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A NOTE ON PROPER CONFORMAL VECTOR FIELDS IN
CYLINDRICALLY SYMMETRIC STATIC SPACE-TIMES

Ghulam SHABBIR, * Shaukat IQBAL?

A study of proper conformal vector field in non conformally flat cylindrically
symmetric static space-times is given by using the direct integration technique.
Using the above mentioned technique we have shown that a very special class of the
above space-time admits proper conformal vector fields.
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1. Introduction

The aim of this paper is to find the existence of conformal vector fields in
the non conformally flat cylindrically symmetric static space-times. The
conformal vector field which preserves the metric structure up to a conformal
factor carries significant interest in Einstein’s theory of general relativity. It is
therefore important to study this symmetry. Different approaches [1, 3-8] were
adopted to study conformal vector fields. In this paper a direct integration
technique is used to study conformal vector fields in the non conformally flat

cylindrically symmetric static space-times. Throughout M represents a four
dimensional, connected, Hausdorff space-time manifold with Lorentz metric g of

signature (-, +, +, +). The curvature tensor associated with g, , through the Levi-
Civita connection, is denoted in component form by R?.s, the Weyl tensor
components are C®q, and the Ricci tensor components are R, = Ran. The

usual covariant, partial and Lie derivatives are denoted by a semicolon, a comma
and the symbol L, respectively. Round and square brackets denote the usual

symmetrization and skew-symmetrization, respectively. The space-time M will
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be assumed non conformally flat in the sense that the Weyl tensor does not vanish
over any non empty open subset of M.
The covariant derivative of any vector field X on M can be
decomposed as

Xa;b Z%hab + Fab (1)
where h,(=h,)=L,0, and F,(=-F,) are symmetric and skew symmetric
tensors on M, respectively. A vector field X is called conformal vector field if

the local diffeomorphisms y, (for appropriate t) associated with X preserves the
metric structure up to a conformal factor i.e. w, g =¢g, where ¢ is a nowhere
zero positive function on some open subset of M and " is a pullback map on
some open subset of M [3]. This is equivalent to the condition that
Ny =& G
or, equivalently, if

Jane X“+ G X5+ G X =0 G, )

where ¢:U — R is a smooth conformal function on some subset of M, then X

is a called conformal vector field. If ¢ is constant on M, X is homothetic
(proper homothetic if ¢ = 0) while if ¢ =0, then it is Killing [1]. If the vector

field X is conformal, but not homothetic, then it is called proper conformal. It
follows from [3] that for a conformal vector field X, the bivector F and the

function ¢ satisfy (putting ¢, =¢,)

I:ab;c = Rabcd X ‘- 2¢[agb]c’ (3)
1 c
¢a;b = _E Lab;c X" = ¢ Lab + Rc(a I:b)c ) (4)

where L, =R, —%R O.p-

2. Main Results

Consider a cylindrically symmetric static space-time in the usual
coordinate system (t,r,#,z) with line element [2]

ds? =—e""dt? +dr2 +e"do? +e"dz?. ®)
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The possible Segre type of the above space-time is {1,111}, or one of its

degeneracies. The above space-time (5) admits three linearly independent killing

vector fields, which are
0 0 0O
PRt (6)
ot 060 oz
A vector field X is said to be a conformal vector field if it satisfies the
equation (2). One can write (2) explicitly using (5), and we have

VI(r)X'+2X% =¢ (7)
X% —e"x9=0 (8)
U)X 2 —e¥()x 9 =0 )
eW(')X% _eV(r)xg =0 (10)
2X1 = ¢ (1)
VX2 XL =0 (12)
X34+ X% =0 (13)
U'(r)X"+2X2 = ¢ (14)
e"IX3 +ex2 =0 (15)
W(r)X ! +2X3 = 4, (16)

where ¢ = ¢(t,r,6,z). Equations (11), (8), (12) and (13) give
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X0 = J'e“’(”(%jgbtdr)dr +Al(t.0,2)[ e dr + A*(t,0,2)

X! = %jqﬁdr +A(t,6,2)
. , (A7)
X2 = _J‘e—U(r)(EJ'%drjdr —Al(t,0, z)J'e‘U(r)dr +A%(t,0,2)

3 _ _[aW() 1 _ Al -W(r) 4
X*=—[e (ngézdrjdr Al(t,0,2)[e™dr + A%(t,0,2)

where Al(t,0,2), A’(t,0,2), A%(t,0,z) and A*(t,6,z) are functions of integration.
In order to determine A'(t,8,2), A*(t,0,2), A*(t,6,z) and A*(t,6,z) we need to
integrate the remaining six equations. To avoid details, here we will present only
results, when the above space-time (5) admits proper conformal vector fields. It
follows after some tedious and lengthy calculations that there exist two cases
when the above space-time (5) admits proper conformal Killing vector fields
which are:

Case (1)
In this case the space-time (5) becomes
dSZ =dr2 +M2(r)(_e*2d7N(f)dt2 +e*2d11N(F)d92 +e*2d14N(r)d22)’ (18)
1 1
where M(r)==|4¢(r)dr+d, and N(r)= dr. The conformal
(1) = [or)dr +d, M=o

vector fields in this case are
x° =d,t+d,, X' =M(r), X? =d,0+d,,, X3 =d,,z+d,, (19)
where

d,,dg,dg,d,, d;,, d,,d;s € IR(d, #0,d,, #0,d,, #0,d, #d,,,d, =d,,

d,, =d,,) and the conformal factor is ¢(r) = Zz—M. One can write the above
r

equation (19), after subtracting Killing vector fields (which are given in equation
(6)) as

X =(d,t,M(r),d,,0,d,,2). (20)

Here, the above space-time (18) admits four independent conformal vector

fields (see equation (19)) in which one is proper conformal which is given in
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equation (20) and three are independent Killing vector fields which are given in
equation (6).

Case (2)
This case is the sub case of case (1). In this case we consider
d,, =d,, and d, = d,; and the space-time (18) becomes
ds? =dr? + M2(r)(-e 2N dt? 42N (de? + dz?)). (21)
The above space-time (21) admits four independent Killing vector fields
which are
o o0 0 0 0
_1 _1 _l Z__e_'
ot 60 oz 00 oz
The conformal vector fields in this case are
X% =d,t+d,, X' =M(r), X*=d,0+d,z+d,, X®=d,z—d,;0+d,;, (23)
where d,,d,,d,;, d,,, d;;,d € IR(d; #0,d,;, #0,d, #d,;) and the conformal

(22)

factor is ¢(r) = de—M. One can write the above equation (23), after subtracting
r

Killing vector fields (see equation (22)) as

X =(d,t,M(r),d;,0,d,,2). (24)
The above space-time (21) admits five independent conformal vector fields in
which four independent Killing vector fields which are given in equation (22) and

one proper conformal vector field which is given in equation (24). The cases when
d,=d,,d, #d,, and d, =d,,, d,; # d,, are exactly the same.
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