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SOLVING SOME FUNCTIONAL AND OPERATORIAL
EQUATIONS BY A GENERAL CONSTRUCTIVE METHOD

Octav OLTEANU', Constantin RADU?

In Sectiunea 2 a prezentei lucrdri enuntdm versiuni imbundtdtite ale unor
rezultate publicate pentru prima data in [30], demonstrdnd ceea ce este mai
important din partea adaugatd. Mai precis, ardatam ca analiticitatea functiei g in
Jurul punctului sau de minim este o conditie suficienta pentru derivabilitatea solutiei
[ in acelasi punct (vezi Teorema 2.1). Tot in Sectiunea 2, reamintim teorema
abstracta corespunzdtoare de rezolvare a unor ecuatii operatoriale, de acelasi tip
cu cele functionale solutionate in Teorema 2.1 (Teorema 2.2). In Sectiunea 3,
aplicam rezultatele generale din Sectiunea 2 la rezolvarea unei ecuatii functionale
concrete (Teorema 3.1) si la rezolvarea ecuatiei operatoriale associate (Theorem
3.2) . Desi functiile “necunoscute” sunt definite implicit, metoda folositd in
prezenta lucrare nu foloseste in demonstratii Teorema functiei implicite, ci permite
“constructia” solutiei pe baza structurilor bazate pe vrelatii de ordine
corespunzdtoare. Rezultate asemandtoare au fost publicate in [30], [25], [26], [27].
Cazul unor functii complexe este abordat in [28] si continud in [29].

In Section 2 of the present work we state improved versions of some results
first published in [30], only proving the most important assertion from what have
been added. Precisely, we show that the analyticity of the function g around its
minimum point, is a sufficient condition for the differentiability of the unknown
function f at the same point (see Theorem 2.1). We also recall the corresponding
general theorem which solves similar operatorial equations (Theorem 2.2). In
Section 3, we apply the general results from Section 2, to a concrete functional
equation (Theorem 3.1) and to the corresponding operatorial equation (Theorem
3.2). Although the unknown functions are defined implicitely, the method used in the
present work does not appeal to the implicit function Theorem, but make possible
the direct construction of the solution, using suitable order structures. Similar
results were published in [30], [25], [26], [27]. The case of complex functions is
approached in [28] and is continued in [29].
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1. Introduction

Obviously, the equation g=go f, where g is given, while / 1is the
unknown function, always has the trivial solution f(x)=x, V x € 4. Under some

assumptions on g, there exists a unique decreasing solution of the same equation,
which has many supplementary general qualities (see Theorem 2.1). For concrete
functions g, one obtain special qualities of the corresponding solutions f.

In the present work, we recall improved versions of some general known
results related to such functional and operatorial equations, which allow the
“construction” of the solutions. Then we apply these general-type results, to a
concrete functional equation and to the corresponding operatorial equation. In the
operatorial case (Theorem 3.2), the solution F is a function of
UeAc X c A(H), where X is the commutative algebra of self-adjoint
(bounded) operators on an arbitrary complex or real Hilbert space H, constructed
in [7], pp. 303-305 (here 4(H) is the real ordered space of all self-adjoint
operators on H). We essentially use the fact that X is also an order-complete
vector lattice, with respect to the natural order relation on 4(H).

This paper is directly related to some earlier results: [13], [30], [25], [26],
[27]. The study of the same type of equation, but for complex functions, is
approached in [28] and continued in [29].

For general-type results partially used in this work see [1]-[12], [14]-[24],
[31]-[40].

2. General-type results on the equation g =go 1, f decreasing
function or operator

We start by stating an improved version of Theorem 1.1 [30]. The novelty
is the point (viii), which was not proved up to now.

2.1. Theorem. Let u,veR, u<v, aclu,v[, g:€u,v[>R be a
continuous function. Assume that there exist

(a) liing(x) = li%ng(x) =reR;

(b) g “decreases” (strictly) in the interval lu,a] and is strictly increasing
in the interval [a, V| .

Then there exists a strictly decreasing function f :lu,v[—>]u,v[, such that

g(x)=g(f(x)) Vuxeluv| (1)

and f has the following qualities:

i) limf)=v, limf(x)=u;
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(1)  a is the unique fixed point of [,

(i) f'=f1in Ju,v[ ;

(iv) [ is continuous in |u,v[ ;

v) i geC"(Qu,v[\{a}), ne NU{xo}, n>1, then
feC(Qu,v[\{a}) ;

(vi)  if g isderivablein lu,v[\{a}, sois f;

(vii) if g, feC'(Ja—g,a+e[) (foran €>0), then f'(a)=-1;

(viil) if g is analytic at a, then [ is derivable at a and f'(a)=-1;

(ix) if geCu,v[, g'(a)#a, and there exist p,:= £i_r)9f'(x),

p, = li_r)nf”(x) eR, then feC*(Qu,v[NC’Qu,v[\{a}) and

" __gg(3)(a) .
/(@)= 3 g

x) let g =gl & =&la> then we have the following

constructive formulae for f :
f(x)=(g," o g)x,) =supixe[a,v[; g(x)<g(x)}, Vx,elu,a] ;

f(q)=(g" o g)(x) =inf {x lu,al; g(x)<g,(x,)}, Vx, € [av] .

Proof. The proof is similar to that of Theorem 1.1 [30], where a geometric
meaning of the definition and construction of /" is given in Fig. 1. We only have to
prove (viii), which represents a sufficient (and not necessary) condition for the
differentiability of f at a. So, let g be a C” -real differentiable function in an
interval ]a —¢€,a+¢[, which is equal to the sum of its Taylor series around a.

Then (1) and (ii) lead to:

g(x)= g(a)+g"( ) (x—ay 4.t (")( £ D ays
— g(f(x)) = g(a)+g"( )(f(x) F@) + @)
+. (n)(a)(f(x) F@) +..., Vxela—ga+e]

(note that g'(a) =0 since a is a minimum point of g ).
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Let k >2 be smallest integer for which f*’(a)# 0. The conditions on g
lead easily to the fact that & is an even number.

From (2), one obtains:

® , @

f-f@) 8wt (x—a)+...
x—a T g . 3)
g+ @)= f @)+

On the other hand, the facts that f is strictly decreasing and f(a) =a, lead to the
conclusion

f0-f@ _,

X—da

, Vxela—g,a+¢g[\{a} .

Thus from (3) one obtains

hmf(x)_f(a) = lim— f(x)_f(a) =1 , ie.
xX—a x—a X—a x—a
(@) =timZ D =S@ _y hich proves (vii).
Xx—a x—a

Note also that from “f is strictly decreasing”, (i) and (ii), we infer that f* applies
lu,a] onto [a,v[ and [a,v[ onto ]u,a] (this will be used in the proof of Theorem

3.2).
|

Next we recall the abstract operatorial version of solving the same type of
equations.

In the following, X will be an arbitrary order-complete vector lattice, and
Izom, (X) will be the set of all vector space isomorphisms 7 : X — X which
apply X, onto X, (X, isthe cone of positive elements of X).

2.2. Theorem. Let X, X, be as above, a€ X, A, a convex subset such
that
acd c{xeX; x<a},

A, a convex subset such that
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acAd cixeX; x2a} .
Let g, : A, — X be a convex operator such that

0g,(x)N(=Izom, (X)) =D, Vxe A \{a} .
Let g, : A — X be a convex operator such that
0g,(x)N Izom, (X)) =D, VxeAd \{a}.

(Og(x) is the set of all subdifferentials of g at x).

Assume that g,(a)=g.(a) and R(g,)=R(g,), where R(g) is the range
of g
Let g:A=A4,UA — X be defined by

gl(x)7 XEAI’

glx) = {gr(x), xeA,.

Then there exists a strictly decreasing map F : A — A such that
g(x)=g(F(x)), Vxed (1)

and F has the following qualities:
1) a is the only fixed point of F;
(i1) there exists F"':A—> A and F™' =F ;
(ii1)  the following “constructive formulae” for F(x,) hold:

F(x,)=(g, g )(x) =supixe 4; g (0)<g(x)}, Vx € 4 ;
F(x))=(g o g,)(x)=inf {x € 45 g(x)<g,(x,)}, Vx, € 4, .
For the proof of this Theorem see [30], Theorem 1.10, pp. 72-74.

3. Applications

We start by an application of Theorem 2.1, to a function g which is
convex and analytic in the whole interval ]0,o[, namely to the function
g(x):=exp(x)+e-x"', x>0. This will imply the differentiability of the solution

f at a =1, the minimum point of g , where generally, (when g is not analytic), the
study of derivability can be a problem.
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3.1. Theorem. There exists a strictly decreasing function
f:10,00[ > ]0,00[ such that

e+l x>0 (1"
X S (x)
and f has the following qualities:
(1) ligl f(x)=o0, li{g f(x)=0;
(i) a=1 is the unique fixed point of f;
(i) f'=fin J0,00[ ;
(iv)  feC'(10,0)NC"(J0,0[\{1}) and f'(1) =~1;
v) if there exists linll f"(x)eR, then
f€C*(10,:0[)NC(10,00[ \{1})

and f"(1)= % ; in particular, f is convex in a neighbourhood of 1,

(vi)  if there exists linll f"(x)eR, then for €>0 sufficiently small, we
have f(x)+x2>2, Vxe]l—-g1+¢[, and equality holds if and only if
x=1;
(vil)  the following “constructive” formulae for f(x,) hold:
Sf(x)=(g, og)(x,) =sup{xe[l,o[; e'+e-x" <e"+e-x,'}, VxelOl[,
FG)=(g" o g,)(x) =infix €l01]; e +e-x'<e¥+e-x'}, Ve [Loo[;

(viil) for any integer n>1, we have f(x)eZ < n=1.

Proof. One applies Theorem 2.1 to Ju,v[=]0,00[, g(x)=e" +e-x"

x> 0. Obviously, we have lig)l g(x)zlip g(x)=o. On the other hand, g is
e xe-—e

analytic in ]0,00[ and g'(x)=e"'—— = —, Vx>0; hence g'(x)<0 for
X X

x€l01[, g'(x)=0 for x=1, g'(x)>0 for x>1. We also have

2 . . . .
g'(x)=¢e" +x—f>0, Vx>0, hence g is strictly convex. Thus, in particular,

conditions (a) and (b) on g are accomplished (where a=1), so that, from
Theorem 2.1 we infer that there exists a strictly decreasing function
£:]0, oo =10, o[ such that (1") and (i) — (iv) of the present Theorem hold. To

prove (v), assume that 1in11 f"(x) does exist in R. Then, by Theorem 2.1, we have:
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" 2g931 2 -5 10
fry=-2E 0. 2.2 0

32" 3 3¢ 9
Thus (v) is proved, while (vi) follows from (v). Precisely, f e C*(]0,0[)\{1})
and the hypothesis of the existence in R of the limit liIIll f"(x) lead to

>0 .

f€C?(]0,0[) . Thus, the positivity of f” at a=1 leads to the positivity of f”
on an interval J1—¢, 1+¢[ . Hence f is strictly convex in [1—¢, 1+¢[ and, the
well known property of such differentiable functions yields:
GYCY)
)2+ f'D)x-1) = I+(-DHx-)=2—-x< f(x)+x=>2,
Vx e]l-g, 1+¢[, the inequality being strictly for x # 1. “Formulae” mentioned at
(vii) are direct applications of those from Theorem 2.1, (x), to our function g. It
remains to prove (viii). If f(n)=m e Z for an integer n>1, since f has positive
values, we have me Z, m>1. Because of (1"), one obtains

e e .
e'+—=e"+—, ie.
n m

mne" —mne” + me—ne=0,
or, equivalently,
-1 -1
mne" —mne” +m-n=0 . 4)

If m#n, m,n=>1, then at least one of the integers m,n is greater or equal to 2, so

that (4) sais that e is a root of the algebraic equation with integer coefficients:
mnx"" —mnx""'+m-n=0.

This contradicts the transcendency of e. Thus, we must have m =n, hence

f(n)y=n, which implies (via (ii))) n=1. Conversely, for n=1,

(i)
f(n)= f()=1=n.Now the proof is complete.
[
Next we go on to the operatorial equation related to (1"). Some special care is
inquired during the following proof, in order to show that g(U):=exp(U)+eU"

satisfies all the conditions mentioned in the statement of Theorem 2.2.
Let H be an arbitrary Hilbert space. Let 4(H) be the real vector space of

all self-adjoint (linear bounded) operators acting on H. Let Be A(H) be a fixed
operator. One defines

A= A(B)=1{U e A(H); UB = BU},

X=XB)={UecA; UV=VU VVeA;}
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X, ={UeX; (Uh),h)>0 VheH}.

It is known that X is an order-complete vector lattice and a commutative
algebra of operators (see [7], pp. 303-305).

3.2. Theorem. Consider the following convex subsets of the space
X = X(B) defined above:

A ={UecX; cU)c]01[}U{l},
4, ={UeX; oU)c]lLoo[}Ull},
where o(U) is the spectrum of U and I is the identity operator. Let A= A, U 4,.

Then there exists a strictly decreasing map F : A — A such that
exp(U)+e- U =exp(F(U))+e-(FU))"', YU€e A. (1
The map F has the following additional qualities:
(1) 1 is the unique fixed “point” of F ;
(i1) F is invertible and F~' =F in A;
(i)  F can be “constructed” using the “‘formulae”:
FU,)=sup{U € 4.; explU)+eU "' <exp(U,)+e-U;"}, U, e 4, ,
FU,)=inf{U € 4;; exp(U)+eU"' <exp(U,)+e-U,"}, U, e 4, .
Proof. Let
g:D={UecX; oU)c]0,0[} > D, gU)=exp(U)+e-U".

Obviously, D is a convex set, which contains both convex subsets 4,,4,. We will

prove that g is convex in D, which will imply the convexity of g, :=g|, and

g, =g, - Since it was proved that U > U", ne Z, is convex in X, D D, (see
[30)), it follows easily that

0 n n U/(

exp(U):z v :supz

n=0 n' neZ, k=0 k'

is convex as supremum of convex operators. So, it is sufficient to prove that
U U™ isconvex in D, i.e.

(1=, +0U,) " <(1-MU +AU;", YU, U,eD, YrLel0I[. (5)

Since U,,U, are positive, invertible, permutable self-adjoint operators, the last
relation (5) is equivalent to
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(=M1 +AU'U) <=M +AUUS', ULU, eD, hel0]]
ie.

(=M +AT)"' <A-NI+AT", YT eD, VLe]O,1]. (5)

Thus we have “simplified” the problem from two operators U,,U,, to one
operator, T :=U;'U, € D . From the elementary inequality
(=2 1+x)"'<A=N)-1+At7", V>0, VAL €]O,I]

(the convexity of # > ¢™' is elementary on ]0,0[), by integration on the spectrum
o(T)c]0,o[, with respect to the spectral measure dE, attached to 7, one
obtains:

(1= +AT)" = Lm (1=1)-1+10) ' dE, < j (=2 140 ™)dE,

=(1-MI+AT", TeD, Are]0,lf.
Thus (5'), hence (5), are proved. It follows that g is convex in D. Let g, =g/, .
Then
g/(U)V)=(expU)—eU?W <0 YUed \{}, VVelX,

as a product of two permutable self-adjoint operators, which verify,
exp(U)—eU” <0, V>0(U e 4, \{I} implies o(U)c]0,l[ and we have seen
that g'(t)=exp(t)—et”> <0 Vte]O,[ ; this leads (via functional calculus) to
o(exp(U)—e-U?)=0o(g'(U)) = g'(c(U)) c]-x,0[ and further
ol(exp(U)—e-U?)"']c]-,0[) . The conclusion is that for any U e 4,\{I},
g'(U) e —Izom, (X). Similarly, for U e A \{I}, g'(U)elzom, (X). It remains
to verify that R(g,)=R(g,). Let g,(U,)eR(g,). Let U, =F(U,), where F' is

associated with the real function f from Theorem 3.1 by Lemma 3.3.1 [6]
(functional calculus; see also [12]). Then o(U,) =c(F(U,)) = f(c(U,)) c]l,o],

since f applies ]0,1[ onto ]1,00[ and o(U,) <]0,1[ . Thus U, € 4, \{I}. We next
prove that g,(U,)=g,(U,). Let t, € 5(U,). By Theorem 3.1, we have
g =g.(f(1) Vte]0l[ooU) .

By integration on o(U,) with respect to the spectral measure dE; , the
last relation leads to

gW)=]  &WdE,=[ — g(f(O)E, =
= g, (FU) =g,(U,) € R(g,).
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The conclusion is g,(U;)e R(g,) VU, € 4,, hence R(g,) < R(g,). Similalrly,
one proves that R(g,)c R(g,), hence the last condition in the statement of
Theorem 2.2 is verified. Applying Theorem 2.2 to the operators g,,g, obtained
from g(U)=exp(U)+e-U™" by restriction to 4,, 4., the conclusions (1"), (i)-(iii)

of the present Theorem follow.
[

4, Conclusions

In the first part of this work we have improved the general Theorem 2.1,
by adding the assertion (viii). Such-type results are motivated by the fact that most
of the elementary functions g are analytic, so that the corresponding solutions f
are derivable at the critical point a of g. We also recall the abstract operatorial
version which solves such equations (both these general results are based on the
same constructive method, allowed by some order structures).

In the second part of this work, (Section 3), we solve a concrete functional
equation, (and also the corresponding operatorial equation). Due to the special

qualities of g (g(x) =exp(x)+e-x"", x>0), one obtains special corresponding
qualities of f', such as those mentioned at (iv), (vi), (viii) of Theorem 3.1.
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