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SPACES
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In this paper, we introduce and study an iteration process for four multi-

valued mappings in Kohlenbach hyperbolic spaces and establish a necessary and sufficient

condition for strong convergence and ∆-convergence to common fixed points of the new
iteration scheme. Also, we give some applications of our results. The results presented

in this paper extend, unify and generalize some previous works from the current existing

literature.
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1. Introduction and Preliminaries

Let K be a nonempty bounded closed convex subset of a Banach space X. A mapping
T : K→ K is said to be nonexpansive if

‖T(x)− T(y)‖ ≤ ‖x− y‖
for all x, y ∈ K.

It has been shown that if X is uniformly convex then every nonexpansive mapping
T : K→ K has a fixed point (see Browder [2], cf. also Kirk [12]).

In 1953, Mann [19] introduced an iteration process for single valued nonexpansive
mappings in Banach space as follows:{

x1 = x ∈ K,

xn+1 = (1− αn)xn + αnTxn, n ≥ 1,
(1)

where {αn} is a real sequence in (0, 1).

In 1974, Ishikawa [9] introduced a new iteration process for single valued nonexpansive
mappings in Banach space as follows:

x1 = x ∈ K,

xn+1 = (1− αn)xn + αnTyn,

yn = (1− βn)xn + βnTxn, n ≥ 1,

(2)

where {αn} and {βn} are real sequences in (0, 1). This iteration scheme reduces to the Mann
iteration process when βn = 0 for all n ≥ 1.
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In 2000, Noor [23] introduced a three-step iteration process for single valued nonex-
pansive mappings in Banach space as follows:

x1 = x ∈ K,

xn+1 = (1− αn)xn + αnTyn,

yn = (1− βn)xn + βnTzn,

zn = (1− γn)xn + γnTxn, n ≥ 1,

(3)

where {αn}, {βn} and {γn} are real sequences in [0, 1].

In 2012, Saluja [27] studied the following iteration scheme for four nonexpansive
mappings in uniformly convex Banach spaces. The scheme is as follows:

x1 = x ∈ K,

xn+1 = αnRxn + βnSyn + γnun,

yn = α′nRxn + β′nTzn + γ′nvn,

zn = α′′nRxn + β′′nUxn + γ′′nwn, n ≥ 1,

(4)

where {αn}, {βn}, {γn}, {α′n}, {β′n}, {γ′n}, {α′′n}, {β′′n}, {γ′′n} are sequences in [0, 1] satisfy-
ing αn + βn + γn = α′n + β′n + γ′n = α′′n + β′′n + γ′′n = 1 and {un}, {vn}, {wn} are bounded
sequences in K.

If we put γn = γ′n = γ′′n = 0 for all n ≥ 1, then the iteration scheme (4) reduces to
the following scheme 

x1 = x ∈ K,

xn+1 = αnRxn + (1− αn)Syn,

yn = α′nRxn + (1− α′n)Tzn,

zn = α′′nRxn + (1− α′′n)Uxn, n ≥ 1,

(5)

where {αn}, {α′n}, {α′′n} are sequences in [0, 1].

Let K be a subset of a metric space X. A subset K is called proximal if for each
x ∈ X, there exists an element k ∈ K such that d(x, k) = inf{‖x − y‖ : y ∈ K} = d(x,K).
It is well known that a weakly compact convex subset of a Banach space and closed convex
subsets of a uniformly convex Banach space are Proximal.

We shall denote CB(K), C(K) and P (K) by the families of all nonempty closed
and bounded subsets, nonempty compact subsets and nonempty proximal subsets of K,
respectively. Let H denote the Hausdorff metric induced by the metric d of X, that is,

H(A,B) = max{sup
x∈A

d(x,B), sup
y∈B

d(y,A)}

for every A,B ∈ CB(X), where d(x,B) = inf{‖x− y‖ : y ∈ B}.

A multivalued mapping T : K → CB(K) is said to be a contraction if there exists a
constant t ∈ [0, 1) such that for any x, y ∈ K,

H(Tx,Ty) ≤ t d(x, y),

and T is said to be nonexpansive if

H(Tx,Ty) ≤ d(x, y),

for all x, y ∈ K. A point x ∈ K is called a fixed point of T if x ∈ Tx. Denote the set of all
fixed points of T by F (T) and PT(x) = {y ∈ Tx : d(x, y) = d(x,Tx)}.
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We consider the following notion of a hyperbolic space introduced by Kohlenbach [15].

Definition 1.1. A metric space (X, d) is a hyperbolic space if there exists a map W : X2 ×
[0, 1]→ X satisfying

(i) d(u,W(x, y, α)) ≤ αd(u, x) + (1− α)d(u, y),
(ii) d(W(x, y, α),W(x, y, β)) ≤ |α− β|d(x, y),
(iii) W(x, y, α) = W(x, y, (1− α)),
(iv) d(W(x, z, α),W(y, w, α)) ≤ αd(x, y) + (1− α)d(z, w)

for all x, y, z, w ∈ X and α, β ∈ [0, 1].

The class of hyperbolic spaces in the sense of Kohlenbach [15] contains all normed
linear spaces and convex subsets thereof as well as Hadamard manifolds and CAT(0) spaces
in the sense of Gromov [8]. An important example of a hyperbolic space is the open unit
ball BH in a real Hilbert space H is as follows.

Let BH be the open unit ball in H. Then

kBH
(x, y) = arg tanh(1− σ(x, y))1/2,

where

σ(x, y) =

(
1− ‖x‖2

)(
1− ‖y‖2

)
|1− 〈x, y 〉|2

for all x, y ∈ BH , defines a metric on BH (also known as Kobayashi distance).

In the sequel, we shall use the term hyperbolic space instead of Kohlenbach hyperbolic
space for convenience.

§ A metric space (X, d) is called a convex metric space introduced by Takahashi [33]
if it satisfies only condition (i).

§ A metric space (X, d) satisfies (i)-(iii), then we obtain the notion of space of hyper-
bolic type in the sense of Goebel and Kirk [6].

Definition 1.2. A subset K of a hyperbolic space X is convex if W(x, y, α) ∈ K for all
x, y ∈ K and α ∈ [0, 1].

Definition 1.3. A hyperbolic space (X, d,W) is uniformly convex [30] if for any u, x, y ∈ X,
r > 0 and ε ∈ (0, 2], there exists a ρ ∈ (0, 1] such that d(W(x, y, 1

2 ), u) ≤ (1− ρ)r whenever
d(x, u) ≤ r, d(y, u) ≤ r and d(x, y) ≥ ε r.

A map η : (0,∞)× (0, 2]→ (0, 1] which provides such a ρ = η(r, ε) for given r > 0 and
ε ∈ (0, 2], is known as the modulus of uniform convexity. We call η monotone if it decreases
with r (for a fixed ε).

Different notion of hyperbolic space can be found in the literature (see for example
[6, 13, 15, 18]). The hyperbolic space introduced by Kohlenbach [15] is slightly restrictive
than the space of hyperbolic type [6] but general than hyperbolic space of [25].

The study of fixed points for multivalued nonexpansive mappings using Hausdorff
metric was initiated by Markin [20] (see, also [21]). Later, an interesting and rich fixed
point theory for such maps was developed which has applications in control theory, con-
vex optimization, differential inclusion and economics (see [7] and references cited therein).
Moreover, the existence of fixed points for multivalued nonexpansive mappings in uniformly
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convex Banach spaces was proved by Lim [17]. The theory of multivalued nonexpansive
mappings are harder than the corresponding theory of single-valued nonexpansive mappings.
Different iterative processes have been used to approximate the fixed points of multivalued
nonexpansive mappings.

Sastry and Babu [28] in 2005, considered Mann and Ishikawa type iterates for multi-
valued mappings with a fixed point. They also gave an example which shows that the limit
of the sequence of Ishikawa iterates depends on the choice of the fixed point p and the initial
choice of x0. They considered the following:

Let K be a nonempty convex subset of X, T : K → P (K) is a multivalued mapping
with p ∈ Tp.

(S1) The sequence of Mann iterates is defined by{
x1 = x ∈ K,

xn+1 = (1− αn)xn + αnsn, n ≥ 1,
(6)

where {αn} is a real sequence in (0, 1) and sn ∈ Txn such that ‖sn − p‖ = d(p,Txn).

(S2) The sequence of Ishikawa iterates is defined by
x1 = x ∈ K,

xn+1 = (1− αn)xn + αnrn,

yn = (1− βn)xn + βnsn, n ≥ 1,

(7)

where {αn} and {βn} are real sequences in (0, 1), ‖sn − rn‖ = d(Txn,Tyn) and ‖rn − p‖ =
d(p,Tyn) for sn ∈ Txn and rn ∈ Tyn. They established some strong and weak convergence
results of the above iterates for multivalued nonexpansive mappings T under some appro-
priate conditions.

The following is a useful lemma due to Nadler [21].

Lemma 1.1. Let A,B ∈ CB(E) and a ∈ A. If η > 0, then there exists b ∈ B such that
d(a, b) ≤ H(A,B) + η.

Panyanak [24] in 2007, proved some results using Ishikawa type iteration process with-
out the condition T (p) = {p} on the mapping T. Later in 2008, Song and Wang [31] proved
strong convergence theorems of Mann and Ishikawa iterates for multivalued nonexpansive
mappings under some appropriate control conditions. Furthermore, they also gave an affir-
mative answer to Panyanak’s open question in [24].

Recently, Shahzad and Zegeye [29] pointed out that the assumption T (p) = {p} for
any p ∈ F (T) is quite strong. In order to get rid of the condition T (p) = {p} for any
p ∈ F (T), they used PT(x) := {y ∈ Tx : ‖x − y‖ = d(x,Tx))} for a multivalued map
T : K → P (K) and proved some strong convergence results using Mann and Ishikawa type
iterative process. Song and Cho [32] improved the results of [29].

In this paper, we first introduce four multivalued mappings version of the iterative
process (5) in hyperbolic spaces and use PT(x) := {y ∈ Tx : d(x, y) = d(x,Tx))} instead of
a stronger condition T (p) = {p} for any p ∈ F (T) to approximate common fixed points of
four multivalued nonexpansive mappings.

Let K be a nonempty convex subset of a hyperbolic space X. Let R, S,T,U : K→ P (K)
be four multivalued mappings and PT(x) := {y ∈ Tx : d(x, y) = d(x,Tx))}. Choose x0 ∈ K
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and define {xn} as 
zn = W(un, tn, α

′′
n),

yn = W(un, wn, α
′
n),

xn+1 = W(un, vn, αn), n ≥ 1,

(8)

where un ∈ PR(xn), vn ∈ PS(yn), wn ∈ PT(zn), tn ∈ PU(xn) and {αn}, {α′n},
{α′′n} ∈ [0, 1].

It follows from the definition of PT that d(x,Tx) ≤ d(x, PT(x)) for any x ∈ K.

The concept of ∆-convergence in a general metric space was introduced by Lim [18].
In 2008, Kirk and Panyanak [14] used the notion of ∆-convergence introduced by Lim [18]
to prove in the CAT(0) space and analogous of some Banach space results which involve
weak convergence. Further, Dhompongsa and Panyanak [4] obtained ∆-convergence the-
orems for the Picard, Mann and Ishikawa iterations in a CAT(0) space. Since then, the
notion of ∆-convergence has been widely studied and a number of articles have appeared
e.g., [1, 3, 4, 10, 22, 26].

Now, we recall some definitions.

Let K be a nonempty subset of metric space X. Let {xn} be a bounded sequence
in a metric space X. For x ∈ X, define a continuous functional r(., {xn}) : X → [0,∞) by
r(x, {xn}) = lim supn→∞ d(x, xn). Then

(a) rK({xn}) = inf{r(x, {xn}) : x ∈ X} is called the asymptotic radius of {xn} with
respect to K ⊂ X.

(b) for any y ∈ K, the set AK({xn}) =
{
x ∈ X : r(x, {xn}) ≤ r(y, {xn})

}
is called

the asymptotic center of {xn} with respect to K ⊂ X.

If the asymptotic radius of the asymptotic center are taken with respect to X, then
these are simply denoted by r({xn}) and A({xn}), respectively. In general, A({xn}) may
be empty or may even contain infinitely many points. It is well known that a complete
uniformly convex hyperbolic space with monotone modulus of convexity enjoys the property
that bounded sequences have unique asymptotic center with respect to closed convex subsets
([16]).

Definition 1.4. A sequence {xn} in X is said to ∆-converge to x ∈ X if x is the unique
asymptotic center of {un} for every subsequence {un} of {xn} [14]. In this case, we write
∆-limn xn = x and call x is the ∆-limit of {xn}.

In the sequel we need the following key results to be used in our main results.

Lemma 1.2. ([11]) Let (X, d,W) be a uniformly convex hyperbolic space with monotone
modulus of uniform convexity η. Let x ∈ X and {αn} be a sequence in [b, c] for some
b, c ∈ (0, 1). If {xn} and {yn} are sequences in X such that lim supn→∞ d(xn, x) ≤ r,
lim supn→∞ d(yn, x) ≤ r and limn→∞ d(W(xn, yn, αn), x)
= r for some r ≥ 0, then limn→∞ d(xn, yn) = 0.

Lemma 1.3. ([11]) Let K be a nonempty closed convex subset of a uniformly convex hy-
perbolic space X and {xn} a bounded sequence in K such that A({xn}) = {y}. If {ym} is
another sequence in K such that limm→∞ r(ym, {xn})
= r(y, {xn}), then limm→∞ ym = y.
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Lemma 1.4. ([34]) Let {pn}∞n=1, {qn}∞n=1 and {rn}∞n=1 be sequences of nonnegative numbers
satisfying the inequality

pn+1 ≤ (1 + qn)pn + rn, ∀n ≥ 1.

If
∑∞

n=1 qn <∞ and
∑∞

n=1 rn <∞. Then
(1) limn→∞ pn exists.
(2) In addition, if lim infn→∞ pn = 0, then limn→∞ pn = 0.

Lemma 1.5. (See [5]) Let K be a nonempty subset of a metric space X. Let T : K→ P (K)
be a multivalued mapping and PT(x) = {y ∈ Tx : d(x, y) = d(x,Tx)}. Then the following
are equivalent:

(1) x ∈ F (T), that is, x ∈ Tx;
(2) PT(x) = {x}, that is, x = y for each y ∈ PT(x);
(3) x ∈ F (PT), that is, x ∈ PT(x).
Moreover, F (T) = F (PT).

2. Main Results

In this section we prove some strong and a ∆-convergence theorems using iteration
scheme (8). Assume that F = F (R) ∩ F (S) ∩ F (T) ∩ F (U) denotes the set of all common
fixed points of the multivalued mappings R, S, T and U. First, we need the following lemmas
to prove our main results.

Lemma 2.1. Let X be a hyperbolic space and K be a nonempty closed and convex subset
of X. Let R, S,T,U : K → P (K) be four multivalued mappings such that F 6= ∅ and PR,
PS, PT and PU are nonexpansive mappings. Let {xn} be the sequence defined by (8), where
{αn}, {α′n}, {α′′n} are real sequences in [0, 1]. Then limn→∞ d(xn, p) exists for each p ∈ F.

Proof. Let p ∈ F. Then p ∈ PR(p) = {p}, p ∈ PS(p) = {p}, p ∈ PT(p) = {p} and
p ∈ PU(p) = {p} by Lemma 1.5. Using (8), we have

d(zn, p) = d
(
W(un, tn, α

′′
n), p

)
≤ (1− α′′n)d(un, p) + α′′nd(tn, p)

≤ (1− α′′n)d(un, PR(p)) + α′′nd(tn, PU(p))

≤ (1− α′′n)H(PR(xn), PR(p)) + α′′nH(PU(xn), PU(p))

≤ (1− α′′n)d(xn, p) + α′′nd(xn, p)

= d(xn, p). (9)

Now using (8) and (9), we have

d(yn, p) = d
(
W(un, wn, α

′
n), p

)
≤ (1− α′n)d(un, p) + α′nd(wn, p)

≤ (1− α′n)d(un, PR(p)) + α′nd(tn, PT(p))

≤ (1− α′n)H(PR(xn), PR(p)) + α′nH(PT(zn), PT(p))

≤ (1− α′n)d(xn, p) + α′nd(zn, p)

≤ (1− α′n)d(xn, p) + α′nd(xn, p)

= d(xn, p). (10)
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Again using (8) and (10), we have

d(xn+1, p) = d
(
W(un, vn, αn), p

)
≤ (1− αn)d(un, p) + αnd(vn, p)

≤ (1− αn)d(un, PR(p)) + αnd(vn, PS(p))

≤ (1− αn)H(PR(xn), PR(p)) + αnH(PS(yn), PS(p))

≤ (1− αn)d(xn, p) + αnd(yn, p)

≤ (1− αn)d(xn, p) + αnd(xn, p)

= d(xn, p).

That is,

d(xn+1, p) ≤ d(xn, p). (11)

It follows from Lemma 1.4 that limn→∞ d(xn, p) exists for each p ∈ F. This completes the
proof. �

Lemma 2.2. Let X be a hyperbolic space and K be a nonempty closed and convex subset
of X. Let R, S,T,U : K → P (K) be four multivalued mappings and PR, PS, PT and PU are
nonexpansive mappings. Let {xn} be the sequence defined by (8), where {αn}, {α′n}, {α′′n}
are real sequences in [0, 1] satisfying 0 < a1 ≤ αn, α

′
n, α

′′
n ≤ a2 < 1 for some a1, a2 ∈ (0, 1).

If F 6= ∅ and

d(x, Sy) ≤ d(Rx, Sy), ∀x, y ∈ K. (12)

Then limn→∞ d(xn, PR(xn)) = 0 = limn→∞ d(xn, PS(yn)) = limn→∞ d(xn, PT(zn))
= limn→∞ d(xn, PU(xn)).

Proof. By Lemma 2.1, limn→∞ d(xn, p) exists for each p ∈ F. Assume that limn→∞ d(xn, p) =
c for some c ≥ 0. If c = 0, then the result is trivial. Suppose c > 0.

Now limn→∞ d(xn+1, p) = c can be written as

lim
n→∞

d
(
W(un, vn, αn), p

)
= c. (13)

Now taking lim sup on both side of (9) and (10), we get

lim sup
n→∞

d(zn, p) ≤ c, (14)

and

lim sup
n→∞

d(yn, p) ≤ c. (15)

Since PR, PS, PT and PU are nonexpansive, we have

d(un, p) = d(un, PR(p))

≤ H(PR(xn), PR(p))

≤ d(xn, p).

Hence

lim sup
n→∞

d(un, p) ≤ c. (16)

Next,

d(vn, p) = d(vn, PS(p))

≤ H(PS(yn), PS(p))

≤ d(yn, p) ≤ d(xn, p),
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and so

lim sup
n→∞

d(vn, p) ≤ c. (17)

Again, note that

d(wn, p) = d(wn, PT(p))

≤ H(PT(zn), PT(p))

≤ d(zn, p) ≤ d(xn, p),

and so

lim sup
n→∞

d(wn, p) ≤ c. (18)

Further, note that

d(tn, p) = d(tn, PU(p))

≤ H(PU(xn), PU(p))

≤ d(xn, p),

and so

lim sup
n→∞

d(tn, p) ≤ c. (19)

From (13), (16), (17) and Lemma 1.2, it follows that

lim
n→∞

d(un, vn) = 0. (20)

Using (12) and (20), we obtain

d(un, xn) ≤ d(un, vn) + d(vn, xn)

≤ d(un, vn) + d(un, vn) = 2d(un, vn)

→ 0 as n→∞, (21)

and hence

d(vn, xn) ≤ d(vn, un) + d(un, xn)

→ 0 as n→∞. (22)

Again, we observe that for each n ≥ 1

d(xn, p) ≤ d(xn, vn) + d(vn, p)

≤ d(xn, vn) + d(vn, PS(p))

≤ d(xn, vn) +H(PS(yn), PS(p))

≤ d(xn, vn) + d(yn, p).

Using (22), we obtain

c ≤ lim inf
n→∞

d(yn, p). (23)

Combining (23) together with (15) gives

lim
n→∞

d(yn, p) = c.

That is,

lim
n→∞

d
(
W(un, wn, α

′
n), p

)
= c. (24)

From (16), (18), (24) and Lemma 1.2, it follows that

lim
n→∞

d(un, wn) = 0, (25)
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and hence

d(wn, xn) ≤ d(wn, un) + d(un, xn)

→ 0 as n→∞. (26)

Again note that

d(xn, p) ≤ d(xn, wn) + d(wn, p)

≤ d(xn, wn) + d(wn, PT(p))

≤ d(xn, wn) +H(PT(zn), PT(p))

≤ d(xn, wn) + d(zn, p).

Using (26), we obtain

c ≤ lim inf
n→∞

d(zn, p). (27)

Combining (27) together with (14) gives

lim
n→∞

d(zn, p) = c.

That is,

lim
n→∞

d
(
W(un, tn, α

′′
n), p

)
= c. (28)

From (16), (19), (28) and Lemma 1.2, it follows that

lim
n→∞

d(un, tn) = 0. (29)

Now using (21) and (29), we obtain

d(xn, tn) ≤ d(xn, un) + d(un, tn)

→ 0 as n→∞. (30)

Since d(x, PR(x)) = infr∈PR(x) d(x, r), therefore d(xn, PR(xn)) ≤ d(xn, un) → 0 as n → ∞.
Similarly d(xn, PS(yn)) ≤ d(xn, vn) → 0 as n → ∞, d(xn, PT(zn)) ≤ d(xn, wn) → 0 as n →
∞, and d(xn, PU(xn)) ≤ d(xn, tn)→ 0 as n→∞. This completes the proof. �

We now prove ∆-convergence theorem of the iteration process (8).

Theorem 2.1. Let X be a uniformly convex hyperbolic space and K be a nonempty closed
and convex subset of X with monotone modulus of uniform convexity η and R, S,T,U, PR,
PS, PT, PU, {xn} and condition (12)be as in Lemma 2.2. Then {xn} ∆-converges to a
common fixed point of R, S, T and U (or PR, PS, PT and PU).

Proof. By Lemma 2.1, {xn} is bounded, therefore {xn} has a unique asymptotic center.
Thus A({xn}) = {x}. Let {un} be any subsequence of {xn} such that A({un}) = {u}.
Then limn→∞ d(un, PR(un)) = 0 = limn→∞ d(un, PS(un)) = limn→∞ d(un, PT(un)) =
limn→∞ d(un, PU(un)) by Lemma 2.2. We now prove that u is a common fixed point of
PR, PS, PT and PU. For this, take {vm} in PR(u). Then

r(vm, {un}) = lim sup
n→∞

d(vm, un) ≤ lim sup
n→∞

[d(vm, PR(un)) + d(PR(un), un)]

≤ lim sup
n→∞

H(PR(u), PR(un)) ≤ lim sup
n→∞

d(u, un) = r(u, {un}).

This yields |r(vm, {un}) − r(u, {un})| → 0 as m → ∞. Lemma 1.3 gives limn→∞ vm = u.
Note that Ru ∈ P (K) being proximal is closed, hence PR(u) is closed. Moreover, PR(u) is
bounded. Consequently limn→∞ vm = u ∈ PR(u). Hence u ∈ F (PR). Similarly, u ∈ F (PS),
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u ∈ F (PT) and u ∈ F (PU). Hence u ∈ F. Since limn→∞ d(xn, u) exists by Lemma 2.1,
therefore by the uniqueness of asymptotic center, we have

lim sup
n→∞

d(un, u) < lim sup
n→∞

d(un, x) ≤ lim sup
n→∞

d(xn, x)

< lim sup
n→∞

d(xn, u) = lim sup
n→∞

d(un, u),

a contradiction. Hence x = u. Thus A({un}) = {u} for every subsequence {un} of {xn}.
This shows that {xn} ∆-converges to a common fixed point of R, S, T and U (or PR, PS,
PT and PU). This completes the proof. �

The next result is a necessary and sufficient condition for the strong convergence of
the iteration scheme (8).

Theorem 2.2. Let X be a complete hyperbolic space and K be a nonempty closed and convex
subset of X and R, S,T,U, PR, PS, PT, PU and {xn} be as in Lemma 2.1. Then the sequence
{xn} converges strongly to p ∈ F if and only if lim infn→∞ d(xn,F) = 0.

Proof. If {xn} converges to p ∈ F, then limn→∞ d(xn, p) = 0. Since 0 ≤ d(xn,F) ≤ d(xn, p),
we have lim infn→∞ d(xn,F) = 0. Now to prove that the condition is also sufficient, assume
that lim infn→∞ d(xn,F) = 0. By Lemma 2.1 d(xn+1,F) ≤ d(xn,F), and so limn→∞ d(xn,F)
exists by Lemma 1.4. By hypothesis lim infn→∞ d(xn,F)
= 0, thus limn→∞ d(xn,F) = 0 by Lemma 1.4.

We now show that {xn} is a Cauchy sequence in K. Let m,n ∈ N, where N denotes
the set of all positive integers, and assume that m > n. Then it follows from equation
(11) of Lemma 2.1 that d(xm, p) ≤ d(xn, p) for all p ∈ F. Thus, we have d(xm, xn) ≤
d(xm, p) + d(xn, p) ≤ 2d(xn, p). Taking inf on the set F, we have d(xm, xn) ≤ d(xn,F).
On letting m → ∞, n → ∞, the inequality d(xm, xn) ≤ d(xn,F) shows that {xn} is a
Cauchy sequence in K and hence converges, say to p∗ ∈ K. Now it remains to show that
p∗ ∈ F. Indeed, by d(xn, F (PR)) = infz∈F (PR) d(xn, z). So for each ε > 0, there exists

p
(ε)
n ∈ F (PR) such that d(xn, p

(ε)
n ) < d(xn, F (PR))+ ε

3 . This implies limn→∞ d(xn, p
(ε)
n ) ≤ ε

3 .

From d(p
(ε)
n , p∗) ≤ d(xn, p

(ε)
n ) +d(xn, p∗), it follows that lim supn→∞ d(p

(ε)
n , p∗) ≤ ε

3 . Finally,
we have

d(PR(p∗), p∗) ≤ d(p∗, p
(ε)
n ) + d(p(ε)

n , PR(p∗))

≤ d(p∗, p
(ε)
n ) +H(PR(p(ε)

n ), PR(p∗)) ≤ 2 d(p∗, p
(ε)
n )

yields that d(PR(p∗), p∗) < ε. Since ε is arbitrary, therefore d(PR(p∗), p∗) = 0. Similarly,
we can show that d(PS(p∗), p∗) = 0, d(PT(p∗), p∗) = 0 and d(PU(p∗), p∗) = 0. Since F is
closed, p∗ ∈ F. This shows that the sequence {xn} converges strongly to a point in F. This
completes the proof. �

For our next results, we need the following definitions.

Definition 2.1. A mapping T : K→ P (K) is semi − compact if any bounded sequence {xn}
satisfying d(xn,Txn)→ 0 as n→∞ has a convergent subsequence.

We would also like to give here the definition of the so-called condition (A∗).

Definition 2.2. Let ϕ be a nondecreasing self-map on [0,∞) with ϕ(0) = 0 and ϕ(r) > 0
for all r ∈ (0,∞) and let d(x,F) = inf{d(x, y) : y ∈ F}. Let R, S,T,U : K → P (K) be four
multivalued maps with F 6= ∅. Then the four maps are said to satisfy condition (A∗) if

d(x,Rx) ≥ ϕ(d(x,F)) or d(x, Sx) ≥ ϕ(d(x,F)) or d(x,Tx) ≥ ϕ(d(x,F))

or d(x,Ux) ≥ ϕ(d(x,F)) for all x ∈ K.
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Applying Lemma 2.2 and Theorem 2.2, we can easily obtain the following results.

Theorem 2.3. Let X be a complete hyperbolic space and K be a nonempty closed and convex
subset of X with monotone modulus of uniform convexity η and R, S,T,U, PR, PS, PT, PU,
{xn} and condition (12)be as in Lemma 2.2. Suppose that the mappings PR, PS, PT and
PU satisfies the condition (A∗), then the sequence {xn} defined in (8) converges strongly to
p ∈ F.

Theorem 2.4. Let X be a complete hyperbolic space and K be a nonempty closed and convex
subset of X with monotone modulus of uniform convexity η and R, S,T,U, PR, PS, PT, PU,
{xn} and condition (12)be as in Lemma 2.2. Suppose that one of the mappings in PR, PS,
PT and PU is semi-compact, then the sequence {xn} defined in (8) converges strongly to
p ∈ F.

Example 2.1. Let K = [0, 1] be equipped with the Euclidean metric. Let R, S,T,U : K →
CB(K) (family of closed and bounded subset of K) be defined by R(x) = [0, x2 ], S(x) = [0, x4 ],
T(x) = [0, x5 ] and U(x) = [0, x6 ]. It is easy to see that for any x, y ∈ K

H(R(x),R(y)) = max
{∣∣∣x

2
− y

2

∣∣∣, 0} =
∣∣∣x
2
− y

2

∣∣∣ =
∣∣∣x− y

2

∣∣∣ ≤ |x− y|.
In a similarly way, we obtain

H(S(x), S(y)) = max
{∣∣∣x

4
− y

4

∣∣∣, 0} =
∣∣∣x
4
− y

4

∣∣∣ =
∣∣∣x− y

4

∣∣∣ ≤ |x− y|,
H(T(x),T(y)) = max

{∣∣∣x
5
− y

5

∣∣∣, 0} =
∣∣∣x
5
− y

5

∣∣∣ =
∣∣∣x− y

5

∣∣∣ ≤ |x− y|,
and

H(U(x),U(y)) = max
{∣∣∣x

6
− y

6

∣∣∣, 0} =
∣∣∣x
6
− y

6

∣∣∣ =
∣∣∣x− y

6

∣∣∣ ≤ |x− y|,
showing that R, S, T and U are multivalued nonexpansive mappings. Clearly, F (R)∩F (S)∩
F (T) ∩ F (U) = {0}. Hence, R, S, T and U have a unique common fixed point.
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