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AN APPROXIMATE EVALUATION OF THE 
PHENOMENOLOGICAL AND STATE COEFFICIENTS FOR 

VISCO-ANELASTIC MEDIA WITH MEMORY 
 

Armando CIANCIO1 

In a previous paper we have studied some properties of the 
phenomenological and state coefficients for a viscoanelastic medium of order one 
with memory. In that case we have used sometimes numerical approximation. In this 
paper we study the same coefficients by mean of approximate dynamic moduli 
expression for low and high frequency and we obtain some properties for viscous 
coefficients which are connected  only on the choice of maximum value of the region 
of low frequency. In particular we show that the frequency corresponding to 
minimum value of the viscous coefficient is function of the maximum frequency value 
in the region of low frequency. Analogous studies have been performed in the region 
of high frequency. It is shown that the physical implications of the results are in 
agreement with experiments. 
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1. Introduction 

In the last 20 years of the last century a thermodynamic theory of non-
equilibrium was proposed and developed through the introduction of tensorial 
internal variables characterizing the entropy production. 

Various irreversible phenomena (viscoanelasticty and plasticity) have been 
analyzed and rheological equations (stress-strain relations) are obtained in 
different materials in order to establish differential equations whih describe the 
mechanical properties of continua under investigations [12]-[21]. 

Recently [1]-[11], the thermomechanical model, proposed in that theory, 
has been analyzed by the applications of the linear response theory in which a 
harmonic shear deformation is assumed as cause and the relative stress as effect 
and, in particular, numerical values of the phenomenological coefficients which 
are involved in the production of entropy are obtained and the results are 
compared with experimental data. 

In this paper we consider shear phenomena in viscoanelasticity media and 
using the linear response theory the coefficients, which occur in the rheological 
equation of the theory, are calculated as functions of the frequency. 

The trend of these coefficients is described both for the high that for the 
low frequency and the conformity of the results with the related experimental data 
obtained in the case of a polymeric material (poly-isobutilene) confirm the 
validity of the mathematical model. 
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2. Thermodynamical model for viscoanelastic media with memory 

I several papers [17]-[21] it was shown that, by introducing the internal 
variables which caratacterize theentropy producition and using the general method 
of non-equilibrium thermodynamics, the total strain ( ) , 1, 2,3ik i kε =  can be 
splitted in two parts: 

( ) ( )el in
ik ik ikε ε ε= +                                                   (1) 

where ( )el
ikε  can be considered as the elastic strain tensor  and ( )in

ikε  is the sum of an 
arbitrary number, say n, of partial inelastic tensors. 

In [20],[21] viscoanelastic media of order one (n = 1) were considered and 
by introducing the assumption that the specific entropy s is a functio of the 
specific energy u, the tensor of the total strain ikε  and the partial inelastic strain 

( )1
ikε , i.e. 

( )( )1, ,ik iks u ε ε     ,                                                  (2) 
the following Gibbs relation is obtained 2 

( ) ( ) ( )1 1eq
ik ik ik ikT ds du d dρ ρ τ ε τ ε= − +       ,                                (3) 

 
where 

( )( )11 , ,ik ikT s u
u

ε ε− ∂
=

∂
     ,                                         (4) 

( ) ( )( )1, ,eq
ik ik ik

ik

T s uτ ρ ε ε
ε
∂

= −
∂

  ,                                       (5) 

and 
( )

( )
( )( )1 1

1 , ,ik ik ik
ik

T s uτ ρ ε ε
ε
∂

=
∂

  .                                        (6) 

In (4)-(6) T is the temperature, ( )eq
ikτ  is the equilibrium-stress tensor (which is of a 

thermoelastic nature) and ( )1
ikτ  is the affinity stress tensor conjugated to ( )1

ikε . 

The viscous stress tensor ( )vi
ikτ  is defined by 

( ) ( )vi 1
ik ik ikτ τ τ= −           ,                                            (7) 

where ikτ  is the mechanical stress tensor which occurs in the first law of 
thermodynamics: 

        ( )div q ik
ik

dd u
d t d t

ερ τ= − +j         ,                          (8) 

                                                            
2 we use the Einstein’s convection for the indices. 
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where ( )qj  is the heat flux. 
By utilizing this last equation and the Gibbs relation (3), the entropy 

production ( )sσ  can be written in the following form: 

( ) ( ) ( ) ( )
( )1

vi 11 1 grads q ik ik
ik ik

d dT T T
d t d t
ε εσ τ τ− −⎛ ⎞

= − ⋅ + +⎜ ⎟⎜ ⎟
⎝ ⎠

j         .             (9) 

Neglecting cross effects among viscous and anelastic flows in [20]-[21] it 
was shown that the deviator of the viscous stress tensor, ( )vi

ikτ , satisfies the 
following phenomenological equation: 

( ) ( )vi 0,0 ik
ik s

d
d t
ετ η=    .                                   (10) 

In equation (10)  ( )0,0
sη is the shear viscosity and ikε  is the deviator of the 

total strain. 
From (9) and applying the general method of non-equilibrium 

thermodynamic, the following rheological equation for viscoanelastic media of 
order one is determined: 

                   ( ) ( ) ( ) ( )
2

0 0 1 2 2
ik ik ik

ik ik
d d dR R R R
d t d t d t

τ ε ε ετ ε ετ ε+ = + +                        (11) 

where 

                

( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )

1,1 1,1
0

0,0 1,1 0,0 1,1
0

0,0 1,1 0,0 1,1
1

0,0
2

s

s

s s

s

R a

R a a a

R a a

R

τ

ε

ε

ε

η

η

η η

η

⎧ =
⎪
⎪ = −⎪
⎨

= +⎪
⎪

=⎪⎩

                                                  (12) 

in which ( )0,0a and ( )1,1a  are state coefficients related to the elastic and anelastic 
properties of the medium, while ( )1,1

sη  is the coefficient related to irreversible 
anelastic shear phenomena. In [20]-[21], from stability considerations, it was 
shown that the following inequalities hold: 

( ) ( ) ( ) ( )0,0 1,1 0,0 1,1  and  0 , 0s sa a η η≥ ≥ ≥   .                             (13) 
In the following sections it will be seen that these inequalities are verified from 
experimental data.  

3. Linear response theory 

In this section we consider the case in which only one component of the 
deviator of stress is different from zero. Let be  this component and the 
corrispondent component of the deviator of the strain, so from (11) we have 
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( ) ( ) ( ) ( )
2

0 0 1 2 2

d d dR R R R
d t d t d t

τ ε ε ετ ε ετ ε+ = + +                        (14) 

In the theory of linear response [10] one assume that in a generic 
continuum medium subjected  (at constant temperature) to an harmonic shear 
deformation (causa), i.e. 

( ) ( )0 sin tε ε ω=                                            (15) 

with amplitude ( )0ε = constant and angular frequency ω , the effect is a stress with 
the same frequency but different amplitude ( )0τ  and phase lag ϕ  which depend on 
ω , i.e. 

                                      ( ) ( ) ( ) ( )( )0 sin tτ ω τ ω ω ϕ ω= +                            (16) 
From (15) and (16) we have  

                       ( ) ( ) ( ) ( ) ( ) ( ) ( )0 0
1 2sin cosG t G tτ ω ω ε ω ω ε ω= +                 (17) 

where 

                 
( )

( ) ( )
( ) ( )( )

( )
( ) ( )

( ) ( )( )

0

1 0

0

2 0

cos       (storage modulus),

sin        (loss modulus).

G

G

τ ω
ω ϕ ω

ε
τ ω

ω ϕ ω
ε

⎧
=⎪

⎪
⎨
⎪ =⎪⎩

            (18) 

The quantities ( )1G ω  and ( )2G ω  are, respectively, connected to non dissipative 
and dissipative phenomena and their experimental curves are plotted in Fig.1 . 

 
Fig. 1. Generic storage and loss moduli. 

We considere two ranges: R Lω ω ω≤ ≤   (low frequency) and H Uω ω ω≤ ≤  (high 
frequency) in which we have: 

 ( ) ( ) ( ) ( )1 1 2 2 1 1 2 2, , ,R R R R H H H HG G G G G G G Gω ω ω ω= = = =  (19) 
and we put [9]-[11]: 

• low frequency: R Lω ω ω≤ ≤  
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( ) ( )
( ) ( )

1 1

2 2

1.001
      where    263 ,

1.001

r
R R

r
L RR

G G
r

G G

ω ω ω
ω ωω

⎧ = −⎪ =⎨ −=⎪⎩
   (20) 

• high frequency: H Uω ω ω≤ ≤  

         
( ) ( )
( ) ( )

1 1

2 2

1.001
      where    s 357 .

1.001

s
H H

s
U HH

G G

G G

ω ω ω
ω ωω

⎧ = −⎪ =⎨ −=⎪⎩
   (21) 

From (20) and (21) we obtain: 
• low frequency: R Lω ω ω≤ ≤  

                     
( )
( )

1 1 1

2 2 2

1.3 ,
   

1.3 ,
L L R

L L R

G G G

G G G

ω

ω

= =⎧⎪
⎨

= =⎪⎩
                                          (22) 

• high frequency: H Uω ω ω≤ ≤  

                
( )
( )

1 1 1 1 1

2 2         .2 2 2

1.43 0.7
   or      

1.430.7
U U H H U

H UU U H

G G G G G
G GG G G

ω

ω

= =⎧ =⎧⎪
⎨ ⎨ == = ⎩⎪⎩

 (23) 

In ref. [1] it was discussed that the following relations hold: 

                       

( )

( )

0,0 2

0,0 2

    (low frequency) ,

    (high frequency) .

R
s

R
s

G

G

η
ω

η
ω

⎧ =⎪⎪
⎨
⎪ =
⎪⎩

                                     (24) 

In (24) 2RG  and 2UG  represent the minimum values of 2G , respectively, in 
the range of low and  high frequencies. Finally, from (14) it can observe that  is 

( )
0R τ the inverse of relaxation time for the stress and by using (12)1 we put: 

                                     ( ) ( ) ( )1,1 1,1
0

1 ,sR aτ η
σ

= =                                           (25) 

where σ  is the relaxation time. 

4. Rheological coefficients 

By virtue of (15) and (25), from (14) we obtain: 

                              ( ) ( )1 sin cos ,d t t
dt
τ τ α ω β ω

σ
+ = +                             (26) 

where 

                                          
( ) ( ) ( )( )
( ) ( )

0 2
0 2

0
1

R R

R

ε ε

ε

α ε ω

β ε ω

⎧ = −⎪
⎨

=⎪⎩
                      (27) 
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The solution of (26) is 

               ( ) ( ) ( ) ( ) ( )1 2 2 2 2sin cos ,
1 1

t

t c e t tσ
σ α β σ ω σ β α σ ω

τ ω ω
σ ω σ ω

− + −
= + +

+ +
      (28) 

with 1c  an arbitrary constant. Neglecting the term of  
t

e σ
−

 ( σ is very small, for 
instance 710σ −=  s. for polyisobutilene) compared (17) and (28) one has: 

                                          

( ) ( )

( ) ( )

0
1 2 2

0
2 2 2

,
1

.
1

G

G

σ α β σ ω
ε

σ ω
σ β α σ ω

ε
σ ω

+⎧
=⎪⎪ +

⎨
−⎪ =⎪ +⎩

         (29) 

from which we obtain: 

                                        

( )

( )

0 1 2

0 2 1

,

.

G G

G G

σ ωα ε
σ

σ ωβ ε
σ

−⎧ =⎪⎪
⎨ +⎪ =
⎪⎩

                    (30) 

By virtue of (12)4, (27) and (30) we have 

                               
( )

( )( )

( )

0,0
1 2

0

1 2
1

,

.

sG G
R

G GR

ε

ε

ω σ η ω

σ
ω σ

σ ω

⎧ + −
⎪ =⎪
⎨

+⎪ =⎪⎩

                                           (31) 

Finally, from (12), (23), (24),(25) and (31) one has 

                     

( )

( ) ( )
( )( )

( )

( ) ( )( )
( )

1 2 2 /0,0

2

2 2 / 11,1
2 2

2 2 /

2 /0,0

2 2
2 2 /1,1

2

2 2 / 1

,

,
1

,

1
.

R U

R U

R U

R U
s

R U
s

R U

G G G
a

G G G
a

G G

G

G G

G G G

σ ω
σ ω

σ ω

σ ω σ ω

η
ω

ω σ ω
η

σ ω

+ −⎧
=⎪

⎪
⎪ − +⎪ =⎪ − +⎪
⎨
⎪ =⎪
⎪

− +⎪
=⎪

− +⎪⎩

                                   (32) 

where 2 /R UG  means  2 RG   for low frequency and  2 UG  for high frequency. 

5. The coefficient of state  . 

By virtue of (19)-(22), the relation (32)1 becomes: 



An approximate evaluation of the phenomenological [...] visco-anelastic media with memory   9 

1) low frequency: 

      ( ) ( )
( )

( ) ( )
20,0

1

1.001 1
1.001 , 0 263 ,

263

r
Rr

R
L R

R

G
a G r

r ω ω
σ ω

⎡ ⎤−⎣ ⎦= + ≤ ≤
−⎡ ⎤

+⎢ ⎥
⎣ ⎦

          (33) 

2)   high frequency: 

     ( ) ( )
( )

( ) ( )
20,0

1

1.43 1.001 1
0.7 1.001 , 0 357 ,

357

s
Us

U
U H

H

G
a G s

s ω ω
σ ω

−⎡ ⎤⋅ −⎣ ⎦= + ≤ ≤
−⎡ ⎤

+⎢ ⎥
⎣ ⎦

   (34) 

For polyisobutilene we have [15] the following characteristic values:  

            

7 3 14

14 5 9
1 1

4
2 2

10 sec. , 10 , 1.3 , 6 10 ,

3.2 10 , 2.5 10 , 2.4 10 ,

2.75 10 .

R L U

H R U

R U

Hz Hz Hz

Hz G Pa G Pa

G G Pa

σ ω ω ω

ω

− −= = = = ⋅

= ⋅ = ⋅ = ⋅

= = ⋅

         (35) 

and so the graphics in Fig.2 

 
Fig. 2. The theoretical curves of coefficient a(0,0) for low (left) and high (right) frequencies. 

The experimental curves (see [15] ) for are plotted in Fig.3. 

 
Fig. 3. Poly-isobutilene: the experimental curves of coefficient a(0,0) for low (left) and high (right) 

frequencies (M.w. = 106 g/mol; T0 = 273 K ). 
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5. The coefficient of state  . 
By virtue of (19)-(22), the relation (32)1 becomes: 

2) low frequency: 

                       

( )
( ) ( )( )

( ) ( )
( ) ( )

2

2 11,1

2 2
2

1.001 1 1.001
,

1.001 1 1

where    , 0 263 .
263

r r
R R

r
R

L R
R

G G
a

G

r
r

σ ω

σ ω σ ω

ω ω
ω ω

⎡ ⎤− +⎣ ⎦=
⎡ ⎤− +⎣ ⎦
−

= + ≤ ≤

           (36) 

2)   high frequency: 

                  

( )
( ) ( )( )

( ) ( )
( ) ( )

2

2 11,1

2 2
2

1.43 1.001 1 0.7 1.001
,

1.43 1.001 1 1

where      , 0 263
357

s s
U R

s
U

U H
H

G G
a

G

s
r

σ ω

σ ω σ ω

ω ω
ω ω

−

−

⎡ ⎤− +⎣ ⎦=
⎡ ⎤− +⎣ ⎦
−

= + ≤ ≤

   (37) 

By using the characteristic value (35) we have the fig.4 

 
Fig. 4. The theoretical curves of coefficient a(1,1) for low (left) and high (right) frequencies. 

 
Fig. 5. Poly-isobutilene: the experimental curves of coefficient a(1,1) for low (left) and high (right) 

frequencies (M.w. = 106 g/mol; T0 = 273 K ). 
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6. The phenomenological coefficient (0,0)
sη . 

 By virtue of (23) and (24), one has: 

1. low frequency: 

                           ( )

( ) ( )0,0 2263 , 0 263 ,
263

R
s

R L

G r
r r

η
ω ω

= ≤ ≤
− +

                (38) 

      2.   high frequency:  

                          ( )

( ) ( )0,0 2357 , 0 357 ,
357

U
s

H U

G s
s s

η
ω ω

= ≤ ≤
− +

               (39) 

By putting in (40) and (41) the values (35) we have the fig. 6 

 

Fig. 6. The theoretical curves of coefficients (0,0)
sη  for low (left) and high (right) frequencies. 

 
Fig. 7. Poly-isoButilene: the experimental curves of coefficient ( )0,0

sη  for low (left) 
and high (right) frequencies (M.w. = 106 g/mol; T0 = 273 K ). 

 
7. The phenomenological coefficient (1,1)

sη  . 
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By virtue of (23) and (24), one has: 

1. low frequency: 

                    

( ) ( ) ( )
( ) ( )( )

( ) ( )

2 2
21,1

2

2 1

1.001 1 1
,

1.001 1 1.001

where    , 0 263 .
263

r
R

s
r r

R R

L R
R

G

G G

r
r

ω σ ω
η

σ ω

ω ω
ω ω

⎡ ⎤− +⎣ ⎦=
⎡ ⎤− +⎣ ⎦

−
= + ≤ ≤

              (40) 

 
      2.   high frequency: 

( ) ( ) ( )
( ) ( )( )

( ) ( )

2 2
21,1

2

2 1

1.43 1.001 1 1
,

1.43 1.001 1 0.7 1.001

where    , 0 357 .
357

s
U

s
s s

U U

U H
H

G

G G

s
s

ω σ ω
η

σ ω

ω ω
ω ω

−

−

⎡ ⎤− +⎣ ⎦=
⎡ ⎤− +⎣ ⎦

−
= + ≤ ≤

  (41) 

By putting in (40) and (41) the characteristic values (35) one obtains the fig. 8 

 
Fig. 8. The theoretical curves of coefficient (1,1)

sη  for low (left) and high (right) frequencies. 

 
Fig. 9. Poly-isobutilene: the experimental curves of coefficient (1,1)

sη  for low (left) and high (right) 
frequencies (M.w. = 106  g/mol; T0 = 273 K ). 



An approximate evaluation of the phenomenological [...] visco-anelastic media with memory   13 

8. Conclusions 

The phenomenological coefficients which occur in the rheological 
equation obtained under a thermodynamic theory for viscoanelastic media are 
determined as functions of the dynamic moduli of linear response theory. It is 
shown that the theoretical results [see figures 6,4,6,8] are in agreement with 
experimental data in the case of polymeric material (Poly-isobutilene) [see figures 
3,5,7,9]. This comparison confirms the validity of the model in the range of 
frequencies performed. 
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