U.P.B. Sci. Bull., Series C, Vol. 72, Iss. 4, 2010 ISSN 1454-234x

EXPERIMENTAL RESULTS ON THE PERFORMANCE OF A
NEW CONTENT MANAGEMENT MODEL

Rares VASILESCU'

Sistemele de gestiune a continutului folosesc metode diverse de stocare si
gestionare a informatiei. Volumul informatiei creste intr-un ritm exponential iar
sistemele de gestiune a continutului incep sa fie des folosite ca platforme pentru
dezvoltarea aplicatiilor. Aceste conditii genereaza nevoia existentei unor solutii din
ce in ce mai performante. In aceastd lucrare se va prezenta un set de teste
experimentale realizate asupra unui nou model de sistem, model proiectat astfel
incdt sa ofere performantd maxima atdt din punct de vedere functional cat si non-
Sfunctional.

Content management systems use various strategies to store and manage
information. Information volume increases at exponential rate and content
management systems become more and more a platform used by applications to
provide services to users. Given these conditions there is a growing need for high
performance content management systems. In this paper we present some tests done
on a new content management system model designed to provide maximum
performance both in terms of functional and non-functional requirements.

Keywords: content management, performance, tests, experiments
1. Introduction

Content management systems (CMS) can be defined as a set of processes
and technologies which support the digital information management lifecycle.
This digital information is usually referred as “content” and can be found as not-
structured or semi-structured - such as photographs, images, documents or XML
data.

The size of the managed content generates specific challenges for CMS, as
it can range from several bytes to hundreds of gigabytes. Building an
informational system to manage such data is a real challenge, especially if we take
into consideration that these elements need to be processed securely in highly
concurrent multi-user environments.

A new model of a high performance content management system was
proposed [1] and this paper presents experimental results which show the model
performance and the possible areas for improvement.

" Eng., Computer Science and Engineering Department, University POLITEHNICA of Bucharest,
Romania, e-mail: raresv(@yahoo.com

102 Rares Vasilescu

The proposed model shows a content management system which stores
data in an autonomous, self descriptive manner, scalable both in terms of
functionality and of usage. Individual content items are self-described and stored
in a standardized format on generic file systems.

Comparing with the traditional models, this new architecture does not rely
on a relational database management system but defines a specialized indexing
and retrieval mechanism. This mechanism addresses the specific needs of content
management and focuses on delivering fast responses to user queries while also
providing a high degree of flexibility and long term data persistence capabilities.

In summary, indexing agents are implemented to store and manage each
attribute defining the content and search agents are put in place to respond to use
queries. All agents work in parallel and are governed by a monitor which
distributes the processing tasks and then collects and aggregates the results as
needed.

Aiming for high performance, it is important to know what is the behavior
of this model therefore an implementation was done and some initial experiments
conducted. This paper presents the results of these experiments.

2. Performance evaluation concept

One important topic on performance evaluation is to measure the system
processing capacity while applying a certain load and monitoring the used
resources.

In performance evaluation one must also take into consideration the other,
non-quantitative system characteristics, since the overall performance of a model
is highly influenced by its qualitative attributes.

We need to establish an independent set of metrics and procedures so that
we could obtain a relevant indication of the observed system performance. Such
procedures exist for relational database management systems (such as AS3AP,
Wisconsin or TPC benchmarks [2]) but these do not properly address the
specialized area of data management focused on content management. Evaluation
methods included in these benchmarks are focused on transaction and data
processing without taking into account the specific data access patterns of content
management, thus we should not apply these tests on the new model.

The paper will present the experimental results obtained by applying a set
of classic tests on the implementation:

- Data ingestion

- Dataupdate

- Data retrieval

In order to obtain an indication whether or not the proposed data indexing
and retrieval strategy provides a performance increase over the traditional model,

Experimental results on the performance of a new content management model 103

two indexing and retrieval strategies were implemented : one using an index
structure optimized for in-memory processing and one using a traditional
relational database management system. The independence to other factors was
assured by the architectural design of the model itself, which enables usage of
various indexing and retrieval strategies on the same data.

The hardware environment was represented by a classic workstation with a
single Intel 32 bit processor and under 2 GB or RAM available on Windows XP
and Windows Vista operating systems. The input/output hardware and software
subsystem was a reduced performance one, with no specific optimization.

Since the model implementation was done completely from scratch, we
had the opportunity of implementing measurements directly inside the source
code. This allowed precise measurement of key sub-parts of the model not only a
black box observation.

Environmental measurements were done also on the system resources
during tests so that the overall impact on CPU, disk and memory can be observed.
The results presented in this paper come from single-user tests but using the
highly parallel processing techniques and without implementing think-times
usually found in such benchmarks. This decision was made so that a baseline can
be established for further experiments.

3. Performance evaluation for data load

Content management systems are frequently used for archiving large
volume of information. For example, such systems are used for long term
archiving of all email messages within an organization. As a case study, if an
organization has around 1.000 employees and each of them sends or receives an
average of 50 messages daily this sums up to 50.000 new complex information
objects each day — over 12.5 million objects each year. If we consider a retention
period of 10 years this means the content management system must be able to
manage at least 125 million objects. More, the 50.000 daily objects would be
produced in approximatively 8 hours which means an average of 2 objects per
second. Given this average we can assume that there are peaks when the system
must handle tens of new complex objects every second.

We need to measure the performance of the CMS in this context; therefore
we aim to determine whether or not the new model can ingest such a large volume
while it’s also managing the historical data.

To simulate the highest possible load the test was conducted with a
maximum throughput without including thinking time delay (which is usually
included in data batches to simulate human operators).

Load tests were conducted for various quantities: 1.000, 10.000, 100.000
and 1.000.000 objects. Each test was repeated several times, alternating with other

104 Rares Vasilescu

tests to obtain relevant average values. These iterations also generated a large
volume of objects inside the content management system which provided a very
good test bed for analyzing the scaling capabilities.

Each newly inserted object had 5 specific metadata attributes of different
types (number, date and time, character strings) and content in size of 1 kilobyte,
resulting in about 1200 bytes for each stored object.

During each test the following metrics were monitored:

- Average time to permanently store an object

- Average time to index a metadata attribute

- The instantaneous size of the indexing queue

First test was the insertion of 1.000 objects. The test took an average of 7
seconds.

14

; /AN

Durata (milseconds)
oo
™~

Moment de timp - secunde

Fig. 1. Object storage time — test for 1.000 new objects

The average time to store an object is shown in Fig 1. As observed the
time oscillated between 2 and 13 milliseconds. At the beginning the insertions
were typically faster but as average the time needed to store the test objects was
about 7 milliseconds.

While the objects are stored they need also to be indexed (their associated
metadata) so that they are available to search queries. We measured the time
needed to process the index information and the results are presented in Fig 2.

Experimental results on the performance of a new content management model 105

D:B \

0,7 \

0,6 \

uls \

Dlrl \

0:3 \

0,2 \

0,1 \\

Durata (milseconds)

Moment de timp - secunde

Fig. 2. Object information index time — test for 1.000 new objects

The time needed to index the information (5.000 index values
corresponding to the 1.000 new objects) was about 5 seconds and we can observe
that after the initial insert (measured as at a little under 1 millisecond in average)
all subsequent operations were significantly faster (one magnitude order lower).
This is explained by the time needed to initialize and open the index structure
while after its related data pages were loaded up in main memory the subsequent
operations were significantly faster since they were no longer I/O bound.

Care was taken to analyze whether or not the "commit" operation has any
impact on the overall performance. The tests were performed with the index
structure persisting information after each insert and persisting whole information
only at the end of the load respectively. No significant time difference was
identified (the time needed to index an attribute varied within the same limits in
both cases).

The index queue was monitored to see if the index subsystem is slower or
faster than the persistent object storage subsystem. For the given test data the
index queue was almost all the time near 0 which means that for a batch of 1.000
new objects the indexing system is at least equivalent if not faster than the storage
subsystem. This is normal and expected behavior at this stage but further tests are
needed to demonstrate the same ability when the system is already loaded with a
large volume of information.

The next chosen step was to perform the same tests with a volume ten
times bigger (10.000 new objects).

Storing 10.000 new objects lasted approximatively 3 minutes. The average
time needed to store an object was measured at 15 milliseconds. This value is
consistent with the results obtained for the 1.000 objects test, although is
positioned at the higher end of the initial measures.

106

Rares Vasilescu

Durata {milsecunde)

70

60

50

40

30

20

10

Moment de timp - minute

Fig. 3. Object storage time — test for 10.000 new objects

The test showed a slight increase of the average time during its execution
and spiked at the end. Since this dime is directly influenced by the performance of
the I/0 infrastructure we consider that the large volume of objects reached a limit
of the I/O operating system cache and therefore a lot of cache misses were

generated at the end.

As in the previous runs, the time needed to index an information element

was also measured.

Durata (milsecunde)

0,16
0,14
0,12

0,1
0,08
0,06
0,04

0,02

N

2 3

Moment de timp - minute

N

4

Fig. 4. Object information index time — test for 10.000 new objects

Measured indexing time varied quite a lot but was actually aligned with the
performance recorded in the first runs (under 0.1 milliseconds per attribute).

Experimental results on the performance of a new content management model 107

35

30

25

20

15

10

Queuesize (elements)

14 710131615222528313437404346405255586164677073767098285

Time moment - seconds

Fig. 5. Index queue size — test for 10.000 new objects

The index queue size was big in the beginning, corresponding with the
large index time associated with the test run. As the indexes became loaded in
memory the queue was keeping up with the load (rarely exceeding 5 items which
is exactly the number of queue items generated by one complex object).

Performing test runs with 100.000 new objects was the text step in the
performance evaluation. Such runs lasted around 24 minutes each. Consistently
with the previous runs (e.g. the 10.000 object ones), object storage time kept
around 15 milliseconds per object.

25

20

N AN

15/"‘*\./\/*-’

10

Duration {milseconds)

12 34 56 7 8 951011121314151617 18152021 222524 15

Time moment - minutes

Fig. 6. Object storage time — test for 100.000 new objects

The index performance was also very similar with the previous runs; an
average value of 0.08 milliseconds was recorded over the 500.000 processed
attributes. The measured deviation around this average was of maximum 0.06
milliseconds.

108 Rares Vasilescu

700 B0
500 - 70
. L. | o0

- Arﬂ Mp L

300 I -’ [

LD

= M ,
J \

Q

—
e

-

F 20

135 7 91113151719212532527293133353739414345474951535557596163656769 71737577 79818385687899193559799

Time moment (percentage) == Disk Transfers/sec =3 Processor Time

Fig. 7. System load (CPU and I/O) — test for 100.000 new objects

Looking at the measurements of the system resources during the test
period we can observe that there was no CPU overload (the CPU time averaged at
35% with occasional spiked no larger than 60%). We also see that there is a
correlation between the disk operations and processor activity — both seem to be
following the same pattern, thus we can determine that the architecture is not
processor intensive but was I/O bound during the tests.

The indexing queue size evolution shows that the index processing kept up
perfectly with the load — the size of the queue was constantly under 5 values.

Queuvesize (elements)

14 71013161922352831343740434649525556616467707376798285

Time moment - seconds

Fig. 8. Indexing queue size during test — run for 100.000 new objects

One can notice that even though the queue started with a massive size at
the beginning of the test, it recovered very quickly and within the first minute it
reached a normal (almost empty load). The initial load of the queue was generated
by the fact that the indexing engine had not fully initialized while the new items
were pushed into the system — with no agents able to pick up the queue items its
size spiked upwards. Once the agents were initialized they quickly processed the
queue and were able to keep up with the continuous load.

Experimental results on the performance of a new content management model 109

Based on this evidence we can conclude that the indexing engine seems to
have a very high capacity of absorbing information.

The endurance test of the system was to repeatedly add millions of objects
to it — which lead to a repository summing around 10 million objects.

On average the tests shown that 1.000.000 objects were ingested in 4 hours
and 50 minutes, leading to an average of 150 objects per second.

35

30

i mww . ”W

15

10

Duration (miliseconds)

o0 O =
I~ o0
—

81

92
103
114
125
136
147
192
203
214
225
236
247
258
269
280
291

Time moment - minutes

Fig. 9. Object storage time — run for 1.000.000 new objects

The average time needed to persistently store one object averaged between
15 and 20 milliseconds, with spikes at some moments in time — probably due to
external operating system filesystem actions.

1
0,9
0,8
0,7
0.6
0.5
04
0,3
0,2
0,1 -

o

Duration {milseconds)

TR v = R e L]
oMo o~ mom o
e e e)

—

247
2528
269
280
291

[L= v e = I e |
HNF\"IQ‘LI'\I"‘-UJU‘IE

114

o
— ™M
™

Time moment - minutes

Fig. 10. Object information index time — run for 1.000.000 new objects

The average time needed to index an information element was measured at
around 0.1 milliseconds. On one run we noticed a sudden and brief drop of
performance (for less than 1 second) in which the average indexing time neared

110 Rares Vasilescu

0.9 milliseconds (measured at 0.88 ms). This spike could not be explained by
other correlated measures and it’s cause yet to be determined and requires more
experiments. These measurements are consistent with the ones found for the
100.000 objects runs; therefore we can conclude that the system performance
seems to not visibly degrade during extensive load.

The same consistency was observed when measuring the indexing queue
size. This measure averaged at fewer than 2 elements. As in other smaller tests,
there was in initial warm-up time needed by the indexing agents to load and begin
handling the load. In this case the queue topped at about 1.000 items and then was
completely processed in one second as the agents started processing.

1200
1000

BOO /
600 /

Queue size (elements)

1 3% 5 7 95 11 13 15 17 15 21 23 25 27 29

Time moment - seconds

Fig. 11. Indexing queue size during test — run for 1.000.000 new objects — first 30 seconds

This behavior is encouraging and supports the taken architectural
decisions. It seems that the decisions lead to a robust system which is able to
manage large information volumes.

450
400
350
300
250
200
150
100

50

100

o~ - 90
[- 80
- A A A A A A F_% A '\ P ’ , - 7a
\[VYN N\ NV ANANAANIV - 60
v V" v Vv VI s
/V\JAVAVVAWA\/AVA f‘\vAw)\v VAVAVAVA\-_NA"AVJ Y | :E
Wl o -
- 10
a

13 5 7 211131517192123252729313335373941434547495153555575961636567689717375777981B836567689919355979¢%

Time moment (percentage) e Dk Transfers/zec w15 Processor Time

Fig. 12. System load (CPU and I/O) — test for 1.000.000 new objects

Observing the system parameters (CPU load and input-output activity) we

see that the correlation between these two indicators remained the same as in

Experimental results on the performance of a new content management model 111

previous test runs. CPU load averages at 32% and I/O operations per second
averages at 265.

Alternative indexing strategies

The indexing engine used in the previously monitored tests implemented
the strategy to use the available memory to the maximum and limit the access to
I/O subsystem. Index agents were implemented using in-memory indexes adapted
also for permanent storage so that they are not limited to only the available
memory.

A specific feature of this architecture is that it allows implementation of
various index implementation techniques. We will leverage this advantage by
plugging in the system a new index strategy which uses a standard relational
database management system. We chose a commercial RDBMS system with low
performance in order to be able to easily point any differences.

We performed all the tests described above, starting with the load of
10.000 new objects.

12

10

Duration (milseconds)
@

12 3 4 5 6 7 B 9 1011 12 13 14 15 16 17 18

Time moment - minutes

Fig. 13. Object storage time — test for 100.000 new objects (rdbms)

The time needed to store an individual object was a constant for the
duration of the tests. Some tests experienced a drop in performance at the end
which did not impact the overall results but still looks extremely familiar with the
event which happened for the other indexing approach and thus it will need more
tests and analysis.

The measured average time to store an object was around 10 milliseconds
which is actually very similar with the measures for other implementation. This
makes sense since the object storage time does not depend on the indexing
strategy, which is now experimentally confirmed.

Next step is to look and see what the average indexing time of one
information element is.

112 Rares Vasilescu

350

300

250

200

150

100

% A A AW [~

a

Duration (milseconds)

= oo Mo~ o W@ M oo

Mmoo~ o m o N WL g W o g 0
I T I S T T T = - R L = - -1

Time moment - seconds

Fig. 14. Object information index time — run for 10.000 new objects (rdbms)

The average time to index an information element was about 22
milliseconds. This time is almost 200 times bigger than the one experienced for
the primary indexing technique.

We still observe also the performance drop spike which is correlated with
the object storage spike. Since both the object storage and the indexing processing
are I/O bound a possible conclusion would be that at that precise moment an
externally triggered I/O operation interfered with the tests.

The next measurement to look at is the evolution of the indexing queue
size during the test run.

1000

900 o

800 I—/ \\-'_\

7 \

600 [’. \

500 ",-’d_- \

T~ \

\
\

400

/
o —
100 - / \"

Duration {milseconds)

14 71013161922252831343740454640525558616467707376798285680919497

Time moment - seconds

Fig. 15. Indexing queue size during test — run for 10.000 new objects (rdbms)

This is probably the most relevant measurement for this experiment. It
clearly shows that the indexing engine could not keep up with the load given to
the system — the queue keeps growing as the load keeps coming.

The queue size drops only in the last 7 seconds, time in which no new
objects were created and thus the indexing engine could recover. The main
conclusion is that the RDBMS based system could not handle the load the other
strategy was very good at processing.

Experimental results on the performance of a new content management model 113

Going back to the much bigger test (with 100.000 objects) we can observe
the same behavior of the indexing queue. In this case the queue needed about 3
minutes to process the backlog (vs. 7 seconds for the 10.000 objects run).

We also observed that the average time needed to index one piece of
information remained at the previously measured average of 22 milliseconds.

30

25

ZD/\/,_"/_/_,\

15

10

Duration (milseconds)

1 2 3 4 5 6 7 &8 9 10 11 12 13 14 15 16 17 18 19

Time moment - minutes

Fig. 16. Object information index time — run for 100.000 new objects (rdbms)

One main conclusion we take after these experiments is that choosing the
indexing strategy makes a very big different in the performance of the newly
designed content management architecture. As of now the best identified strategy
was to keep the index structure in memory as much as possible using a LRU
(Least Recently Used) model and structuring the information by "columns"
instead of "rows".

4. Conclusions

These experiments showed that the design can lead to extremely high
performance but care must be taken in choosing the adequate indexing strategy.
While tests seemed to reveal that the memory focused indexing structures
combined with a vertical approach on managing metadata display a very good
performance, we need to take caution and not dismiss other indexing techniques.
More tests and experiments are needed to validate these initial results.

As next steps we aim to enhance the current implementation with an
international standard for interoperability between content management systems —
CMIS [3]. When this implementation is ready the system will be able to be tested
in comparison with other similar systems thus marking a significant step in
evaluating its performance.

114 Rares Vasilescu

REFERENCES

[1] R. Vasilescu, An Alternative to Common Content Management Techniques, IJCSIS 2009, Vol.
6, No. 1, pp. 056-060, October 2009, USA

[2] M. Petrescu, R. Vasilescu, D. Popeanga, Performance Evaluation in Databases — Analysis and
experiments, Fourth International Conference on Technical Informatics CONTI 2000, 12-
13 October, “Politehnica” University of Timisoara

[3] OASIS, “Content Management Interoperability Services (CMIS) TC”, 01.04.2009,
http://www.oasis-open.org/committees/cmis, accessed on 01.11.2009.

