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SOLVING SOME FUNCTIONAL AND OPERATORIAL 
EQUATIONS BY A GENERAL CONSTRUCTIVE METHOD 

Octav OLTEANU1, Constantin RADU2 

 În Secţiunea 2 a prezentei lucrări enunţăm versiuni îmbunătăţite ale unor 
rezultate publicate pentru prima dată în [30], demonstrând ceea ce este mai 
important din partea adăugată. Mai precis, arătăm că analiticitatea funcţiei g în 
jurul punctului său de minim este o condiţie suficientă pentru derivabilitatea soluţiei  
f  în acelaşi punct (vezi Teorema 2.1). Tot în Secţiunea 2, reamintim teorema  
abstractă corespunzătoare de rezolvare a unor ecuaţii operatoriale, de acelaşi tip 
cu cele funcţionale soluţionate în Teorema 2.1 (Teorema 2.2). În Secţiunea 3, 
aplicăm rezultatele generale din Secţiunea 2 la rezolvarea unei ecuaţii funcţionale 
concrete (Teorema 3.1) şi la rezolvarea ecuaţiei operatoriale associate (Theorem 
3.2) . Deşi funcţiile “necunoscute” sunt definite  implicit, metoda folosită în 
prezenta lucrare nu foloseşte în demonstraţii Teorema funcţiei implicite, ci permite 
“construcţia” soluţiei pe baza structurilor bazate pe relaţii de ordine 
corespunzătoare. Rezultate asemănătoare au fost publicate în [30], [25], [26], [27]. 
Cazul unor funcţii complexe este abordat în [28] şi continuă în [29]. 

In Section 2 of the present work we state improved versions of some results  
first published in [30], only proving the most important assertion from what have 
been  added. Precisely, we show that the analyticity of the function g  around its 
minimum point, is a sufficient condition for the differentiability of the unknown 
function f at the same point (see Theorem 2.1). We also recall the corresponding 
general theorem which solves similar operatorial equations (Theorem 2.2). In 
Section 3, we apply the general results from Section 2, to a concrete functional 
equation (Theorem 3.1) and to the corresponding operatorial equation (Theorem 
3.2). Although the unknown functions are defined implicitely, the method used in the 
present work does not appeal to the implicit function Theorem, but make possible 
the direct construction of the solution, using suitable order structures. Similar 
results were published in [30], [25], [26], [27]. The case of complex functions is 
approached in [28] and is continued in [29].  
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1. Introduction 

Obviously, the equation fgg D= , where g  is given, while f  is the 
unknown function, always has the trivial solution xxf =)( , Ax∈∀ . Under some 
assumptions on g, there exists a unique decreasing solution of the same equation, 
which has many supplementary general qualities (see Theorem 2.1). For concrete 
functions g, one obtain special qualities of the corresponding solutions f . 

In the present work, we recall improved versions of some general known 
results related to such functional and operatorial equations, which allow the 
“construction” of the solutions. Then we apply these general-type results, to a 
concrete functional equation and to the corresponding operatorial equation. In the 
operatorial case (Theorem 3.2), the solution F  is a function of 

)(HXAU A⊂⊂∈ , where X  is the commutative algebra of self-adjoint 
(bounded) operators on an arbitrary complex or real Hilbert space H, constructed 
in [7], pp. 303-305 (here )(HA  is the real ordered space of all self-adjoint 
operators on H). We essentially use the fact that X  is also an order-complete 
vector lattice, with respect to the natural order relation on )(HA .  

This paper is directly related to some earlier results: [13], [30], [25], [26], 
[27]. The study of the same type of equation, but for complex functions, is 
approached in [28] and continued in [29].  

For general-type results partially used in this work see [1]-[12], [14]-[24], 
[31]-[40].  

 2. General-type results on the equation fgg D= , f  decreasing 
function or operator 

 We start by stating an improved version of Theorem 1.1 [30]. The novelty 
is the point (viii), which was not proved up to now. 
 
 2.1. Theorem. Let R∈vu, , vu < , [,] vua∈ , R→∈ [,]: vug  be a 
continuous function. Assume that there exist 
 (a) R∈λ==

↑↓
)(lim)(lim xgxg

vxux
 ; 

 (b)  g  “decreases” (strictly) in the interval ],] au  and is strictly increasing 
in the interval [,[ va . 

Then there exists a strictly decreasing function [,][,]: vuvuf → , such that  
[,]))(()( vuxxfgxg ∈∀=               (1) 

and f has the following qualities:  
 (i)   uxfvxf

vxux
==

↑↓
)(lim,)(lim ; 
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 (ii)     a  is the unique fixed point of  f ; 
 (iii)    ff =−1  in  [,] vu  ; 

(iv) f  is continuous in [,] vu  ; 
(v) if  }){\[,(] avuCg n∈ , }{∞∈ ∪Nn , 1≥n , then  

    }){\[,(] avuCf n∈  ; 
(vi) if  g  is derivable in }{\[,] avu , so is  f ;  
(vii) if  )[,](, 1 ε+ε−∈ aaCfg  (for an 0>ε ), then 1)(' −=af ; 
(viii) if  g  is analytic at a, then f  is derivable at a and 1)(' −=af ; 
(ix) if  [,(]3 vuCg∈ , aag ≠)('' , and there exist )('lim:1 xf

ax→
=ρ , 

R∈=ρ
→

)(''lim:2 xf
ax

, then }){\[,(][,(] 32 avuCvuCf ∩∈  and 

)(''
)(

3
2)(''

)3(

ag
agaf −=  ; 

(x) let ],]|: aul gg = , [,[|: var gg = ; then we have the following 
constructive formulae for f : 

],])},()([;,[sup{))(()( 000
1

0 auxxgxgvaxxggxf lrlr ∈∀≤∈== − D  ; 

[,[)},()(];,]{inf))(()( 000
1

0 vaxxgxgauxxggxf rlrl ∈∀≤∈== − D  . 

 Proof. The proof is similar to that of Theorem 1.1 [30], where a geometric 
meaning of the definition and construction of f  is given in Fig. 1. We only have to 
prove (viii), which represents a sufficient (and not necessary) condition for the 
differentiability of  f  at a. So, let g  be a ∞C -real differentiable function  in an 
interval [,] ε+ε− aa , which is equal to the sum of its Taylor series around a. 
Then (1) and (ii) lead to:  

[,],))()((
!

)(

))()((
!2

)('')())((

)(
!

)()(
!2

)('')()(

)(

2

)(
2

ε+ε−∈∀+−++

+−+==

=+−++−+=

aaxafxf
n

ag

afxfagagxfg

ax
n

agaxagagxg

n
n

n
n

……

……

        

                    (2) 

(note that 0)(' =ag  since a is a minimum point of g ). 
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 Let 2≥k  be smallest integer for which 0)()( ≠af k . The conditions on g  
lead easily to the fact that k  is an even number. 

 From (2), one obtains: 

…

…

+−
+

+

+−
+

+
=⎟

⎠
⎞

⎜
⎝
⎛

−
−

+

+

))()((
1

)(
1)()(

)1(
)()(

)(

)1(
)()(

)(

afxf
k
g

g

ax
k
g

g

ax
afxf

k
ak

a

k
ak

ak

 .               (3) 

On the other hand, the facts that f  is strictly decreasing and aaf =)( , lead to the 
conclusion 

0)()(
<

−
−

ax
afxf  ,   }\{[,] aaax ε+ε−∈∀  . 

Thus from (3) one obtains 

1)()(lim)()(lim =
−
−

−=
−
−

→→ ax
afxf

ax
afxf

axax
 , i.e.  

1)()(lim)(' −=
−
−

=
→ ax

afxfaf
ax

 , which proves (viii). 

Note also that from “f  is strictly decreasing”, (i) and (ii), we infer that f  applies 
],] au  onto [,[ va  and [,[ va  onto ],] au  (this will be used in the proof of Theorem 

3.2).  
■ 

 Next we recall the abstract operatorial version of solving the same type of 
equations. 

 In the following, X  will be an arbitrary order-complete vector lattice, and 
)(Izom X+  will be the set of all vector space isomorphisms XXT →:  which 

apply +X  onto +X ( +X  is the cone of positive elements of X). 
 
 2.2. Theorem. Let X, +X  be as above, Xa∈ , lA  a convex subset such 
that  

};{ axXxAa l ≤∈⊂∈  , 

rA  a convex subset such that  
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};{ axXxAa r ≥∈⊂∈  . 
Let XAg ll →:  be a convex operator such that 

}{\,))(Izom()( aAxXxg ll ∈∀Φ≠−∂ +∩  . 

Let XAg rr →:  be a convex operator such that 

}{\,)(Izom)( aAxXxg rr ∈∀Φ≠∂ +∩  . 

( )(xg∂  is the set of all subdifferentials of  g at  x ). 
 Assume that )()( agag rl =  and )()( rl gRgR = , where )(gR  is the range 
of  g. 
 Let XAAAg rl →= ∪::  be defined by  
 

⎩
⎨
⎧

∈
∈

=
.),(
,),(

:)(
rr

ll

Axxg
Axxg

xg  

 

Then there exists a strictly decreasing map AAF →:  such that  

AxxFgxg ∈∀= )),(()(                         (1') 

and F  has the following qualities: 
(i) a  is the only fixed point of F; 
(ii) there exists AAF →− :1  and FF =−1 ; 
(iii) the following “constructive formulae” for )( 0xF  hold: 

llrrlr AxxgxgAxxggxF ∈∀≤∈== −
000

1
0 )},()(;sup{))(()( D  ; 

rrllrl AxxgxgAxxggxF ∈∀≤∈== −
000

1
0 )},()(;{inf))(()( D  . 

 For the proof of this Theorem see [30], Theorem 1.10, pp. 72-74. 
 
 3. Applications 
 
 We start by an application of Theorem 2.1, to a function g  which is 
convex and analytic in the whole interval [,0] ∞ , namely to the function 

1)exp(:)( −⋅+= xexxg , 0>x . This will imply the differentiability of the solution 
f  at 1=a , the minimum point of g , where generally, (when g  is not analytic), the 
study of derivability can be a problem.  
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 3.1. Theorem. There exists a strictly decreasing function 
[,0][,0:] ∞→∞f  such that 

0,
)(

)( >∀+=+ x
xf

ee
x
ee xfx             (1'') 

and f  has the following qualities:  
(i)   0)(lim,)(lim

0
=∞=

∞↑↓
xfxf

xx
; 

 (ii)     1=a   is the unique fixed point of  f ; 
 (iii)    ff =−1  in  [,0] ∞  ; 
 (iv) })1\{[,0]()[,0](1 ∞∞∈ ∞CCf ∩  and 1)1(' −=f ; 

(v) if there exists R∈′′
→

)(lim
1

xf
x

, then  

})1\{[,0]()[,0]( 32 ∞∞∈ CCf ∩  

and 
9

10)1( =′′f ; in particular, f  is convex in a neighbourhood of  1; 

(vi) if there exists R∈′′
→

)(lim
1

xf
x

, then for 0>ε  sufficiently small, we 

have 2)( ≥+ xxf , [1,1] ε+ε−∈∀x , and equality holds if and only if 
1=x ; 

(vii) the following “constructive” formulae for )( 0xf  hold: 

[1,0]},[;,1[sup{))(()( 1
0

1
0

1
0

0 ∈∀⋅+≤⋅+∞∈== −−− xxeexeexxggxf xx
lr D , 

[,1[},];1,0]inf{))(()( 1
0

1
0

1
0

0 ∞∈∀⋅+≤⋅+∈== −−− xxeexeexxggxf xx
rl D ; 

(viii) for any integer 1≥n , we have 1)( =⇔∈ nxf Z . 
 
Proof. One applies Theorem 2.1 to [,0][,] ∞=vu , 1:)( −⋅+= xeexg x  

0>x . Obviously, we have ∞==
∞↑↓

)(lim)(lim
0

xgxg
xx

. On the other hand, g  is 

analytic in [,0] ∞  and 2

2

2)(
x

eex
x
eexg

x
x −

=−=′ , 0>∀x ; hence 0)( <′ xg  for 

[1,0]∈x , 0)( =′ xg  for 1=x , 0)( >′ xg  for 1>x . We also have  

02)( 3 >+=′′
x
eexg x , 0>∀x , hence g  is strictly convex. Thus, in particular, 

conditions (a) and (b) on g  are accomplished (where 1=a ), so that, from 
Theorem 2.1 we infer that there exists a strictly decreasing function 

[,0][,0:] ∞→∞f  such that )1( ′′  and (i) – (iv) of the present Theorem hold. To 
prove (v), assume that )(lim

1
xf

x
′′

→
 does exist in R. Then, by Theorem 2.1, we have:  
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0
9

10
3
5

3
2

)1(
)1(

3
2)1(

)3(

>=
−
⋅−=

′′
−=′′

e
e

g
gf  . 

Thus (v) is proved, while (vi) follows from (v). Precisely, })1{\)[,0]( ∞∈ ∞Cf  
and the hypothesis of the existence in R of the limit )(lim

1
xf

x
′′

→
 lead to 

)[,0](2 ∞∈Cf . Thus, the positivity of f ′′  at 1=a  leads to the positivity of f ′′  
on an interval [1,1] ε+ε−  . Hence f  is strictly convex in [1,1] ε+ε−  and, the 
well known property of such differentiable functions yields:  

2)(2)1)(1(1)1)(1()1()(
)(),(

≥+⇔−=−−+=−′+≥ xxfxxxffxf
ivi

, 

[1,1] ε+ε−∈∀x , the inequality being strictly for 1≠x . “Formulae” mentioned at 
(vii) are direct applications of those from  Theorem 2.1, (x), to our function g. It 
remains to prove (viii). If Z∈= mnf )(  for an integer 1≥n , since f  has positive 
values, we have Z∈m , 1≥m . Because of (1''), one obtains 
 

m
ee

n
ee mn +=+  ,   i.e. 

0=−+− enemenmenm mn ,   
or, equivalently, 
 011 =−+− −− nmenmenm mn  .                     (4) 

 
If nm ≠ , 1, ≥nm , then at least one of the integers nm,  is greater or equal to 2, so 
that (4) sais that e is a root of the algebraic equation with integer coefficients: 

011 =−+− −− nmxnmxnm mn . 
This contradicts the transcendency of e. Thus, we must have nm = , hence 

nnf =)( , which implies (via (ii)) 1=n . Conversely, for 1=n , 

nfnf
ii

=== 1)1()(
)(

. Now the proof is complete. 
■ 

Next we go on to the operatorial equation related to (1''). Some special care is 
inquired during the following proof, in order to show that 1)exp(:)( −+= eUUUg  
satisfies all the conditions mentioned in the statement of Theorem 2.2. 
 Let H  be an arbitrary Hilbert space. Let )(HA  be the real vector space of 
all self-adjoint (linear bounded) operators acting on H. Let )(HB A∈  be a fixed 
operator. One defines 
  });({:)(11 BUUBHUB =∈== AAA , 
  };{:)( 11 AA ∈∀=∈== VVUUVUBXX  



Octav Olteanu, Constantin Radu 64

  }0),(;{: HhhhUXUX ∈∀≥∈=+ . 
 It is known that X  is an order-complete vector lattice and a commutative 
algebra of operators (see [7], pp. 303-305). 
 
 3.2. Theorem. Consider the following convex subsets of the space 

)(BXX =  defined above: 
  }{}[1,0])(;{: IUXUAl ∪⊂σ∈=  , 

  }{}[,1])(;{: IUXUAr ∪∞⊂σ∈=  , 

where )(Uσ  is the spectrum of U  and I  is the identity operator. Let rl AAA ∪=: . 
Then there exists a strictly decreasing map AAF →:  such that 

    AUUFeUFUeU ∈∀⋅+=⋅+ −− ,))(())(exp()exp( 11 .           (1''') 

 The map F  has the following additional qualities: 
(i) I  is the unique fixed “point” of F ; 
(ii) F  is invertible and FF =−1  in  A; 
(iii) F  can be “constructed” using the “formulae”: 

lr AUUeUeUUAUUF ∈⋅+≤+∈= −−
0

1
00

1
0 },)exp()exp(;sup{)(  , 

rl AUUeUeUUAUUF ∈⋅+≤+∈= −−
0

1
00

1
0 },)exp()exp(;inf{)(  . 

 Proof. Let  

DUXUDg →∞⊂σ∈= }[,0])(;{:: , 1)exp(:)( −⋅+= UeUUg  . 

Obviously, D  is a convex set, which contains both convex subsets rl AA , . We will 
prove that g  is convex in D, which will imply the convexity of 

lAl gg |:=  and 

rAr gg |:= . Since it was proved that nUU 6 , +∈Zn  is convex in DX ⊃+ , (see 
[30]), it follows easily that  

!
sup

!
)exp(

00 k
U

n
UU

kn

kn

n

n
∑∑
=∈

∞

= +

==
Z

  

is convex as supremum of convex operators. So, it is sufficient to prove that 
1−UU 6  is convex in D, i.e. 

        [1,0],,,)1())1(( 21
1

2
1

1
1

21 ∈λ∀∈∀λ+λ−≤λ+λ− −−− DUUUUUU .     (5) 

Since 21,UU  are positive, invertible, permutable self-adjoint operators, the last 
relation (5) is equivalent to  
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[1,0],,,)1())1(( 21
1

21
1

2
1

1 ∈λ∈λ+λ−≤λ+λ− −−− DUUUUIUUI  , 
i.e. 

 [1,0],,)1())1(( 11 ∈λ∀∈∀λ+λ−≤λ+λ− −− DTTITI .                   (5') 
 Thus we have “simplified” the problem from two operators 21,UU , to one 
operator, DUUT ∈= −

2
1

1: . From the elementary inequality 
[1,0],0,1)1()1)1(( 11 ∈λ∀>∀λ+⋅λ−≤λ+⋅λ− −− ttt  

(the convexity of 1−tt 6  is elementary on [,0] ∞ ), by integration on the spectrum 
[,0])( ∞⊂σ T , with respect to the spectral measure TdE  attached to T, one 

obtains: 

.[1,0],,)1(

)1)1(()1)1(())1((
1

)( )(

111

∈λ∈λ+λ−=

λ+⋅λ−≤λ+⋅λ−=λ+λ−

−

σ σ

−−− ∫ ∫
DTTI

dEtdEtTI
T T TT

                          
 

Thus (5'), hence (5), are proved. It follows that g  is convex in D. Let 
lAl gg |:= . 

Then  

}{\0))(exp())(( 2 IAUVeUUVUg ll ∈∀≤−=′ − , +∈∀ XV  

as a product of two permutable self-adjoint operators, which verify, 
0)exp( 2 <− −eUU , }{\(0 IAUV l∈≥  implies  [1,0])( ⊂σ U  and we have seen 

that 0)exp()( 2 <−=′ −etttg    [1,0]∈∀t  ; this leads (via functional calculus) to 
[0,]))(())(())(exp( 2 ∞−⊂σ′=′σ=⋅−σ − UgUgUeU  and further 

[0,]]))[(exp( 12 ∞−⊂⋅−σ −−UeU ) . The conclusion is that for any }{\ IAU l∈ , 
)(Izom)( XUg +−∈′ . Similarly, for }{\ IAU r∈ , )(Izom)( XUg +∈′ . It remains 

to verify that )()( rl gRgR = . Let )()( 1 ll gRUg ∈ . Let )(: 12 UFU = , where F  is 
associated with the real function f  from Theorem 3.1 by Lemma 3.3.1 [6] 
(functional calculus; see also [12]). Then [,1]))(())(()( 112 ∞⊂σ=σ=σ UfUFU , 
since f  applies [1,0]  onto [,1] ∞  and [1,0])( 1 ⊂σ U  . Thus }{\2 IAU r∈ . We next 
prove that )()( 21 UgUg rl = . Let )( 11 Ut σ∈ . By Theorem 3.1, we have  

)([1,0]))(()( 1Uttfgtg rl σ⊃∈∀=  . 

 By integration on )( 1Uσ  with respect to the spectral measure 
1UdE , the 

last relation leads to 

).()())((

))(()()(

21

)()(1 1
1

1
1

rrr

UrUUlUl

gRUgUFg

dEtfgdEtgUg

∈==

=== ∫∫ σσ

           
 



Octav Olteanu, Constantin Radu 66

The conclusion is )()( 1 rl gRUg ∈   lAU ∈∀ 1 , hence )()( rl gRgR ⊂ . Similalrly, 
one proves that )()( lr gRgR ⊂ , hence the last condition in the statement of 
Theorem 2.2 is verified. Applying Theorem 2.2 to the operators rl gg ,  obtained 
from 1)exp()( −⋅+= UeUUg  by restriction to rl AA , , the conclusions (1'''), (i)-(iii) 
of the present Theorem follow.  

■ 

4. Conclusions 

 In the first part of this work we have improved the general Theorem 2.1, 
by adding the assertion (viii). Such-type results are motivated by the fact that most 
of the elementary functions g  are analytic, so that the corresponding solutions f  
are derivable at the critical point  a  of  g. We also recall the abstract operatorial  
version which solves such equations (both these general results are based on the 
same  constructive method, allowed by some order structures). 
 In the second part of this work, (Section 3), we solve a concrete functional 
equation, (and also the corresponding operatorial equation). Due to the special 
qualities of g  )0,)exp()(( 1 >⋅+= − xxexxg , one obtains special corresponding 
qualities of  f , such as those mentioned at (iv), (vi), (viii) of Theorem 3.1.  
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