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OPTIMIZATION STRATEGIES FOR NODE SELECTION 

AND ENERGY ALLOCATION IN WPTN  

Huajun CHEN1, Lina YUAN2*, Haolin WANG3, Jing GONG4 

With the rapid development of Internet of Things (IoT) technology, wireless 

power networks have become key to supporting their continuous operation. This 

paper delves into the energy collection process of wireless powered transfer network 

(WPTN), with a particular focus on the impact of nonlinear energy collection models 

on network performance. Studies indicate that nonlinear models more accurately 

reflect the complexity of energy conversion in the real world but also pose challenges 

to network stability and efficiency. In response to these challenges, a novel node 

selection mechanism algorithm is proposed. This algorithm comprehensively 

considers various practical constraints such as user location, energy demand, and 

communication distance. By establishing an optimization model and employing 

heuristic search strategies, it effectively selects the optimal set of nodes to achieve the 

optimization of energy collection and data transmission. Furthermore, this paper 

explores how to maximize the overall system energy efficiency while ensuring fairness 

among users. By designing reasonable energy allocation strategies and optimization 

algorithms, it achieves a balanced satisfaction of user energy demands and the 

maximization of network energy efficiency. MATLAB tools were also utilized for 

simulation analysis, and the results verified the effectiveness and superiority of the 

proposed algorithms under different scenarios. Overall, this research provides a 

theoretical foundation and practical guidance for node selection and energy 

allocation in WPTN, which is of significant importance for promoting the sustainable 

development of IoT technology. 

Keywords: WPTN; Energy Collection; Node Selection; Energy Allocation; 

Optimization Strategies; MATLAB Simulation 

1. Introduction 

With the rapid proliferation of Internet of Things (IoT) technology, 

hundreds of millions of devices have been deployed across various sectors, ranging 

from small-scale smart homes to vast industrial monitoring systems. The majority 

of these devices rely on battery power, and the frequent replacement of batteries is 

not only costly but also burdensome to the environment [1-2]. Wireless Powered 
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Transfer Network (WPTN), as an emerging technology, offers the potential to 

wirelessly supply energy to these devices, demonstrating significant application 

prospects [3-4]. The core of WPTN lies in the efficiency and reliability of energy 

collection. The energy collection process typically involves capturing energy from 

the environment, such as solar, wind, and vibrational energy, and then converting 

it into electrical energy for device use through energy converters. However, energy 

collection in actual environments is nonlinear and influenced by various factors, 

such as changes in environmental conditions and the efficiency degradation of 

energy converters [5-6]. Therefore, studying the impact of nonlinear energy 

collection models on network performance is crucial for enhancing the stability and 

efficiency of the network.  

Research on energy collection models can be traced back to early models of 

solar cells and wind turbines. As technology has advanced, researchers have begun 

to focus on more complex nonlinear models. For example, [7-8] theoretically 

examined the energy harvested from radio signals by wireless mobile nodes and 

proposed a practical yet feasible nonlinear energy harvesting model using stochastic 

geometry. [9-10] characterized the performance of nonlinear WPT using multiple 

RF sources and proves the joint convexity of harvested power under certain 

conditions and demonstrated the benefits of exploiting this convexity for 

cooperative WPT enhancement through an example design. In WPTN, node 

selection is a key step in achieving efficient energy distribution. [11-12] used 

clustering algorithms to optimize the node selection process, reducing 

communication overhead and improving network coverage. [13] theoretically 

examined the energy harvested from radio signals by wireless mobile nodes and 

proposed a practical yet feasible nonlinear energy harvesting model using stochastic 

geometry. [14] characterized the performance of nonlinear WPT using multiple RF 

sources and proves the joint convexity of harvested power under certain conditions 

and demonstrated the benefits of exploiting this convexity for cooperative WPT 

enhancement through an example design. In WPTN, node selection is a key step in 

achieving efficient energy distribution. In addition, [15] used clustering algorithms 

to optimize the node selection process, reducing communication overhead and 

improving network coverage. [16] featured an algorithm for selecting optimal 

mobile consensus nodes, enhancing node reputation and stability by 6.8% and 

17.5%, while cutting message counts by 33.9%. [17] introduced a neighbor 

selection method based on regional proximity to speed up block propagation while 

minimizing the risk of eclipse attacks and present a block propagation model to 

explain the method's effectiveness and evaluates its migration impact on different 

network sizes. 

Energy distribution strategies require a balance between satisfying user 

fairness and maximizing energy efficiency. [18] designed an auction theory-based 

energy distribution algorithm that achieves dynamic energy allocation through a 
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bidding mechanism. On the other hand, [19] proposed a deep learning-based energy 

distribution strategy that uses neural networks to predict user energy demands, 

thereby achieving more precise energy distribution. Simulation is an important 

means of verifying the effectiveness of algorithms. MATLAB, as a powerful 

simulation tool, is widely used in simulation research on Wireless Energy 

Propagation Networks. For instance, [20] used MATLAB to simulate the proposed 

energy distribution algorithm, verifying its performance under different scenarios. 

Despite the progress made in existing research, there are still some 

challenges and gaps. First, most existing studies focus on linear energy collection 

models, with relatively less research on nonlinear models. Second, existing node 

selection and energy distribution algorithms often ignore various constraints in 

practical applications. Furthermore, the trade-off between algorithm fairness and 

energy efficiency maximization is also an issue that requires further research. In 

response to the deficiencies in existing research, this paper analyzes the 

characteristics of nonlinear energy collection models and establishes corresponding 

mathematical models; it proposes a node selection mechanism algorithm that 

comprehensively considers various constraints such as user location, energy 

demand, and communication distance; a dynamic energy distribution strategy is 

designed to achieve both user fairness and the maximization of overall system 

energy efficiency; MATLAB is used for simulation analysis to verify the 

effectiveness of the proposed strategy. 

The rest of this paper is organized as follows: Chapter 2 describes the system 

model and problem statement of the Wireless Energy Propagation Network in 

detail; Chapter 3 introduces the node selection and energy distribution strategy; 

Chapter 4 provides the results of the MATLAB simulation analysis; Chapter 5 

summarizes the paper and discusses future research directions. 

2. System Model and Problem Description 

2.1 WPTN Model 

The WPTN is designed to provide a continuous energy supply to a wide 

array of devices that may include sensors, actuators, or other forms of IoT devices. 

The architecture of the WPTN typically consists of three main components: 

(1). Energy Source: The device responsible for emitting energy signals, 

which can be either stationary or mobile. 

(2). Energy Relays: Intermediate nodes that may exist to enhance or forward 

energy signals. 

(3). Energy Harvesting Devices: Devices that receive energy and convert it 

into electrical energy. 

The architecture of the WPTN can adopt various topological forms, 

including star, ring, or mesh, depending on the application scenario and coverage 
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area. 

2.1.1 User Model and Energy Transfer Process 

The user model pertains to the characteristics and behavior of energy 

harvesting devices. Each device d D  has the following attributes: 

(1). Energy Requirement: The minimum energy needed for the device to 

operate normally, denoted as 
demanddE . 

(2). Energy Harvesting Capacity: The maximum energy that the device can 

collect in a unit of time, expressed as 
harvestdE . 

(3). Location: The position of the device within the network, affecting its 

efficiency in receiving energy. 

(4). Communication Needs: The demand for the device to send and receive 

data. 

The energy transfer process can be described by the following formulas: 

2 2
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where 
txP  is the transmission power, 

txG
 
and

 rxG
 
are the gains of the transmitting 

and receiving antennas, respectively.   is the signal wavelength, d  is the distance 

between the transmitter and the receiver. PL(d) represents the path loss as a function 

of distance d, modeled as ( )0 0( )PL d PL d d


=  . Here, 0PL  is the path loss at the 

reference distance 0d , and α is the path loss exponent. Additionally, the wireless 

channel includes additive white Gaussian noise (AWGN) with power 0N , which 

affects the signal-to-noise ratio (SNR) at the receiver. t  is the energy transfer time, 

  is the energy conversion efficiency at the receiver, which accounts for the 

efficiency of converting the received energy into electrical energy, 
0  is the 

maximum energy conversion efficiency, and   is the efficiency decay coefficient.  

2.1.2 Network Performance Metrics 

The performance of a WPTN can be evaluated through three key metrics: 

(1). Energy Coverage: The proportion of the network area that receives an 

adequate amount of energy. 

(2). Energy Efficiency: The amount of energy required by the network to 

transmit a unit of data. 

(3). Reliability: The probability that the network successfully transmits data 

within a specified time frame. 
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2.2 Analysis of Non-linear Energy Harvesting Models 

In a WPTN, the efficiency and stability of energy harvesting are crucial for 

ensuring network performance. Non-linear energy harvesting models take into 

account the complexities of the actual energy conversion process, including 

environmental factors, device aging, and the physical limitations of energy 

converters. These factors cause the energy harvesting efficiency to decrease as the 

input power increases, exhibiting non-linear characteristics. 

2.2.1 Establishment of Non-linear Models 

Non-linear energy harvesting models are typically described using piece-

wise functions. The following is a typical model for non-linear energy conversion 

efficiency: 

th

th

if 
(

,
)

log( ) i ,f 

P P P
P

P P P




 

 
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+  
                                   (4) 

here the energy conversion efficiency, denoted as ( )P , is a function of the input 

power P . There exists a threshold power level, denoted as 
thP , beyond which the 

efficiency transitions into a non-linear region. The parameters α, β, and γ were 

defined as the coefficients used to characterize the non-linear energy conversion 

efficiency. However, to enhance the clarity and replicability of the work, we have 

provided more specific information regarding these parameters. The parameters α, 

β, and γ are determined based on the specific energy harvesting devices and 

environmental conditions. For instance, α represents the initial conversion 

efficiency at low power levels, β is the power level at which the efficiency starts to 

saturate, and γ describes the rate at which the efficiency approaches saturation in 

the high-power region. The values of these parameters can be obtained through 

experimental calibration or by referring to the specifications provided by the device 

manufacturers. Here is an example of how these parameters can be determined: For 

a specific type of energy harvesting device, experiments were conducted to measure 

the energy conversion efficiency under different input power levels. The results 

showed that when the input power is below 10 mW, the conversion efficiency 

increases linearly with a slope of 0.8 (α = 0.8). When the input power reaches 10 

mW (β = 10 mW), the efficiency begins to saturate and approaches a maximum 

value of 0.9 with a saturation rate of 0.1 (γ = 0.1). These values can be used to 

model the non-linear energy conversion efficiency for this particular device.  

2.2.2 Model Characteristic Analysis 

The establishment of the non-linear model provides a theoretical foundation 

for analyzing the energy harvesting process. The following characteristics are the 

focus of the analysis: 

1. Saturation Behavior: When the input power exceeds a certain threshold 
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thP , the conversion efficiency no longer increases linearly but tends to saturate. 

2. Efficiency Decay: As the input power increases, the conversion efficiency 

may decrease due to overheating or other physical factors. 

3. Stochastic Fluctuations: Environmental changes and device aging may 

lead to random fluctuations in the energy conversion efficiency. 

The non-linear energy harvesting model has a significant impact on the 

performance of the WPTN. Firstly, uncertainty in energy supply: the non-linear 

model increases the uncertainty of energy supply, posing challenges to the stability 

and reliability of the network. Secondly, energy allocation strategy: new algorithms 

need to be developed to adapt to the changes in energy harvesting efficiency and 

optimize energy allocation. Lastly, network design: the design of the network must 

consider non-linear characteristics to ensure that all devices can meet their energy 

demands. 

2.3 Optimization Problem Definition 

In the WPTN, the core of the optimization problem is to achieve effective 

energy allocation and reasonable node selection to meet the overall performance 

requirements of the network. This includes maximizing system energy efficiency, 

ensuring fairness among users, and meeting specific Quality of Service (QoS) 

requirements. This section will detail the mathematical model of the optimization 

problem, the objective function, constraints, and solution methods. 

The goal of the optimization problem is multifaceted and requires a 

comprehensive consideration of three aspects. First, maximizing system energy 

efficiency: enhancing the network's ability to transmit data while reducing energy 

consumption. Second, ensuring user fairness: guaranteeing that all users receive the 

necessary energy supply. Third, meeting QoS requirements: allocating resources 

reasonably according to the service quality requirements of different users. 

2.3.1 Objective Function 

The objective function is the core of the optimization problem and is 

typically defined as: 

max ( )

subject to ( ) 0, 1,2, , ,i

U

g i m = 

x
x

x
                             (5) 

here, ( )U x  represents the system performance metrics, such as energy efficiency 

and fairness. x  is the vector of decision variables, including power allocation and 

user selection. ( )ig x   

2.3.2 Constraint Conditions 

Constraint conditions reflect the practical limitations in network design, 

which include: 
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(1). Energy Supply Constraint: The energy received by each user must not 

exceed their energy harvesting capacity. 

   rx, harvest , .,d dE E d D                                            (6) 

(2). Communication Distance Constraint: The communication distance  

between the user and the energy source should be within the effective range. 

   
max , , .sdd d s S d D                                          (7) 

            (3). User Fairness Constraint: Ensure that all users can meet their  

basic energy requirements.  

  rx, demand, , .d dE E d D                                          (8) 

 (4). Total Energy Constraint: The total energy consumption of the  

network must not exceed the total energy supply provided by the energy source. 

  
tx, total.s

s S

P t E


                                                  (9) 

2.3.3 Optimization Algorithms and Performance Metrics 

Solving optimization problems typically requires the use of specific 

algorithms, which mainly fall into four categories. First, Linear Programming (LP): 

suitable for cases where both the objective function and constraints are linear. 

Second, Integer Programming (IP): used when decision variables need to be 

integers, such as in user selection problems. Third, Nonlinear Programming (NLP): 

applicable when the objective function or constraints are nonlinear. Fourth, 

Heuristic Algorithms: employed to obtain approximate solutions when the problem 

size is large or the solution is complex. 

The performance of optimization algorithms is usually assessed based on 

three metrics: First, Convergence Speed: the number of iterations or time required 

for the algorithm to reach an optimal or stable solution. Second, Quality of the 

Solution: the degree to which the solution obtained by the algorithm approaches the 

global optimum. Lastly, Robustness: the performance of the algorithm in the face 

of model parameter changes or uncertainties. 

The WPTN is designed to provide a continuous energy supply to a wide 

array of devices that may include sensors, actuators, or other forms of IoT devices. 

The architecture of the WPTN typically consists of three main components: 

(1). Energy Source: The device responsible for emitting energy signals, 

which can be either stationary or mobile. 

(2). Energy Relays: Intermediate nodes that may exist to enhance or forward 

energy signals. 

(3). Energy Harvesting Devices: Devices that receive energy and convert it 

into electrical energy. 

The architecture of the WPTN can adopt various topological forms, 
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including star, ring, or mesh, depending on the application scenario and coverage 

area. 

3. Node Selection and Energy Allocation Strategy 

3.1 Node Selection Algorithm 

3.1.1 Mathematical Model of the Node Selection Algorithm 

The node selection problem can be formulated as an optimization issue, with 

the following being a basic mathematical model. Initially, an objective function is 

established: 

max ( ,) d d

d

f w C


= S

S

S                                     (10) 

where the selected set of nodes is denoted as S , 
dw

 
represents the weight of device 

d , which could reflect its importance or priority in the network. 
dC  is the energy 

harvesting capability of device d . The constraints are then formulated as follows: 

(1). Total Energy Demand Constraint:  

  
demand, total ,d

d

E E



S

                                         (11)  

(2). Communication Coverage Constrain: 

 Coverage Required Coverage,d

d


S

                           (12) 

here demand,dE  is the energy demand of device d , representing the minimum energy 

required for the device to function properly. 
totalE  is the total energy supply of the 

network, indicating the overall amount of energy available for distribution among 

the devices. Coveraged
is the communication coverage range of the device, defining 

the area within which the device can effectively communicate and receive energy. 

3.1.2 Design and Implementation of the Node Selection Algorithm 

When designing the node selection algorithm, it is necessary to adhere to 

four principles. First, Optimization Principle: the algorithm should seek the optimal 

set of nodes to maximize network performance. Second, Fairness Principle: the 

algorithm should ensure that all users receive the necessary energy supply. Third, 

Adaptability Principle: the algorithm should adapt to changes in the network 

environment and user demands. Fourth, Efficiency Principle: the algorithm should 

maintain performance while having a low computational complexity. The design of 

the node selection algorithm closely follows the mathematical model to address the 

optimization problem. Formula (13) plays a crucial role in the node scoring process. 

The scoring is based on the energy harvesting capability and energy demand of each 

user, which are key variables in our mathematical model. The linear combination 

in Formula (13) allows for a straightforward yet effective evaluation of each user's 
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priority in node selection, directly linking to the objective function in Formula (10) 

and considering the practical constraints of the network. The steps are as follows: 

(1). Demand Analysis: Collect and analyze the energy requirements of all 

users 
demand,dE . 

(2). Capability Assessment: Evaluate the energy harvesting 
dC and 

communication capabilities of each user. 

(3). Node Scoring: Assign a score to each user based on their capabilities 

and other metrics Scored
. 

  demand,Score ,d d d dw C E=  −                                  (13) 

Among them,   is the coefficient used to balance the energy harvesting 

capability and energy demand. 

(4). Node Ranking: Rank users based on scores, selecting the user with 

the highest score. 

(5). Set Construction: Construct a set of nodes according to the ranking 

results and check if all constraints are met. 

The implementation of the node selection algorithm needs to consider 

three key points: First, data structure: Choose the appropriate data structure to 

store user information and node sets. Second, algorithm process: Clarify each step 

and decision point of the algorithm. Third, efficiency optimization: Optimize the 

algorithm process to reduce unnecessary calculations and iterations. 

To evaluate the performance of the node selection algorithm, three 

metrics need to be considered. First, convergence speed: The time required for 

the algorithm to reach the optimal or stable solution. Second, solution quality: 

The closeness of the solution obtained by the algorithm to the global optimal 

solution. Third, robustness: The performance of the algorithm when facing 

changes in the network environment. 

3.2 Energy Allocation Strategy 

The energy allocation strategy is the core of ensuring the efficient 

operation of WPTN. Reasonable energy allocation can not only enhance the 

overall energy efficiency of the network but also ensure the quality of service 

(QoS) for users. The objective function of energy allocation typically aims to 

maximize the overall utility of the network while meeting the following 

conditions: 

(1). Meet the minimum energy demand: Each user obtains at least the 

minimum energy required. 

(2). Fairness: All users receive a relatively fair energy allocation. 

(3). Maximize the total network utility: On the basis of meeting the above 

conditions, as much as possible to improve the total utility of the network. 
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3.2.1 Mathematical Model of Energy Allocation 

The energy allocation problem can be formulated as the following 

optimization problem. First, establish the objective function: 

max ( ),d d

d D

U P


P
                                             (14) 

in which ( )d dU P  represents the utility function of device d , and 
dP  is the energy 

allocated to device d .  Subsequently, the constraints are formulated as follows: 

(1). Total Energy Constraint: 

   
total ,d

d D

P P


                                               (15) 

(2). Minimum Energy Requirement Constraint: 

   min, , ,d dP P d D                                           (16) 

(3). Non-negativity constraint 

   0, ,dP d D                                             (17) 

where 
totalP represents the total energy supply of the network, and min,dP

 
represents 

the minimum energy requirement of device d . 

3.2.2 Dynamic Energy Allocation Algorithm 

Dynamic energy allocation necessitates the real-time adjustment of the 

energy distribution plan to accommodate changes in the network state. A simple 

strategy for dynamic adjustment can be outlined as follows: 

(1). Initialization: Allocate a base level of energy to each user 
(0)

dP . 

(2). Monitoring and Forecasting: Continuously monitor the energy 

harvesting status and user demands, and forecast future trends. 

(3). Adjustment: Based on the forecast results, adjust the energy 

allocation: 

   
( 1) ( ) ,t t

d d dP P P+ = +                                              (18) 

herein, 
dP  represents the energy adjustment amount for device d  during the time 

interval from t  to 1t + . 

3.2.3 Algorithm Design and Performance Evaluation 

Algorithm design should take into account three factors. First, the selection 

of the utility function: The utility function should reflect the preferences and 

demands of users for energy. Second, the optimization method: Choose an 

appropriate optimization method, such as the Lagrange multiplier method, convex 

optimization, or heuristic algorithms. Third, fairness constraints: Ensure that the 

algorithm takes into account fairness among users when allocating energy. 

Evaluating the performance of energy allocation algorithms requires considering 

the following metrics. 
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(1). Energy Efficiency: 
Total Data Transferred

Energy Efficiency .
Total Energy Consumed

=                            (19) 

(2). Fairness: 
2( )

Fairness .
d

d D

P P

D



−

=


                                      (20) 

here P  represents the average energy allocation amount.  

(3). Stability: 

( )

1

1
Stability Var[ ].

T
t

d

t

P
T =

=                                    (21) 

here T  is the total time period, ( )Var[ ]t

dP  denotes the variance in energy allocation 

at time t . 

3.3 Algorithm Performance Analysis 

Algorithm performance analysis is a critical component in assessing the 

effectiveness of node selection and energy allocation strategies. It not only helps us 

understand the performance of the algorithm under ideal conditions but also reveals 

the robustness and scalability of the algorithm when facing real-world network 

environments. When conducting algorithm performance analysis, the following 

metrics are crucial: 

(1). Convergence Speed: The number of iterations or time required for the 

algorithm to reach an optimal or stable solution. 

(2). Solution Quality: The closeness of the solution obtained by the 

algorithm to the global optimal solution. 

(3). Computational Complexity: The computational resources required for 

the execution of the algorithm, usually related to the scale of the problem. 

(4). Memory Usage: The storage space required during the execution of the 

algorithm. 

(5). Robustness: The performance of the algorithm when facing changes in 

model parameters or uncertainties. 

3.3.1 Theoretical Analysis 

Theoretical analysis not only offers preliminary insights into the algorithm's 

performance but also demonstrates how the mathematical model is translated into 

the implemented algorithm. For instance, the convergence analysis of the node 

selection algorithm shows that the algorithm can efficiently reach an optimal 

solution by leveraging the linear relationship defined in Formula (13). This 

indicates that even with a linear model, the algorithm can achieve satisfactory 

performance in terms of convergence speed and solution quality, which is 

comparable to more complex AI-based algorithms but with lower computational 
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overhead. For node selection and energy allocation algorithms, the following 

theoretical analyses are necessary: 

(1). Convergence Analysis: Proving that the algorithm can converge to an 

optimal or stable solution. 

(2). Complexity Analysis: Analyzing the time and space complexity of the 

algorithm. 

(3). Sensitivity Analysis: Assessing the algorithm's sensitivity to parameter 

changes. 

Below is an example of the algorithm's convergence speed analysis: 
( ) (*)

(0) (*)

( ) ( )
Convergence Rate ,

( ) ( )

kf x f x

f x f x

−
=

−
                                (22) 

herein, ( )( )kf x  represents the objective function value at the k -th iteration, 
(*)( )f x  denotes the optimal objective function value, and (0)( )f x  signifies the 

initial objective function value. 

3.3.2 Complexity Assessment 

The computational complexity of an algorithm is typically represented by 

the Big O notation. For instance, if our algorithm includes a nested loop, its time 

complexity might be 2( )O n , where n  is the number of nodes in the network. Below 

is an example illustrating the time complexity: 
2Time Complexity ( ).O n=                                    (23) 

This indicates that the execution time of the algorithm grows quadratically 

with the increase in network size. 

3.3.3 Robustness Analysis 

Robustness analysis evaluates how the algorithm performs under various 

uncertainties. The proposed algorithm, based on the mathematical model and 

implemented through Formula (13), exhibits good adaptability to parameter 

variations. This is crucial for the practical deployment of WPTN, where 

environmental factors and device variations can significantly impact energy 

harvesting efficiency. Unlike some AI-based algorithms that may require extensive 

retraining under different conditions, our algorithm maintains stable performance 

with minimal adjustments, making it more suitable for real-time applications in 

dynamic network environments. This typically involves simulating various network 

conditions and observing the variations in algorithm performance. A measure of 

robustness is defined as: 
2

( )

(*)
1

1 ( )
Robustness 1 ,

( )

iN

i

f x

N f x=

 
= − 

 
                                 (24) 

here N  is the number of simulated scenarios, and ( )( )if x  is the performance of the 
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algorithm in the i -th scenario. 

4. Numerical Simulation Analysis 

The simulations were conducted on a computer with an Intel Core i7 

processor and 16GB RAM. The Matlab implementation utilizes matrix operations 

and built-in optimization functions to efficiently solve the problem. During the 

simulation, the memory usage was monitored, and it was found that the algorithm 

consumes approximately 500MB of RAM for the problem size of 10 users. The 

computation time for each simulation run is approximately 10 seconds, 

demonstrating the efficiency of the proposed algorithm. Before initiating a 

simulation, it is imperative to establish the simulation parameters and performance 

metrics that will guide the assessment of the network's operation. The key 

parameters to be defined are as follows: 

(1). Simulation Duration: The total time span of the simulation is set at 100 

seconds, denoted as “simulation_times=100 s”. 

(2). Number of Users: The network will consist of 10 user equipments 

(UEs), represented by “N=10”. 

(3). Base Station Power: The maximum transmittable power by the base 

station (BS) is capped at 1 watt, expressed as “BS_power =1 watts (W)”. 

(4). Wireless Channel Model: The wireless channel is modeled with path 

loss ( )0 0( )PL d PL d d


=  , where 0PL =40 dB at 0d =1 m, and α=2.5 for indoor 

environments. 

(5). Noise Power: The noise power at the receiver is modeled as 0N =−174 

dBm/Hz, considering a bandwidth of 1 MHz. 

(6). Energy Harvesting Efficiency: This parameter quantifies the efficiency 

with which the user equipment can harvest energy from the received power. It is 

modeled as a function of the received power, “eta=@(P) 0.8 * P^0.7”. 

(7). Communication Distance: The spatial separation between the user 

equipment and the base station is determined randomly for each user, generated 

using the formula “distance=rand(num_users, 1)”. 

The performance metrics to be evaluated encompass: 

(1). Energy Consumption: This metric will track the total energy expended 

throughout the simulation. 

(2). Throughput: This measures the rate at which data is successfully 

transmitted across the network. 

(3). User Fairness: This ensures that network resources are equitably 

allocated among users. 

These parameters and metrics are critical for evaluating the efficiency and 

effectiveness of the network under simulation. They provide a comprehensive 

framework for understanding the system's behavior and for making informed 
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decisions regarding network optimization and resource management. 

 
 

Fig. 1. Comparison of Non-linear and Linear 

Energy Collection Efficiency with Received 

Power 

Fig. 2. Comprehensive Comparison of Energy 

Consumption and Network Throughput of Non-

Linear and Linear Energy Harvesting Models 

Fig. 1 reveals distinct characteristics of the Linear and Nonlinear energy 

harvesting models across different power levels. At low power levels, both models 

exhibit identical energy collection efficiency, which increases linearly with 

received power. This indicates that the nonlinear effects are negligible in this 

region, and both models operate similarly without significant deviations. However, 

as the received power increases into the high-power range, the nonlinear model 

demonstrates superior performance. Its energy harvesting efficiency surpasses that 

of the linear model and approaches a saturation point. This saturation behavior 

reflects the practical limitations of energy conversion in real-world devices, where 

efficiency cannot grow indefinitely with power. The nonlinear model's ability to 

maintain higher efficiency in the high-power range highlights its advantage in 

practical applications, as it effectively avoids the unrealistic, unbounded efficiency 

growth predicted by the linear model. This makes the nonlinear model more suitable 

for high-power scenarios, ensuring stable and efficient energy harvesting while 

preventing potential issues like equipment overload. 

Fig. 2 demonstrates energy consumption and network throughput 

comparison of Nonlinear and Linear energy harvesting models. As can be seen from 

Fig.2, at the same energy consumption levels, the Nonlinear Model generally 

achieves higher network throughput than the Linear model. For example, when 

energy consumption is around 0.5W, the throughput of the Nonlinear Model is 

approximately 2.651×107 bit per second (bps), which is noticeably higher than the 

2.326×107 bps of the linear model. This indicates that the Nonlinear Model can 

provide better network performance under the same energy consumption 

conditions, making it more efficient in utilizing energy for data transmission. The 

Linear Model requires more energy to achieve a similar increase in throughput. As 
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energy consumption increases further, the Nonlinear Model’s throughput continues 

to rise at a faster rate compared to the Linear Model, highlighting its superiority in 

converting energy into effective network throughput.  

  

Fig. 3. Energy Allocation Among Selected Users 
Fig. 4. User Fairness Assessment and System 

Energy Efficiency Analysis 

 

Fig. 3 illustrates the amount of energy allocated to each selected user. The 

X-axis represents the index of the selected users, and the Y-axis indicates the 

amount of energy allocated to each user, measured in watts (W). The simulation 

results show that the heights of all bars are essentially uniform, which validates the 

effectiveness of the uniform allocation strategy. If there are differences in height, it 

may indicate that other factors are influencing the energy allocation, such as the 

users' energy requirements, communication distances, or other priority rules. 

Fig. 4 presents an illustration of user fairness and system energy efficiency, 

composed of two sub-figures, each occupying half the space of the subplot. Fig. 4(a) 

displays the fairness index for each user, with each bar representing a user's fairness 

index; the shorter the bar, the fairer the energy allocation to that user. The fairness 

index is assessed by calculating the standard deviation of the energy allocated to 

the user—the smaller the standard deviation, the more uniform the energy 

distribution and the better the fairness among users. If the bars in the bar chart are 

short and of similar length, it indicates that the algorithm has achieved a high level 

of fairness among users. Longer or more varied bars may point to unfair phenomena 

in energy allocation, which require further investigation into the causes. Fig. 4(b) 

represents the relationship between total energy consumption and total throughput. 

The X-axis indicates the total system energy consumption measured in W, and the 

Y-axis indicates the system’s total throughput. It is assumed that the total 

throughput is directly proportional to the total energy consumption, but this may 

not be the actual case, as the actual throughput may be influenced by many other 

factors. 
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Fig. 5 Fairness Index Over Time for Non-linear 

Method 
Fig. 6 Energy Efficiency Over Time for Non-

linear Method 
 

Fig. 5 depicts how fairly energy is allocated among users over a 100-second 

simulation period for Non-linear Method in WPTN scenarios with 10, 50, and 100 

nodes. The fairness index, calculated as the standard deviation of energy allocation, 

shows that a lower value indicates more equitable distribution. The blue line (10 

nodes) has the lowest index, highlighting the simplest energy distribution. The 

green line (50 nodes) shows a higher index due to increased allocation complexity. 

The red line (100 nodes) demonstrates the most challenging distribution but remains 

acceptable. Overall, the strategy ensures reasonable energy allocation fairness 

across varying network densities. 

Fig. 6 illustrates the energy efficiency for Non-linear Method in WPTN over 

100 seconds for 10, 50, and 100 nodes. Energy efficiency is the ratio of throughput 

to energy consumption. The blue line (10 nodes) shows the highest efficiency, as 

fewer nodes lead to less energy consumption and higher throughput. The green line 

(50 nodes) indicates lower efficiency due to increased consumption but optimized 

throughput. The red line (100 nodes) has the lowest efficiency due to the highest 

consumption, yet it maintains an acceptable level. Despite efficiency decreasing 

with more nodes, the trend stabilizes, proving the allocation strategy's effectiveness 

and scalability in enhancing energy efficiency across different network densities. 

5. Conclusion and Future Work 

This paper presents a comprehensive study on optimizing node selection 

and energy allocation in Wireless Powered Transfer Networks (WPTN). The key 

findings include an in-depth analysis of nonlinear energy harvesting models, which 

provide a more accurate representation of real-world energy conversion processes. 

A novel node selection algorithm was proposed, considering practical constraints 

such as user location, energy demand, and communication distance, enhancing 

network efficiency. Additionally, a dynamic energy allocation strategy was 

developed to maximize system energy efficiency while ensuring fairness among 
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users. Extensive MATLAB simulations have validated the effectiveness of these 

strategies, demonstrating superior energy efficiency and network performance. 

Despite the significant contributions, the study has identified limitations that 

suggest avenues for future research. The models used are simplified and may not 

capture the full complexity of real-world network operations. Future studies should 

incorporate more detailed models to enhance the accuracy of findings. The 

parameters in the simulations are based on theoretical estimates and may not reflect 

actual conditions; thus, future work should utilize empirical data to refine these 

parameters. The proposed algorithms show promise but could be further optimized, 

particularly in terms of computational efficiency and adaptability to dynamic 

network conditions. Lastly, the strategies need real-world testing to assess practical 

viability and gather empirical data for model refinement. In conclusion, while there 

is room for further exploration, this paper has made substantial contributions to the 

field of WPTN, setting a solid foundation for future work aimed at advancing the 

efficiency and sustainability of IoT networks. 
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