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ON THE INFLUENCE OF THE TIRE LATERAL ELASTICITY
ON THE HEAVE VIBRATIONS OF AN AUTOMOBILE

Aurel P. STOICESCU'

In lucrare se studiaza oscilatiile de saltare ale autombilului cu suspensie
pendulara. Se foloseste un model al acestui tip de suspensie fard a se presupune ca
deplasarile in sistem sunt mici. Se ajunge la un sistem de ecuatii diferentiale
neliniare, potrivit pentru studiul oscilatilor la trecerea rotilor peste neregularitati
mari ale caii. Se fac aprecieri cu privire la precizia determinarii rigiditatii §i
amortizarii suspensiei cdnd automobilul nu se deplaseazd. Pentru ecuatiile
liniarizate se compara rezultatele obtinute cu cele corespunzatoare modelului uzual
din literaturd. Se constatd ca deformatiile laterale ale pneurilor determinate de
variatia ecartamentului rotilor afecteaza confortul la oscilatii si tinuta de drum ale
automobilului.

In the present paper the heave vibrations of an automobile are investigated in
the case of a swing axle suspension. A model of this suspension type is used without
considering the displacements as small. We obtain a non-linear system of the
differential equations, which is used to study the vibrations during automobile
passing over surface with high undulations. Considerations are made about the
determination accuracy of the suspension stiffness and suspension damping by
testing when the automobile does not move. The motion equations are linearised and
the obtained results are compared with those corresponding to the usual ride
quarter-car model. It has been found that the tire lateral deformations produced by
the track width variation deteriorate the ride comfort and the road holding of an
automobile.

Keywords: automobile, differential equations, heave vibrations, stiffness, swing
axle suspension, transfer function

1. Introduction

Usually, to study the heavy vibrations of automobiles, equivalent
suspension models are employed which are composed of elastic elements with
certain stiffnesses corresponding to the vertical displacement of the different
masses. These masses are connected between themselves by the agency of these
elastic elements. In practice, in the case of the independent suspensions, during
heave displacement of the automobile body the alteration of the track width takes
place, leading inevitably the lateral deformations of the tires. These generate the
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lateral forces which influence the suspension dynamics depending on the features
of the suspension guide mechanism. The influence of different suspension guide
mechanism types on the automobile vibrations taking into account the lateral
deformations of the tires has been investigated in literature [1, 2, 3]. For this
purpose a linear differential equation system has been established based on some
approximations in conjunction with the displacements considered as being small.
In the paper, the heave vibrations of an automobile are investigated in the
case of a swing axle suspension employing a model without considering
displacements as small. Thus, a non-linear differential equation system is
established and the influence of the lateral deformations of the tires on the heave
(bounce) vibrations of an automobile are investigated. Also, assessments are made
regarding the determination of the suspension stiffness and damping when the
automobile no longer moves. Finally, the linearised equations have been
established and the comparisons to the riding quarter —car model are made.

2. Equations of motions

We consider the rectilinear motion of an automobile which travels over an
undulating surface. It is assumed that surface profile for two wheels of the swing
axle are identical. Also, the pitch motion is not considered and, in fact, the model
of a half of the automobile corresponding to the examined axle is studied.

We consider the fixed reference system Oyz attached to the road. The y
axis is located into a horizontal plane. The elevation of the surface profile is 4,
(Figure 1) and the ordinate of the gravity center of the sprung mass is z,, We
suppose that the gravity center of the unsprung mass corresponding to the axle
looking to travel direction (the same with the direction of the Ox axis) coincides
with the center of the wheel C (therefore the masses of the arm, the spring and the
shock absorber are neglected).

During oscillations and automobile passing over road irregularities the tire
is deflected into vertical and the lateral directions with ¢, and n,, respectively
(these quantities are zero when on the tire does not act any force). So, the normal
tire reaction Z, and the lateral tire (wheel) reaction Y,, are developed. When the
tire is not loaded the height of the cross section is Hy and, in Fig. 1, point D
represents the lowest point of the wheel rim diameter. Therefore |CD|=r,,
represents the radius of the wheel rim.

The following notations are introduced:
a.[m]-distance from the upper fastening point of the spring E to the vertical line
that passes through point A;

h, [m]-distance from point E to the horizontal line that passes through the point A;
ho [m]-distance from the gravity center of the sprung mass to the horizontal line
that passes through the point A;
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[=|AC| [m]-length of the swing arm of the suspension;

[, [m]-length of the spring (elastic element);

lor [m]-spring length in free state;

m [kg]-half sprung mass; m,, [kg]-wheel mass;

I [kg.m’]-mass moment of inertia of the wheel about an axis which passes
through wheel center and is perpendicular to the wheel axis;

g [m.s*]-acceleration due to gravity;

I:“e ,Fsh [N]-force developed by the elastic element (spring), force developed by

the shock absorber;

con [N.s.m™']-damping coefficient of the shock absorber;

k [N/rad]-cornering stiffness of a tire;

k. [N.m']-stiffness of the elastic element (spring);

ki, kiz [N.m'l]—lateral stiffness of the tire, vertical stiffness of the tire;

7. [rad]-angle between the spring axis and the normal line to the straight AC;
¢ [rad]-angle between the longitudinal swing arm axis and the horizontal line;

]’,l; -unit vectors in the y, z directions respectively.

A
z

Zg

Fig.1. Schematic representation of a swing axle quarter suspension model

The acceleration of the point C is given by relation:
e =—I(¢" cosp+@sing)j + (2, —1¢” sinp+Ipcosp)k. (1)
By applying D’ Alembert’s principle for the ensemble represented in Fig. 1
and by projecting the obtained vector equation on the vertical direction we get
(having relation (1) in view):
(m+m,)z, + mwlgbcosgo—mwlgb2 sing=—-(m+m,)g+Z,. 2)
From the equilibrium condition for the unsprung part, taking the moment
about point A, we obtain:
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ZW[Zcos¢)+rrm singp+(H, —gt)tanqo—ryt]—(YWHO —G, +71,, cosg—Ising)— ;
I, s+ 1)~ 1,5 = (F, + Fy)l, cos7,. @

The reactions on the wheel acting at tire-road contact patch can be written
as some function of the deformations:
Yw:kty'ntj Zw:ktz'gt' (4)

The velocity of point C has two components: the one to the Ox axis
direction (corresponding to the translation motion of the automobile), which is
assumed to be constant, and the other to the lateral direction. For this reason,
because the tire is elastic, the wheel rolling is produced with lateral slip, even if an
effective sliding is not generated. In the following, we suppose that point C does
not slide with respect to the road. Because the lateral velocity of point C is
variable when the heave oscillations are produced, point C,. has a certain running
velocity. This velocity has a longitudinal component equal to the automobile
speed and a lateral component which is dependent on the variation with respect
the time of the lateral tire deformation. Therefore, the tire rolls with variable
lateral slip. According to [4], the lateral deformation of tire is given both the
rolling with slip and the tire camber angle. In the two cases the so called
relaxation length of the tire is the same.

The following relation is considered [4];

. kly k}’
77,+v777t =va+7v7/, &)

where a is the slip angle and y represents the wheel camber angle (in our case
y=@). If D is the point fixed with respect to the wheel rim and it is situated in the
lowest part of the rim and on the road surface, then one can write [4]:

a=-"27 (6)

where vp, is the projection on the surface plane of the component of the velocity
of the point D’ on an automobile transversal plane. This has the direction opposed
to the lateral tire deformation. One can prove that during the rectilinear movement
this component has the expression (the positive direction of the velocity is to
right):

Yy = (1 cOSQ+ Hy —, ~I5in 9)p %)
By projecting the OO’ ACD”’O contour on a vertical direction we get:
¢, =Hy+hy—Isinp+r,, cosp—z, +h,. )

Taking into account the relations (4), (6), (7) and (8), the Equations (2),
(3) and (5) become:

(m+my)z, +k,z, +mwl¢cos¢—mwlsin¢-(p2 +k. Isinp—-k
_(m+mw)g+ktz(H0 +h0)+ktzhr’

Tm COSQ =

)
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m,lcosp-Z, +(mwl2 +1,,)p+ky(z, —hy +Ising—r,, cosp—h,)n, —

k. (Hy+hy—Ising+r,, cosp—z, +h,)[lcosg0+r,,m sing+(H, —gt)tan(o—nt]z

—(F, + Fy)l cosy,, (10)
77t_(Zg_ho_hr)(0+7"771_7v(0:0- (11)

The force developed by the spring and the force developed by the shock
absorber (it is supposed that the shock absorber is fitted inside of the spring, the
mounting points being the same as those of the spring) are given by relations:

Fe :ke(le;f _16)7 Evh :_cshle' (12)
Starting from the representation of Fig.1 we obtain the relation
[, =\/112+a62+h62—211(ae cos@+ h, sing. (13)

Differentiating the preceding relation with respect to time, we find the
expression

. Li(a,sinp—h,cosg) &

/ 14
e le ( )
Also, one establishes the relation
—a,sinp+h
cos7, a,sing+h, cosgo. (15)

)

Taking into account the relations (12), (13), (14) and (15), equations (9),
(10) and (11) represent a system of the non-linear differential equations, the
dependent variables being z,(?), ¢(f) and 7(*) (it is supposed that the function /,(¢)
is known). If the initial conditions zy(0)=zg0, Z,(0)=2,,, @(0)=g,, ¢(0) =@,

and 7,(0)=n,, are given, then one can determine, as a rule, the function that

define the dependent variables.
If we consider 7, {; and ¢ as dependent variables, then the motion
equations are written as:
k : ..
& +—2c +[r, sing+ (- )l cosplp+
mtm, (16)

[r,m cos@— (1 — u)lsin ¢](/'12 = ii, +g,
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c,li (~a,sing+h,cos go)z .

g, cosp—|1+—= —(lcos¢+r,m sinq)) @— .
Wl m,l 12
kell . tz :
+ l(—ae sin @ + 1, cos @)+ l(lcosqo+ 7, sing+H,tanp—¢, tanp—n,)c, +
k k k k1, ..
m,l m,l m,l m,l
7, (7, COS(p+H0—Zs1n(0—g,)(o+v7n,—v7¢)=0, (18)

where y=m,/(m,+m).

Thus, we obtain also in this case a system of three non-linear differential
equations. Regarding the initial conditions, it is necessary to take into account a
certain peculiarity. From relation (8), by differentiating with respect to time, we
obtain

¢, =—(lcosp+r, sinp)p—z, +h,. (19)
It is found that &, (0) and ¢(0) cannot be arbitrarily chosen. They must

satisfy the relation:
¢ (0) ==l cos p(0) +7,,, sin (0))p(0) — z, (0) + £,(0). (20)
To study comparatively and to facilitate the calculations when the
variables do not present important variations, the equations are linearised.
Usually, one considers the variations of the dependent variables with respect to
the equilibrium static state. So, during steady-state motion on a horizontal even

road the following relations are valid (the same notations as in the general case are
used, but the index 0 is added):

gm+m,) k _
Zwo =(m+m,)g, G0 =————"", Ny =—7§00, [cos@, +7,, sing, +
ktz k[y
ky po : I,F,,cosy,
(Hy —g)tangy =1, ——————(Hy — G0 + 7,y COS @y —Isin @) = 1-0——2¢
(m+m,)g (m+m,)g
(21)

It is noticed that if the angle ¢ is imposed, the Eq. (20) comprises /s as an
unknown (one takes into account the first relation (12) and relation (15) in this
special case for the given geometrical characteristics). Using a numerical method,
lys can be determined or another geometrical quantity may be chosen if I is
imposed.

We canwrite: ¢, =¢,0 +Ag,, ¢ =@y +Ap, 1, =1, + A7,

where A, Ap, and Ay, are the variations of {;, ¢ and 7, respectively with respect to
the values at steady-state motion. If it is supposed that these variations are small,
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then from the Taylor’s series expansion of the functions ¢, ¢ and #; the first two
terms of them are kept. After that, in the motion equations the products and the
powers of these variations are neglected. Taking into account also the static
equilibrium conditions we obtain the following linear differential system with
constant coefficients:

M-X+N-X+P-X=[l,cos0,,0]" -, (22)

where X = [Ag,,A(o,An, ]T is the column vector of the new dependent variables
and M, N and P are square matrices 3x3: M=(m;), N=(n;), P=(p;), Ex=(e;), i=1, 2,
3,7=1, 2, 3. The coefficients of these matrices are given by expressions:

myy =1myy =1, sing, +(1- )l cos g, m 3 = 0,m, =cosg,,

my, =(lcospy +r,, singy)cosp, —[[+1,, [(m 1)],my; =0,my =my, =my; =0,
cshll2 (—a,sing, +h, cos ¢0)2
m [

2
w leO

ny =nyp =n; =0,ny =ny,; =0,ny, =— ,ny =0,

: 1
nyy =—(r,, cos@y + Hy —Isingy —¢,9),n33 =1, pyy :—m+zm P12 = P13 =0,

w

k, . k
P = ﬁ(!coswo + H, tan g, +r,, sing, —2¢,, tan ¢, _771?0)+_ty'77t0’

w le
k1 . 1, (h —a,si 2
Py = e ll[_ae cos (0() _ he sin ¢0 _lef( l( e COS¢O]3 a,sin ¢0) ~a, CoS (00
mW el

: 1 Hk k. ch
- he S @ )] + _(ktyrrmnto cos @, + O+gt() + ktzrrm COS@yG,o t+ —tzftO ) +
m,,l cos” @, cos” @,

1 ki G0 +Ising, —r,, cosp, —H
—— (k7140 €O Py —ki2G10)s Py = =G + iy 220 0 0 =0
My, mwl mwl

k k,,

=0, =L, =y—.
P3i P X P33 P

An interesting case is that when the automobile does not move and it is
tested in connection with the suspension behavior. For this purpose, the ride
simulator with hydraulic actuators or test stand for determination of the elastic
characteristic of the suspension is used [2, 5]. In general, in similar cases the non-
rolling wheels are supported on plates with balls so that the tires do not take over
the lateral forces. However, there are cases when the suspension testing is used
without to take similar precautions: during passing of the wheel on an irregularity
or when the oscillations are excited by pulling down the body or raising the

vehicle (some diagnosis testing stands are not equipped with the mentioned
devices).
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When the automobile does not move, Eq.(5) is not valid (even for small
speeds its validity ceases because the angle a gets large values and certain
approximations cannot be made [4]). Besides, the point C. remains fixed with
respect to the road; it has not a certain lateral running velocity. At a certain
velocity, on the road without irregularities the oscillatory system of the
automobile arrives at steady-state operation and the lateral tire deformation is 7,
as it has been noticed before. When the automobile stops there is a certain lateral
tire deformation. In the following, we assume that this is even 7,y and the point C,
becomes C. Its position is specified by the distance A’Cy, which is denoted by
Ayceo (A’ is the projection of the point A on the road; it is fixed with respect to
road). In initial position, the point D’ becomes D, and we can write the following
relationships:

Ypo =Y +lcosp, +1,, singy +(Hy—g,)tang,,
Yp =y, +lcosp+r, sing+(H,—¢,)tang, (23)
Ayceg =1e0sy +7,, singy +(Hy = 6p)tan g, =17,
where y, is the abscissa of point A (y,=const.).
The lateral tire deformation is Ay=yp =V, s+Avcq)
which becomes
Ay = l(cos @ —cos @) + 1, (sing —sing,) + (H, —¢, ) tang —(H, —¢,o) tan g, +77,.
(24)
If we consider that a certain external force F..(t) acting upon sprung mass
corresponding to a quarter of the automobile at a point situated on the Oz axis,

then the motion equation on the direction of this axis is similar to Eq. (9) in which
h,=0:

k.. F, (¢
'z'g+,u.l.cosg0-gb—,u.l.sin¢>-gb2 =—g+—=E ot 4 ex (1) . (25)
m+m, m+m,
The equation similar to Eq. (10) is written:
,, +m*)p+ kg, Ay.(r,, cosp—Ising+H —¢,) 26)

—k, ¢, Ao =1 (F, +F g)cosy, =0,

where {; is given by (8) for 4,=0.

For static condition, for a given external force, taking into account that
Zw=k.{,, Eq. (26) is written as
ky [1(cOs @ — O 9y) + 1, (sin 9 —sin ) + (Hy ~ Z,, / kY tan g — (Hy — ) tan g,
+1,01(r,, cosp—Isinp+Hy - Z, /k_)-Z,Aypoo +1,F, cosy, =0. (27)
From this equation we can directly obtain Z,, as a function of ¢. In this way the

elastic characteristic of the suspension can be constructed at circumstances
specified here.
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3. Simulation results

Due to the complexity of the models it is necessary to use numerical data.
For this purpose the following values have been chosen : /=0.520 m, /;=0.400 m,
a~0.400 m, h,~0.200 m, h=0.2175 m, po=1°, m=400 kg, m,~15.0 kg, 1,,,=2.0
kg.mz. The considered tire is 180/65 R 15, so that 7,,=0.1905 m and Hy=0.117 m.
For the one degree-of-freedom oscillatory model, one considers the undamped
natural frequency 1.10 Hz, to obtain the suspension stiffness k£=19107 N/m and
the spring stiffness £,=32291 N/m which is calculated by the known relation

k,=k,(1/1,). (28)
Assuming a usual value of the suspension damping ratio {=0.2354, one

obtains the value of the damping coefficient of the shock absorber ¢,;=2200 N.s/m
which has been calculated by the relations

¢, =2¢mk,, ¢, =c (/1) (29)

Also, the following values have been chosen : £~=25000 N/rad, k.=157000
N/m, k,=0.5k;. and k,=4000 N/rad.

In order to simulate numerical the preceding models we have conceived
various programs in Mathematica software.

First, we discuss the results corresponding to the case when the automobile
does not move and the wheels are supported directly on the road (not on plates
with balls). We define the relative displacement of the sprung mass

Az, =z,0—z,, 30)
where z, is the ordinate of the gravity center of the sprung mass corresponding to
the automobile static position.

It is found that the suspension elastic characteristic is non-linear although
the elastic element has the linear characteristic. The suspension stiffness is

az,,  dZ,/dep

k, = = .
YU d(Az,)  d(Az,)ldg

We have directly used the expression behind the second equality of the
relationship (31) by employing the differentiating function in Mathematica. The
result is plotted in Fig. 2. It is noticed that the suspension stiffness variation is
large, which proves the pronounced non-linearity of the suspension elastic
characteristic. Also, in initial static position (4z,=0), for example, the suspension
stiffness has the value of 34000 N/m, which differs much from the usual value of
the equivalent stiffness. This value is of 19170.7 N/m, as it has been shown.
Therefore, an increment of stiffness of 78% takes place. This difference is
explained by the effect of the lateral tire deformation and the contribution of the
lateral tire force. This fact is illustrated in Fig. 3, where one can see that the
magnitudes of the lateral tire forces are very large for Az,=+0.10 m.

€1y
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Fig.2. Suspension stiffness as a function Fig.3. Lateral force as a function of sprung mass
of relative displacement of sprung mass displacement during testing of a standing automobile

As a result of the large differences between the two suspension stiffness,
the free vibration characteristics of the automobile will be different. The free
vibrations may be generated by two methods: (i) the application of a large force
on the sprung mass for a short time and (ii) pulling down the body and quickly
letting it or raising the body and quickly letting it down. In case (i) we define a
function with the mentioned peculiarity (for instance, a half sinusoidal) and the
motion is studied by the differential system (25) and (26). In case (ii), F.,=0, but it
is necessary to specify the initial conditions. If 4z, is imposed, then A¢ can be
determined, these quantities being considered as the initial values for the
differential system (25) and (26). Also, for the initial conditions we take
Az, (0+) =0, Ap(0+) = 0.

To make some comparisons it is necessary to consider also the free
vibrations of the usual equivalent vibration wheel with two degree-of-freedom
(two masses) with the above mentioned essential characteristics. The system of
equations which describes the vibration of this model is [6]:

m 0\ | | ¢ —¢ ||| |k —k [|A| [0, |O
0 Tas [ Tt . = A+ b, (32)
m | [AG ] (¢ Gre ][ Ap] [~k kK ][ Ap] [q k.

where ¢, represents the tire damping coefficient.

Obviously, for free vibrations we consider 4#,=dh,/dt=0. In the following it
is assumed that ¢,~0. Fig. 4 shows the simulation results of the free vibrations for
the two models (case (ii)) and variables z; and dzzg/dtz. Obviously, the adequate
initial values have been chosen for 4z,(0) and 44 0) taking into account that

k
A§1(0)=k +Sk Az, (0). (33)

t N

The differences between the two models are clearly made evident on the
mentioned figure. To make some comparisons, the damped natural frequency and
damping ratios have been determined. By means of the computer program, we get
the pseudo-periods and after that we determine the damping ratios by the relations
similar to those used in the model with one degree of freedom [6]. Thus, for the
two degrees of freedom, the value of the pseudo-period is 7=0.9731 s to which
corresponds the natural frequency of 1.0276 Hz and {=const.=0.199415 ({ does
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Lateral tire force,

not dependent on the order number of the amplitude in the case of the viscous
damping). For the model with swing arms, the pseudo-periods are not constant;
the mean value is 0.6927 s to which the natural frequency of 1.444 Hz
corresponds. The mean value of the damping ratio is { =0.151. Therefore, the
natural frequency of this model is high and damping ratio is reduced. As a result,
even in the case of the simple testing we can not correctly assess the suspension if
the wheels are not supported on the plates with balls.

€ 03z . e 4 A
& 0.56 1. = Singaxle model § g 32 [ \ "
. B 05 | e Tum e model g el Al
g 2o b il Ty \ PV
g g 0.50 ll ','\ l.\'vq\'ﬁ*-"_“""' = gy -"lI v —  Swing axle model
w04z k; / 1 'f
§ 046 "f' :: E -6 I‘ == Twm macs model
5 LV ° -8 I I
0 1 2 3 4 i} 1 2 3 4
Time, s Titue, s
a) b)

Fig.4. Free vibrations during testing of a standing automobile

The micro profile of the road is defined by the function:
h, =h.(x). (33)
Considering v=const., we get
h, = h,(vt). (34)
From the analysis of the equations of motion it is found that the automobile
velocity arises directly in Eq. (11) and Eq. (17) respectively, which shows that the
free vibrations are dependent on the automobile velocity in contrast with the case
of the usual models. To make evident this fact, the free vibrations have been
studied in the case when the shock absorber is not fitted, namely ¢,,=0. The results
regarding Az,(t) and Y,(t) for the velocities of 5 m/s and 30 m/s are plotted in
Figs. 5 and 6.
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Fig.5. Free vibrations without shock absorber: a) vertical displacement of the sprung mass as a
function of time; b) tire lateral force as a function of time
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It is found that for small velocity there is an important damping effect
even if shock absorbers do not exist. Thus, for v=5 m/s the damping ratio
represents 0.149. For velocity of 30 m/s, the damping ratio decreases to 0.032.
The damping effect is given by the tire rolling with slip which is in connection
with losses expressed indirectly by the cornering stiffness. For small velocities,
the slip angle is large (a=arctan(vp/v) and therefore the damping effect increases.
In exchange, for large velocities the slip angle is small and the damping decreases.
In Fig. 5b, the graph of the high frequency component is also plotted.

When the automobile travels over an undulating surface, forced vibrations
are also produced. Usually, to study the behavior of the oscillator system of an
automobile the following functions are considered:

00 =22 (1 cosC2 ), b ) = by 520, G9)

where 4 is wave length of the irregularity. The second relation (35) leads to the
same depth of the road, namely 24,,,,,. For <0 it is assumed that 4,=0. In the case
of the first function (35) with the initial conditions zy(0)=z,0, dz,/dt|==0, p(0)=py,
do/dt|;-9=0, n(0)=n, the obtained results are plotted in Figs. 6, 7. The following
data have been chosen: /,,,,,=0.16 m, /=5.0 m and two velocities v=5.5 m/s and
v=18.0 m/s. The second velocity has been chosen so that the normal tire reaction
attains the limit of the contact loss with the road of the tire.
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Fig.6. Forced vibrations of swing axle system: 1. v=5.5 m/s; 2. v=18.0 m/s; 3. mean gravity center
ordinate for v=18.0 m/s; 4. gravity center ordinate at static equilibrium position

Monlinear Model Monlnear Model
g ®lm 1y = 1500 [
I i R T Y A A A
£ MU R A s AT
g TRTBTRVASIIERY & P T
TR ; - 5 oo A0
g2 AV VWAV % s VT
] v L] e L K
on 05 ] 15 20 —
oo 0.3 10 15 20

Time, =
Titne, &
Fig.7. Forced vibrations of swing axle system: 1. v=5.5 m/s; 2. v=18.0 m/s
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For a velocity of 18.0 m/s, the variations of the quantities plotted in these
figures may be enough assimilate to some sinusoidal variations. But, for a
velocity of 5.5 m/s, excepting z,, the others quantities present variations which are
not sinusoidal. So, the non-linearity of the system is emphasized. In connection
with this it is necessary to observe that the maximum acceleration of the sprung
mass is smaller than the absolute value of the minimum acceleration (for v=5.5
m/s there are the following values: Z .. =5.80 m.s?, Z =-8.83 m.s” and

ngin
for v=18.0 m/s: z, . =8.75 m.s”?, Zgmin = —9.75 m.s?). In this example the

values of the angle of the swing arm does not go beyond 11.5 degrees.
Consequently, the following approximations can be made: sinp=¢ and cos¢=1.0.
It is found that for the two velocities of the sprung mass displacement variations
are clearly different, which is not case for the others quantities.

Although the two functions (35) describe the same depth of the road
irregularity, the micro profiles are not identical. Therefore, if the second function
(35) is used, the normal tire reaction ceases for /4,,,,=0.085 m. The analysis of the
obtained results, which is not presented here, shows that the conclusions which
can be draw are similar to those of the preceding excitation.
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Fig.8. Frequency response functions of sprung mass displacement, sprung mass acceleration,
dynamic normal force of the tire and tire lateral force

In usual conditions, the heights of the road undulations considered before
are uncommon. For this reason, the linearised equations (21) can be employed. In
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this case, it is very advantageous to use the frequency characteristics of the
system. They are obtained from (21) by using Laplace transformation, considering
that the initial values are zero. By means of a computer program written in
Mathematica® we get the expressions of the transfer functions which are enough
complicated and they are not presented here. After that, substituting @, V-1 for the
Laplace variable s we get the frequency response expressed by gain factor (a, is
circular frequency of the excitation produced by the road). The frequency
response is dependent on the automobile velocity since the coefficients p3, and p33
are dependent on the velocity (see Fig. 8).

To emphasize more clearly the effects of the tire lateral deformations it is
advantageous to compare the root-mean-square values of the various quantities
corresponding to the swing axle suspension model and the quarter-car model. For
this purpose it is necessary to take into account the characteristics of the road,
which are defined by the expressions for the power spectral density of roughness
roads. Between them, there is the one considered by ISO [7]:

" I
SM@(}%J for f, sfso=§"’yn‘f

S,(f))= (36)
s, (fm)(ij for f.> fuo,
st

>

where f; [cycle/m] is the spatial frequency and the following exponent values are
considered: 7,=2.0 and n,=1.5. According to ISO, the class of a road is given by
the value of Su(f50) [7].

To turn from the expression with the spatial frequency to the expression
with the so-called frequency f'the following relations are used:

f=tvs Sy (N)=8,(f )] v. (37)
The root-mean-square (rms) value of the sprung mass acceleration is given by the
relation [6, 7]

o, =47r2\/L§’°f“|HAzg P Sy (2 (38)

where H 4., represents the transfer function for 4z,. Also, for the root-mean-square
value of the dynamic tire normal reaction we can write

0 2
G = 270 [0 [ Hag (O Sy () (39)
where H,z, 1s the transfer function for the increase of the tire normal reaction.

In the case of the quarter-car model, the suitable transfer functions are
employed. If (0. ), and (oaz,)o are the values corresponding to this model,

the following expression are employed in order to make comparisons:
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Fig.10. Root-mean-square of lateral force as a function of vehicle speed

It is easy to see that &) and & do not depend on the road class defined by
Sa(fs0). Results relating to quantities ¢; and o, are shown in Figure 9.

From Figure 9 it is found that the effect of the lateral deformations is to
increase the root-mean-square values of the vertical acceleration and the wheel
normal reaction. This increase is dependent of the vehicle velocity. For v=10 m.s™
o1 and & have the minimum values of 10.5% and 8% respectively. The relative
increases 0y and ¢; attain the values of 18% and 13% respectively.

Regarding the root-mean-square value of the lateral force we use a relation
similar to (39) which contains the transfer function of the lateral force.

From Fig. 10 one can see that for a given class, the rms of the lateral forces is
independent of the vehicle velocity. Obviously, when the degree of roughness
increases, the root-mean-square of the lateral forces increases also.
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4. Conclusions

The non-linear differential equations established in this paper for the
swing axle suspension allow the study of heave vibrations of an automobile when
it travels over surface with large undulations.

During traveling over the surface of common roads, it is advantageous to
use the linearised equations which are deduced from the non-linear ones.

In the case of the swing axle suspension, the tire lateral deformations
produced by the track width variation diminish the ride quality and the road
holding of an automobile at both small and large velocity.

The usual ride quarter-car model is not enough suitable for the swing axle
suspension.

During the testing of the suspension and the experimental determination
the suspension elastic characteristic, significant errors are produced if the wheels
are not supported on the plates with balls.
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