)} \quad \text{and} \quad \eta_s^{(0,0)} \geq 0 , \quad \eta_s^{(1,1)} \geq 0 . \quad (13)$$

In the following sections it will be seen that these inequalities are verified from experimental data.

3. Linear response theory

In this section we consider the case in which only one component of the deviator of stress is different from zero. Let be \mathbf{T} this component and \mathbf{E} the correspondent component of the deviator of the strain, so from (11) we have

$$\frac{d\tau}{dt} + R_0^{(\tau)}\tau = R_0^{(\varepsilon)}\varepsilon + R_1^{(\varepsilon)}\frac{d\varepsilon}{dt} + R_2^{(\varepsilon)}\frac{d^2\varepsilon}{dt^2} \quad (14)$$

In the theory of linear response [10] one assume that in a generic continuum medium subjected (at constant temperature) to an harmonic shear deformation (causa), i.e.

$$\varepsilon = \varepsilon^{(0)} \sin(\omega t) \quad (15)$$

with amplitude $\varepsilon^{(0)} = \text{constant}$ and angular frequency ω , the effect is a stress with the same frequency but different amplitude $\tau^{(0)}$ and phase lag φ which depend on ω , i.e.

$$\tau(\omega) = \tau^{(0)}(\omega) \sin(\omega t + \varphi(\omega)) \quad (16)$$

From (15) and (16) we have

$$\tau(\omega) = G_1(\omega)\varepsilon^{(0)} \sin(\omega t) + G_2(\omega)\varepsilon^{(0)} \cos(\omega t) \quad (17)$$

where

$$\begin{cases} G_1(\omega) = \frac{\tau^{(0)}(\omega)}{\varepsilon^{(0)}} \cos(\varphi(\omega)) & \text{(storage modulus),} \\ G_2(\omega) = \frac{\tau^{(0)}(\omega)}{\varepsilon^{(0)}} \sin(\varphi(\omega)) & \text{(loss modulus).} \end{cases} \quad (18)$$

The quantities $G_1(\omega)$ and $G_2(\omega)$ are, respectively, connected to non dissipative and dissipative phenomena and their experimental curves are plotted in Fig.1 .

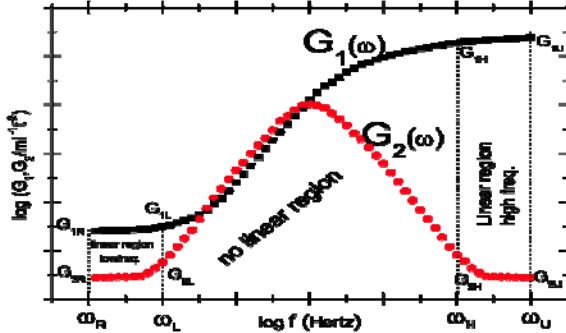


Fig. 1. Generic storage and loss moduli.

We considere two ranges: $\omega_R \leq \omega \leq \omega_L$ (low frequency) and $\omega_H \leq \omega \leq \omega_U$ (high frequency) in which we have:

$$G_{1R} = G_1(\omega_R), \quad G_{2R} = G_2(\omega_R), \quad G_{1H} = G_1(\omega_H), \quad G_{2H} = G_2(\omega_H) \quad (19)$$

and we put [9]-[11]:

- low frequency: $\omega_R \leq \omega \leq \omega_L$

$$\begin{cases} G_1(\omega) = G_{1R} (1.001)^r \\ G_2(\omega) = G_{2R} (1.001)^r \end{cases} \quad \text{where } r = 263 \frac{\omega - \omega_R}{\omega_L - \omega_R} , \quad (20)$$

- high frequency: $\omega_H \leq \omega \leq \omega_U$

$$\begin{cases} G_1(\omega) = G_{1H} (1.001)^s \\ G_2(\omega) = G_{2H} (1.001)^s \end{cases} \quad \text{where } s = 357 \frac{\omega - \omega_H}{\omega_U - \omega_H} . \quad (21)$$

From (20) and (21) we obtain:

- low frequency: $\omega_R \leq \omega \leq \omega_L$

$$\begin{cases} G_{1L} = G_1(\omega_L) = 1.3 G_{1R} \\ G_{2L} = G_2(\omega_L) = 1.3 G_{2R} \end{cases} , \quad (22)$$

- high frequency: $\omega_H \leq \omega \leq \omega_U$

$$\begin{cases} G_{1U} = G_1(\omega_U) = 1.43 G_{1H} \\ G_{2U} = G_2(\omega_U) = 0.7 G_{2H} \end{cases} \quad \text{or} \quad \begin{cases} G_{1H} = 0.7 G_{1U} \\ G_{2H} = 1.43 G_{2U} \end{cases} . \quad (23)$$

In ref. [1] it was discussed that the following relations hold:

$$\begin{cases} \eta_s^{(0,0)} = \frac{G_{2R}}{\omega} & \text{(low frequency)} \\ \eta_s^{(0,0)} = \frac{G_{2H}}{\omega} & \text{(high frequency)} \end{cases} . \quad (24)$$

In (24) G_{2R} and G_{2U} represent the minimum values of G_2 , respectively, in the range of low and high frequencies. Finally, from (14) it can observe that is $R_0^{(\tau)}$ the inverse of relaxation time for the stress and by using (12)₁ we put:

$$R_0^{(\tau)} = a^{(1,1)} \eta_s^{(1,1)} = \frac{1}{\sigma} , \quad (25)$$

where σ is the relaxation time.

4. Rheological coefficients

By virtue of (15) and (25), from (14) we obtain:

$$\frac{d\tau}{dt} + \frac{1}{\sigma} \tau = \alpha \sin(\omega t) + \beta \cos(\omega t) , \quad (26)$$

where

$$\begin{cases} \alpha = \varepsilon^{(0)} (R_0^{(\varepsilon)} - \omega^2 R_2^{(\varepsilon)}) \\ \beta = \varepsilon^{(0)} \omega R_1^{(\varepsilon)} \end{cases} \quad (27)$$

The solution of (26) is

$$\tau(t) = c_1 e^{-\frac{t}{\sigma}} + \frac{\sigma(\alpha + \beta \sigma \omega)}{1 + \sigma^2 \omega^2} \sin(\omega t) + \frac{\sigma(\beta - \alpha \sigma \omega)}{1 + \sigma^2 \omega^2} \cos(\omega t), \quad (28)$$

with c_1 an arbitrary constant. Neglecting the term of $e^{-\frac{t}{\sigma}}$ (σ is very small, for instance $\sigma = 10^{-7}$ s. for polyisobutylene) compared (17) and (28) one has:

$$\begin{cases} \varepsilon^{(0)} G_1 = \frac{\sigma(\alpha + \beta \sigma \omega)}{1 + \sigma^2 \omega^2}, \\ \varepsilon^{(0)} G_2 = \frac{\sigma(\beta - \alpha \sigma \omega)}{1 + \sigma^2 \omega^2}. \end{cases} \quad (29)$$

from which we obtain:

$$\begin{cases} \alpha = \varepsilon^{(0)} \frac{G_1 - G_2 \sigma \omega}{\sigma}, \\ \beta = \varepsilon^{(0)} \frac{G_2 + G_1 \sigma \omega}{\sigma}. \end{cases} \quad (30)$$

By virtue of (12)₄, (27) and (30) we have

$$\begin{cases} R_0^{(\varepsilon)} = \frac{G_1 + \omega \sigma (\eta_s^{(0,0)} \omega - G_2)}{\sigma}, \\ R_1^{(\varepsilon)} = \frac{G_1 \omega \sigma + G_2}{\sigma \omega}. \end{cases} \quad (31)$$

Finally, from (12), (23), (24), (25) and (31) one has

$$\begin{cases} a^{(0,0)} = \frac{G_1 \sigma \omega + G_2 - G_{2R/U}}{\sigma \omega}, \\ a^{(1,1)} = \frac{(G_2 - G_{2R/U} + G_1 \sigma \omega)^2}{\sigma \omega (G_2 - G_{2R/U}) (1 + \sigma^2 \omega^2)}, \\ \eta_s^{(0,0)} = \frac{G_{2R/U}}{\omega}, \\ \eta_s^{(1,1)} = \frac{\omega (G_2 - G_{2R/U}) (1 + \sigma^2 \omega^2)}{(G_2 - G_{2R/U} + G_1 \sigma \omega)^2}. \end{cases} \quad (32)$$

where $G_{2R/U}$ means G_{2R} for low frequency and G_{2U} for high frequency.

5. The coefficient of state $\alpha^{(0,0)}$.

By virtue of (19)-(22), the relation (32)₁ becomes:

1) low frequency:

$$a^{(0,0)} = G_{1R} (1.001)^r + \frac{G_{2R} \left[(1.001)^r - 1 \right]}{\sigma \left[\frac{r(\omega_L - \omega_R)}{263} + \omega_R \right]}, \quad (0 \leq r \leq 263), \quad (33)$$

2) high frequency:

$$a^{(0,0)} = 0.7 G_{1U} (1.001)^s + \frac{G_{2U} \left[1.43 \cdot (1.001)^{-s} - 1 \right]}{\sigma \left[\frac{s(\omega_U - \omega_H)}{357} + \omega_H \right]}, \quad (0 \leq s \leq 357), \quad (34)$$

For polyisobutylene we have [15] the following characteristic values:

$$\begin{aligned} \sigma &= 10^{-7} \text{ sec.}, \omega_R = 10^{-3} \text{ Hz}, \omega_L = 1.3 \text{ Hz}, \omega_U = 6 \cdot 10^{14} \text{ Hz}, \\ \omega_H &= 3.2 \cdot 10^{14} \text{ Hz}, G_{1R} = 2.5 \cdot 10^5 \text{ Pa}, G_{1U} = 2.4 \cdot 10^9 \text{ Pa}, \\ G_{2R} &= G_{2U} = 2.75 \cdot 10^4 \text{ Pa}. \end{aligned} \quad (35)$$

and so the graphics in Fig.2

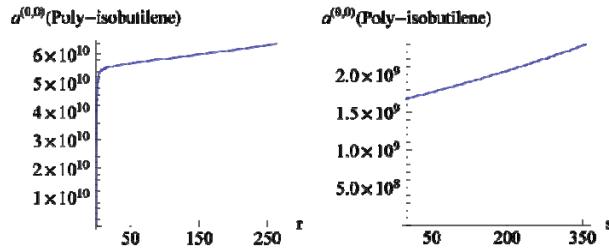


Fig. 2. The theoretical curves of coefficient $a^{(0,0)}$ for low (left) and high (right) frequencies.

The experimental curves (see [15]) for $a^{(0,0)}$ are plotted in Fig.3.

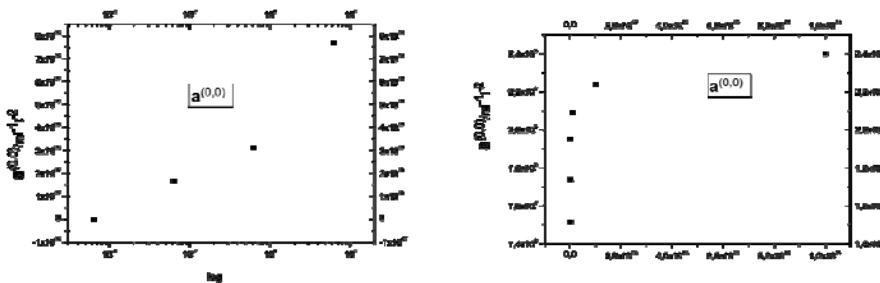


Fig. 3. Poly-isobutylene: the experimental curves of coefficient $a^{(0,0)}$ for low (left) and high (right) frequencies ($M.w. = 10^6 \text{ g/mol}$; $T_0 = 273 \text{ K}$).

5. The coefficient of state $a^{(1,1)}$.

By virtue of (19)-(22), the relation (32)₁ becomes:

2) low frequency:

$$a^{(1,1)} = \frac{\left(G_{2R} \left[(1.001)^r - 1 \right] + G_{1R} (1.001)^r \sigma \omega \right)^2}{\sigma \omega G_{2R} \left[(1.001)^r - 1 \right] (1 + \sigma^2 \omega^2)} , \quad (36)$$

$$\text{where } \omega = \frac{r(\omega_L - \omega_R)}{263} + \omega_R , \quad (0 \leq r \leq 263) .$$

2) high frequency:

$$a^{(1,1)} = \frac{\left(G_{2U} \left[1.43(1.001)^{-s} - 1 \right] + 0.7G_{1R} (1.001)^s \sigma \omega \right)^2}{\sigma \omega G_{2U} \left[1.43(1.001)^{-s} - 1 \right] (1 + \sigma^2 \omega^2)} , \quad (37)$$

$$\text{where } \omega = \frac{s(\omega_U - \omega_H)}{357} + \omega_H , \quad (0 \leq r \leq 263)$$

By using the characteristic value (35) we have the fig.4

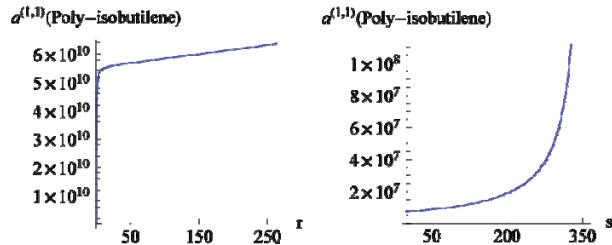


Fig. 4. The theoretical curves of coefficient $a^{(1,1)}$ for low (left) and high (right) frequencies.

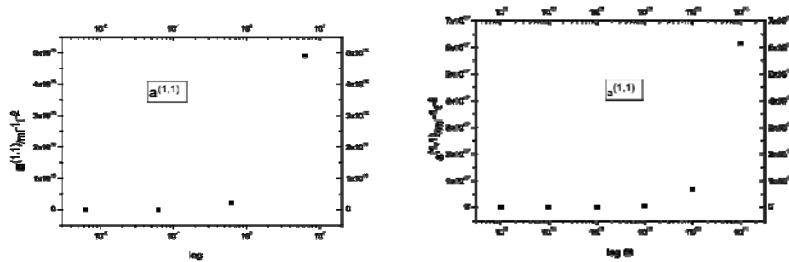


Fig. 5. Poly-isobutylene: the experimental curves of coefficient $a^{(1,1)}$ for low (left) and high (right) frequencies (M.w. = 10^6 g/mol; $T_0 = 273$ K).

6. The phenomenological coefficient $\eta_s^{(0,0)}$.

By virtue of (23) and (24), one has:

1. low frequency:

$$\eta_s^{(0,0)} = \frac{263G_{2R}}{\omega_R(263-r) + \omega_L r}, \quad (0 \leq r \leq 263), \quad (38)$$

2. high frequency:

$$\eta_s^{(0,0)} = \frac{357G_{2U}}{\omega_H(357-s) + \omega_U s}, \quad (0 \leq s \leq 357), \quad (39)$$

By putting in (40) and (41) the values (35) we have the fig. 6

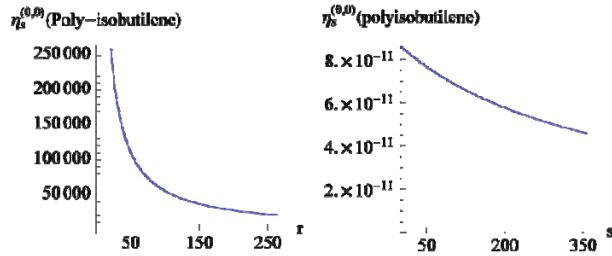


Fig. 6. The theoretical curves of coefficients $\eta_s^{(0,0)}$ for low (left) and high (right) frequencies.

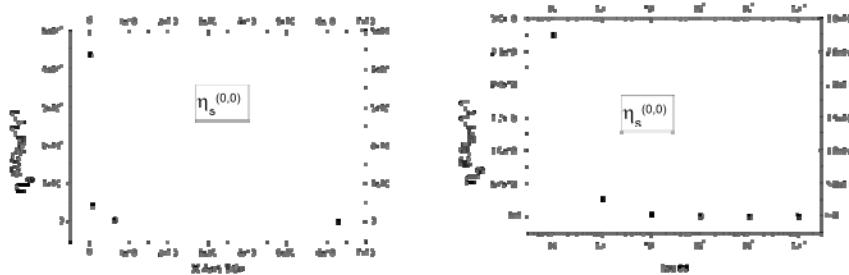


Fig. 7. Poly-isoButylene: the experimental curves of coefficient $\eta_s^{(0,0)}$ for low (left) and high (right) frequencies (M.w. = 10^6 g/mol; $T_0 = 273$ K).

7. The phenomenological coefficient $\eta_s^{(1,1)}$.

By virtue of (23) and (24), one has:

1. low frequency:

$$\eta_s^{(1,1)} = \frac{\omega G_{2R} \left[(1.001)^r - 1 \right] (1 + \sigma^2 \omega^2)}{\left(G_{2R} \left[(1.001)^r - 1 \right] + G_{1R} (1.001)^r \sigma \omega \right)^2}, \quad (40)$$

where $\omega = \frac{r(\omega_L - \omega_R)}{263} + \omega_R, \quad (0 \leq r \leq 263).$

2. high frequency:

$$\eta_s^{(1,1)} = \frac{\omega G_{2U} \left[1.43(1.001)^{-s} - 1 \right] (1 + \sigma^2 \omega^2)}{\left(G_{2U} \left[1.43(1.001)^{-s} - 1 \right] + 0.7G_{1U} (1.001)^s \sigma \omega \right)^2}, \quad (41)$$

where $\omega = \frac{s(\omega_U - \omega_H)}{357} + \omega_H, \quad (0 \leq s \leq 357).$

By putting in (40) and (41) the characteristic values (35) one obtains the fig. 8

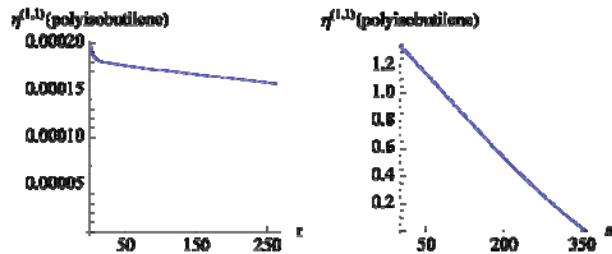


Fig. 8. The theoretical curves of coefficient $\eta_s^{(1,1)}$ for low (left) and high (right) frequencies.

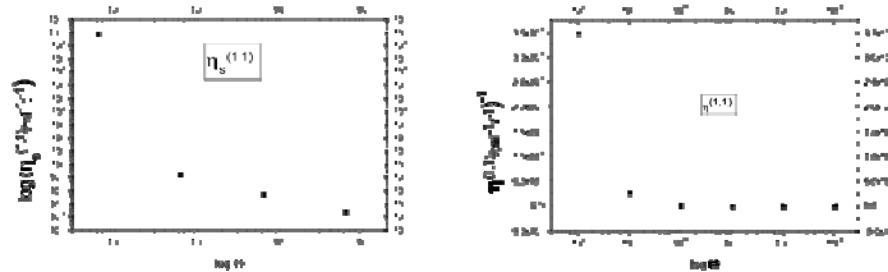


Fig. 9. Poly-isobutylene: the experimental curves of coefficient $\eta_s^{(1,1)}$ for low (left) and high (right) frequencies (M.w. = 10^6 g/mol; $T_0 = 273$ K).

8. Conclusions

The phenomenological coefficients which occur in the rheological equation obtained under a thermodynamic theory for viscoanelastic media are determined as functions of the dynamic moduli of linear response theory. It is shown that the theoretical results [see figures 6,4,6,8] are in agreement with experimental data in the case of polymeric material (Poly-isobutylene) [see figures 3,5,7,9]. This comparison confirms the validity of the model in the range of frequencies performed.

R E F E R E N C E S

- [1] *F.Farsaci, V. Ciancio, P. Rogolino*, Mechanical model for relaxation phenomena in viscoanelastic media of order one, *Physica B: Condensed Matter*, volume 405, 3208-3212 , 2010.
- [2] *V.Ciancio*, Introduzione alla termomeccanica dei continui. *Reologia (An introduction to thermomechanical of continuous media. Rheology)*, Monographs and Textbooks 10, Geometry Balkan Press, 2009, ISBN: 978-973-8381-16-9.
- [3] *V.Ciancio, A.Ciancio, F.Farsaci*, “On general properties of phenomenological and state coefficients for isotropic viscoanelastic media”, *Physica B: Condensed Matter*, volume 403, 3221 - 3227, 2008.
- [4] *A.Ciancio, V.Ciancio, F.Farsaci*, Phenomenological approach to a model of viscoanelastic media, proceedings of the International Conference Differential Geometry – Dynamical System, 55-60, 2008, DGDS October 5-7, 2007, Bucharest-Romania, Balkan Society of Geometers.
- [5] *V.Ciancio, A.Ciancio, F.Farsaci*, Some applications of linear response theory to media with mechanical relaxation phenomena, *Asymptotic Methods in Nonlinear Wave Phenomena*, 58-66, 2007, World Scientific Publishing Co. Ptc. Ltd., UK London.
- [6] *A.Ciancio, V.Ciancio, F.Farsaci*, Phenomenological approach to a model of viscoanelastic media, proceedings of the International Conference Differential Geometry – Dynamical System, 55-60, 2008, DGDS October 5-7, 2007, Bucharest-Romania, Balkan Society of Geometers.
- [7] *V.Ciancio, A.Ciancio, F.Farsaci*, Some applications of linear response theory to media with mechanical relaxation phenomena” *Asymptotic Methods in Nonlinear Wave Phenomena*, 58-66, 2007, World Scientific Publishing Co. Ptc. Ltd., UK London.
- [8] *A.Ciancio, V.Ciancio, F.Farsaci*, Wave propagation in media obeying a thermoviscoanelastic model, *Scientific Bulleettin University Politehnica of Bucharest, series A: Applied Mathematics and Physics*, 69, 4, 69 -79, 2007.
- [9] *V.Ciancio, F.Farsaci, G. Di Marco*, A method for experimental evaluation of phenomenological coefficients in media with dielectric relaxation, *Physica B: Condensed Matter*, volume 387, Iusses 1-2, 130-135, 2007.
- [10] *V.Ciancio, A.Bartolotta, F.Farsaci*, Experimental confirmation on a thermodynamical theory for viscoanelastic media with memory, *Physica B: Condensed Matter*, volume 394, Iusses 1-2, 8-13, 2007.
- [11] *V.Ciancio, F.Farsaci, G. A.Bartolotta*, Phenomenological and state coefficients in viscoanelastic medium of order one (with memory), *Computational Sciences and its Applications – ICCSA*,volume 3980, 821-827, 2006.

- [12] *V.Ciancio, J.Verhàs*, Thermodynamic Theory for Wave Guides, *Int. J. Engn. Sc.*, **vol. 33**, n.7, pp. 983-994, 1995. **3**
- [13] *V.Ciancio, V. Verhàs* , On the non-linear generalizations of Onsager's reciprocal relations, *J. Non-Equilb. Thermodynamics*, **vol. 19**, pp.184-194 , 1994.
- [14] *V.Ciancio, J.Verhàs*, On the representation of dynamic degrees of freedom, *J. Non-Equilb. Thermodynamics*, **vol. 18**, n.1, pp.39-50 , 1993.
- [15]. *I.M. Ward, D.W. Hadley*, Mechanical properties of solid polymers, ed. John-Wiley, 1993.
- [16] *V.Ciancio, L.Restuccia*, The generalized Burgers equation in viscoelastic media with memory, *Physica* **142 A**, pp.309-320, 1987.
- [17] *V.Ciancio, E.Turrisi, G.A.Kluitenberg*, On the propagation of linear longitudinal acoustic waves in isotropic media with shear and volume viscosity and a tensorial internal variable - II - Some cases of special interest (Poynting-Thomson, Jeffreys, Maxwell, Kelvin-Voigt, Hooke and Newton media), *Physica* **138 A**, 1986.
- [18] *V.Ciancio, L.Restuccia*, Asymptotic waves in anelastic media without memory (Maxwell media), *Physica* **131 A**, pp.251-262, 1985.
- [19] *V.Ciancio, L.Restuccia*, Non-linear dissipative waves in viscoelastic media, *Physica* **132 A**, pp.606-616, 1985.
- [20] *V.Ciancio, E.Turrisi, G.A.Kluitenberg*, On the propagation of linear longitudinal acoustic waves in isotropic media with shear and volume viscosity and a tensorial internal variable - I - General formalism, *Physica* **125 A**, pp.640-652, 1984.
- [21] *V.Ciancio, E.Turrisi, G.A.Kluitenberg*, On the propagation of linear transverse acoustic waves in isotropic media with mechanical relaxation phenomena due to viscosity and a tensorial internal variable - I - General formalism, *Physica* **110 A**, pp.361-372, 1982.