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ON THE INFLUENCE OF THE TIRE LATERAL ELASTICITY 
ON THE HEAVE VIBRATIONS OF AN AUTOMOBILE 

Aurel P. STOICESCU1 

In lucrare se studiază oscilaţiile de săltare ale autombilului cu suspensie 
pendulară. Se foloseşte un model al acestui tip de suspensie fără a se presupune că 
deplasările în sistem sunt mici. Se ajunge la un sistem de ecuaţii diferenţiale 
neliniare, potrivit pentru studiul oscilaţilor la trecerea roţilor peste neregularităţi 
mari ale căii. Se fac aprecieri cu privire la precizia determinării rigidităţii şi 
amortizării suspensiei când automobilul nu se deplasează. Pentru ecuaţiile 
liniarizate se compară rezultatele obţinute cu cele corespunzătoare modelului uzual 
din literatură. Se constată că deformaţiile laterale ale pneurilor determinate de 
variaţia ecartamentului roţilor afectează confortul la oscilaţii şi ţinuta de drum ale 
automobilului.  

 
In the present paper the heave vibrations of an automobile are investigated in 

the case of a swing axle suspension. A model of this suspension type is used without 
considering the displacements as small. We obtain a non-linear system of the 
differential equations, which is used to study the vibrations during automobile 
passing over surface with high undulations. Considerations are made about the 
determination accuracy of the suspension stiffness and suspension damping by 
testing when the automobile does not move. The motion equations are linearised and 
the obtained results are compared with those corresponding to the usual ride 
quarter-car model. It has been found that the tire lateral deformations produced by 
the track width variation deteriorate the ride comfort and the road holding of an 
automobile.  

 
Keywords: automobile, differential equations, heave vibrations, stiffness, swing 

axle suspension, transfer function 

1. Introduction 

Usually, to study the heavy vibrations of automobiles, equivalent 
suspension models are employed which are composed of elastic elements with 
certain stiffnesses corresponding to the vertical displacement of the different 
masses. These masses are connected between themselves by the agency of these 
elastic elements. In practice, in the case of the independent suspensions, during 
heave displacement of the automobile body the alteration of the track width takes 
place, leading inevitably the lateral deformations of the tires. These generate the 

                                                            
1 Prof., Motor Vehicle Department, University POLITEHNICA of Bucharest, Romania, e-mail: 
a.p.stoicescu@gmail.com 



206                                                       Aurel P. Stoicescu  

lateral forces which influence the suspension dynamics depending on the features 
of the suspension guide mechanism. The influence of different suspension guide 
mechanism types on the automobile vibrations taking into account the lateral 
deformations of the tires has been investigated in literature [1, 2, 3]. For this 
purpose a linear differential equation system has been established based on some 
approximations in conjunction with the displacements considered as being small. 

In the paper, the heave vibrations of an automobile are investigated in the 
case of a swing axle suspension employing a model without considering 
displacements as small. Thus, a non-linear differential equation system is 
established and the influence of the lateral deformations of the tires on the heave 
(bounce) vibrations of an automobile are investigated. Also, assessments are made 
regarding the determination of the suspension stiffness and damping when the 
automobile no longer moves. Finally, the linearised equations have been 
established and the comparisons to the riding quarter –car model are made. 

2. Equations of motions 

We consider the rectilinear motion of an automobile which travels over an 
undulating surface. It is assumed that surface profile for two wheels of the swing 
axle are identical. Also, the pitch motion is not considered and, in fact, the model 
of a half of the automobile corresponding to the examined axle is studied.  

We consider the fixed reference system Oyz attached to the road. The y 
axis is located into a horizontal plane. The elevation of the surface profile is hr 
(Figure 1) and the ordinate of the gravity center of the sprung mass is zg. We 
suppose that the gravity center of the unsprung mass corresponding to the axle 
looking to travel direction (the same with the direction of the Ox axis) coincides 
with the center of the wheel C (therefore the masses of the arm, the spring and the 
shock absorber are neglected). 

During oscillations and automobile passing over road irregularities the tire 
is deflected into vertical and the lateral directions with ςt and ηt, respectively 
(these quantities are zero when on the tire does not act any force). So, the normal 
tire reaction Zw and the lateral tire (wheel) reaction Yw are developed. When the 
tire is not loaded the height of the cross section is H0 and, in Fig. 1, point D 
represents the lowest point of the wheel rim diameter. Therefore |CD|=rrm 
represents the radius of the wheel rim. 

The following notations are introduced:  
ae[m]-distance from the upper fastening point of the spring E to the vertical line 
that passes through point A; 
he [m]-distance from point E to the horizontal line that passes through the point A; 
h0 [m]-distance from the gravity center of the sprung mass to the horizontal line 
that passes through the point A; 
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l=|AC| [m]-length of the swing arm of the suspension; 
le [m]-length of the spring (elastic element); 
lef [m]-spring length in free state; 
m [kg]-half sprung mass; mw [kg]-wheel mass; 
Iwx [kg.m2]-mass moment of inertia of the wheel about an axis which passes 
through wheel center and is perpendicular to the wheel axis; 
g [m.s-2]-acceleration due to gravity; 

she FF , [N]-force developed by the elastic element (spring), force developed by 
the shock absorber; 
csh [N.s.m-1]-damping coefficient of the shock absorber; 
k [N/rad]-cornering stiffness of a tire; 
ke [N.m-1]-stiffness of the elastic element (spring); 
kty, ktz [N.m-1]-lateral stiffness of the tire, vertical stiffness of the tire; 
γe [rad]-angle between the spring axis and the normal line to the straight AC; 
φ [rad]-angle between the longitudinal swing arm axis and the horizontal line; 

kj , -unit vectors in the y, z directions respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The acceleration of the point C is given by relation: 

                        .)cossin()sincos( 22 kllzjla gC ϕϕϕϕϕϕϕϕ +/−++−=         (1) 
By applying D’Alembert’s principle for the ensemble represented in Fig. 1 

and by projecting the obtained vector equation on the vertical direction we get 
(having relation (1) in view): 

             .)(sincos)( 2
wwwwgw Zgmmlmlmzmm ++−=−++ ϕϕϕϕ        (2) 

 From the equilibrium condition for the unsprung part, taking the moment 
about point A, we obtain: 

Fig.1. Schematic representation of a swing axle quarter suspension model 
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The reactions on the wheel acting at tire-road contact patch can be written 
as some function of the deformations: 
                                              ., ttzwttyw kZkY ςη ⋅=⋅=                                     (4) 
 The velocity of point C has two components: the one to the Ox axis 
direction (corresponding to the translation motion of the automobile), which is 
assumed to be constant, and the other to the lateral direction. For this reason, 
because the tire is elastic, the wheel rolling is produced with lateral slip, even if an 
effective sliding is not generated. In the following, we suppose that point C does 
not slide with respect to the road. Because the lateral velocity of point C is 
variable when the heave oscillations are produced, point Cc has a certain running 
velocity. This velocity has a longitudinal component equal to the automobile 
speed and a lateral component which is dependent on the variation with respect 
the time of the lateral tire deformation. Therefore, the tire rolls with variable 
lateral slip. According to [4], the lateral deformation of tire is given both the 
rolling with slip and the tire camber angle. In the two cases the so called 
relaxation length of the tire is the same. 
 The following relation is considered [4]; 

                                                 ,γαηη γ v
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k
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where α is the slip angle and γ represents the wheel camber angle (in our case 
γ=φ). If D’ is the point fixed with respect to the wheel rim and it is situated in the 
lowest part of the rim and on the road surface, then one can write [4]: 

                                                          
v

v yD '

=α ,                                                     (6) 

where vD’y is the projection on the surface plane of the component of the velocity 
of the point D’ on an automobile transversal plane. This has the direction opposed 
to the lateral tire deformation. One can prove that during the rectilinear movement 
this component has the expression (the positive direction of the velocity is to 
right): 
                                      .)sincos( 0' ϕϕςϕ lHrv trmyD −−+=                             (7) 
 By projecting the OO’ACD”O contour on a vertical direction we get: 
                                    .cossin00 rgrmt hzrlhH +−+−+= ϕϕς                       (8) 

Taking into account the relations (4), (6), (7) and (8), the Equations (2), 
(3) and (5) become:  
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 The force developed by the spring and the force developed by the shock 
absorber (it is supposed that the shock absorber is fitted inside of the spring, the 
mounting points being the same as those of the spring) are given by relations: 
                                          .),( eshsheefee lcFllkF −=−=                                (12) 

Starting from the representation of Fig.1 we obtain the relation 
                                  .sincos(2 1

222
1 ϕϕ eeeee halhall +−++=                      (13) 

Differentiating the preceding relation with respect to time, we find the 
expression 
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Also, one establishes the relation 
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 Taking into account the relations (12), (13), (14) and (15), equations (9), 
(10) and (11) represent a system of the non-linear differential equations, the 
dependent variables being zg(t), φ(t) and ηt(t) (it is supposed that the function hr(t) 
is known). If the initial conditions zg(0)=zg0, 0)0( gg zz = , 00 )0(,)0( ϕϕϕϕ ==  
and 0)0( tt ηη =  are given, then one can determine, as a rule, the function that 
define the dependent variables. 
 If we consider ηt, ζt and φ as dependent variables, then the motion 
equations are written as:  
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where μ=mw/(mw+m). 
 Thus, we obtain also in this case a system of three non-linear differential 
equations. Regarding the initial conditions, it is necessary to take into account a 
certain peculiarity. From relation (8), by differentiating with respect to time, we 
obtain 
                                          .)sincos( rgrmt hzrl +−+−= ϕϕϕς                        (19) 

It is found that )0()0( ϕς andt  cannot be arbitrarily chosen. They must 
satisfy the relation: 
                       ).0()0()0())0(sin)0(cos()0( rgrmt hzrl +−+−= ϕϕϕς               (20) 
 To study comparatively and to facilitate the calculations when the 
variables do not present important variations, the equations are linearised. 
Usually, one considers the variations of the dependent variables with respect to 
the equilibrium static state. So, during steady-state motion on a horizontal even 
road the following relations are valid (the same notations as in the general case are 
used, but the index 0 is added): 
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It is noticed that if the angle φ0 is imposed, the Eq. (20) comprises lef as an 

unknown (one takes into account the first relation (12) and relation (15) in this 
special case for the given geometrical characteristics). Using a numerical method, 
lef can be determined or another geometrical quantity may be chosen if lef is 
imposed. 
 We can write:   ,,, 000 tttttt ηηηϕϕϕςςς Δ+=Δ+=Δ+=   
where Δζt, Δφt and Δηt are the variations of ζt, φ and ηt respectively with respect to 
the values at steady-state motion. If it is supposed that these variations are small, 
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then from the Taylor’s series expansion of the functions ζt, φ and ηt the first two 
terms of them are kept. After that, in the motion equations the products and the 
powers of these variations are neglected. Taking into account also the static 
equilibrium conditions we obtain the following linear differential system with 
constant coefficients: 
                               [ ] r

T hXPXNXM ⋅=⋅+⋅+⋅ 0,cos,1 0ϕ                             (22) 

where [ ]TttX ηϕς ΔΔΔ= ,, is the column vector of the new dependent variables 
and M, N and P are square matrices 3x3: M=(mij), N=(nij), P=(pij), Ex=(eij), i=1, 2, 
3, j=1, 2, 3. The coefficients of these matrices are given by expressions: 
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 An interesting case is that when the automobile does not move and it is 
tested in connection with the suspension behavior. For this purpose, the ride 
simulator with hydraulic actuators or test stand for determination of the elastic 
characteristic of the suspension is used [2, 5]. In general, in similar cases the non-
rolling wheels are supported on plates with balls so that the tires do not take over 
the lateral forces. However, there are cases when the suspension testing is used 
without to take similar precautions: during passing of the wheel on an irregularity 
or when the oscillations are excited by pulling down the body or raising the 
vehicle (some diagnosis testing stands are not equipped with the mentioned 
devices). 
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 When the automobile does not move, Eq.(5) is not valid (even for small 
speeds its validity ceases because the angle α gets large values and certain 
approximations cannot be made [4]). Besides, the point Cc remains fixed with 
respect to the road; it has not a certain lateral running velocity. At a certain 
velocity, on the road without irregularities the oscillatory system of the 
automobile arrives at steady-state operation and the lateral tire deformation is ηt0 
as it has been noticed before. When the automobile stops there is a certain lateral 
tire deformation. In the following, we assume that this is even ηt0 and the point Cc 
becomes Cc0. Its position is specified by the distance A’C0, which is denoted by 
ΔyCc0 (A’ is the projection of the point A on the road; it is fixed with respect to 
road). In initial position, the point D’ becomes D0

’ and we can write the following 
relationships: 
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where yA is the abscissa of point A (yA=const.). 
 The lateral tire deformation is             )( 0' CcAD yyyy Δ+−=Δ   
which becomes 
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                                                                                                                             (24) 

If we consider that a certain external force Fex(t) acting upon sprung mass 
corresponding to a quarter of the automobile at a point situated on the Oz axis, 
then the motion equation on the direction of this axis is similar to Eq. (9) in which 
hr=0: 
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The equation similar to Eq. (10) is written: 
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where ζt is given by (8) for hr=0. 
 For static condition, for a given external force, taking into account that 
Zw=ktzζt, Eq. (26) is written as  
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From this equation we can directly obtain Zw as a function of φ. In this way the 
elastic characteristic of the suspension can be constructed at circumstances 
specified here. 
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3. Simulation results 

Due to the complexity of the models it is necessary to use numerical data. 
For this purpose the following values have been chosen : l=0.520 m, l1=0.400 m, 
ae=0.400 m, he=0.200 m, h0=0.2175 m, φ0=1°, m=400 kg, mw=15.0 kg, Iwx=2.0 
kg.m2. The considered tire is 180/65 R 15, so that rrm=0.1905 m and H0=0.117 m. 
For the one degree-of-freedom oscillatory model, one considers the undamped 
natural frequency 1.10 Hz, to obtain the suspension stiffness ks=19107 N/m and 
the spring stiffness ke=32291 N/m which is calculated by the known relation 
                                           ( )21/ llkk se = .                                                        (28) 

Assuming a usual value of the suspension damping ratio ζ=0.2354, one 
obtains the value of the damping coefficient of the shock absorber csh=2200 N.s/m 
which has been calculated by the  relations 

                                            .)/(,.2 2
1llcckmc sshss == ς                            (29) 

Also, the following values have been chosen : k=25000 N/rad, ktz=157000 
N/m, kty=0.5ktz and kγ=4000 N/rad. 
 In order to simulate numerical the preceding models we have conceived 
various programs in Mathematica software. 
 First, we discuss the results corresponding to the case when the automobile 
does not move and the wheels are supported directly on the road (not on plates 
with balls). We define the relative displacement of the sprung mass 
                                                              ,0 ggg zzz −=Δ                                     (30) 
where zg0 is the ordinate of the gravity center of the sprung mass corresponding to 
the automobile static position. 
 It is found that the suspension elastic characteristic is non-linear although 
the elastic element has the linear characteristic. The suspension stiffness is  
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We have directly used the expression behind the second equality of the 
relationship (31) by employing  the differentiating function in Mathematica. The 
result is plotted in Fig. 2. It is noticed that the suspension stiffness variation is 
large, which proves the pronounced non-linearity of the suspension elastic 
characteristic. Also, in initial static position (Δzg=0), for example, the suspension 
stiffness has the value of 34000 N/m, which differs much from the usual value of 
the equivalent stiffness. This value is of 19170.7 N/m, as it has been shown. 
Therefore, an increment of stiffness of 78% takes place. This difference is 
explained by the effect of the lateral tire deformation and the contribution of the 
lateral tire force. This fact is illustrated in Fig. 3, where one can see that the 
magnitudes of the lateral tire forces are very large for Δzg=±0.10 m. 
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Fig.2. Suspension stiffness as a function        Fig.3. Lateral force as a function of sprung mass 
of relative displacement of sprung mass          displacement during testing of a standing automobile 

 
As a result of the large differences between the two suspension stiffness, 

the free vibration characteristics of the automobile will be different. The free 
vibrations may be generated by two methods: (i) the application of a large force 
on the sprung mass for a short time and (ii) pulling down the body and quickly 
letting it or raising the body and quickly letting it down. In case (i) we define a 
function with the mentioned peculiarity (for instance, a half sinusoidal) and the 
motion is studied by the differential system (25) and (26). In case (ii), Fex=0, but it 
is necessary to specify the initial conditions. If Δzg is imposed, then Δφ can be 
determined, these quantities being considered as the initial values for the 
differential system (25) and (26). Also, for the initial conditions we take 

.0)0(,0)0( =+Δ=+Δ ϕgz  
 To make some comparisons it is necessary to consider also the free 
vibrations of the usual equivalent vibration wheel with two degree-of-freedom 
(two masses) with the above mentioned essential characteristics. The system of 
equations which describes the vibration of this model is [6]: 
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where ct represents the tire damping coefficient. 
 Obviously, for free vibrations we consider hr≡dhr/dt≡0. In the following it 
is assumed that ct=0. Fig. 4 shows the simulation results of the free vibrations for 
the two models (case (ii)) and variables zg and d2zg/dt2. Obviously, the adequate 
initial values have been chosen for Δzg(0) and Δζt(0) taking into account that 
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The differences between the two models are clearly made evident on the 
mentioned figure. To make some comparisons, the damped natural frequency and 
damping ratios have been determined. By means of the computer program, we get 
the pseudo-periods and after that we determine the damping ratios by the relations 
similar to those used in the model with one degree of freedom [6]. Thus, for the 
two degrees of freedom, the value of the pseudo-period is T=0.9731 s to which 
corresponds the natural frequency of 1.0276 Hz and ζ≈const.=0.199415 (ζ does 
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not dependent on the order number of the amplitude in the case of the viscous 
damping). For the model with swing arms, the pseudo-periods are not constant; 
the mean value is 0.6927 s to which the natural frequency of 1.444 Hz 
corresponds. The mean value of the damping ratio is ζ =0.151. Therefore, the 
natural frequency of this model is high and damping ratio is reduced. As a result, 
even in the case of the simple testing we can not correctly assess the suspension if 
the wheels are not supported on the plates with balls. 

 
 
 
 
 
 
 
 
 
 

a)                                                                 b) 
Fig.4. Free vibrations during testing of a standing automobile 

 
 The micro profile of the road is defined by the function:  
                                                     ).(xhh rr =                                                      (33) 

Considering v=const., we get 
                                                                ).(vthh rr =                                          (34) 
From the analysis of the equations of motion it is found that the automobile 
velocity arises directly in Eq. (11) and Eq. (17) respectively, which shows that the 
free vibrations are dependent on the automobile velocity in contrast with the case 
of the usual models. To make evident this fact, the free vibrations have been 
studied in the case when the shock absorber is not fitted, namely csh=0. The results 
regarding Δzg(t) and Yw(t) for the velocities of 5 m/s and 30 m/s are plotted in 
Figs. 5 and 6.  

 
 
 
 
 
 
 
 

 
a) b) 

Fig.5. Free vibrations without shock absorber: a) vertical displacement of the sprung mass as a 
function of time; b) tire lateral force as a function of time 
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 It is found that for small velocity there is an important damping effect 
even if shock absorbers do not exist. Thus, for v=5 m/s the damping ratio 
represents 0.149. For velocity of 30 m/s, the damping ratio decreases to 0.032. 
The damping effect is given by the tire rolling with slip which is in connection 
with losses expressed indirectly by the cornering stiffness. For small velocities, 
the slip angle is large (α=arctan(vD’y/v) and therefore the damping effect increases. 
In exchange, for large velocities the slip angle is small and the damping decreases. 
In Fig. 5b, the graph of the high frequency component is also plotted.  

When the automobile travels over an undulating surface, forced vibrations 
are also produced. Usually, to study the behavior of the oscillator system of an 
automobile the following functions are considered: 

                 ),2sin()()),2cos(1(
2

)( max
max tvhvthtvh

vth rr
r

r ⋅=⋅−=
λ
π

λ
π             (35) 

where λ is wave length of the irregularity. The second relation (35) leads to the 
same depth of the road, namely 2hrmax. For t≤0 it is assumed that hr=0. In the case 
of the first function (35) with the initial conditions zg(0)=zg0, dzg/dt|t=0=0, φ(0)=φ0, 
dφ/dt|t=0=0, ηt(0)=ηt0 the obtained results are plotted in Figs. 6, 7. The following 
data have been chosen: hrmax=0.16 m, λ=5.0 m and two velocities v=5.5 m/s and 
v=18.0 m/s. The second velocity has been chosen so that the normal tire reaction 
attains the limit of the contact loss with the road of the tire. 

 

              
Fig.6. Forced vibrations of swing axle system: 1. v=5.5 m/s; 2. v=18.0 m/s; 3. mean gravity center 

ordinate for v=18.0 m/s; 4. gravity center ordinate at static equilibrium position 
  
 
 
 
 
 
 
 
 

Fig.7. Forced vibrations of swing axle system: 1. v=5.5 m/s; 2. v=18.0 m/s 
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For a velocity of 18.0 m/s, the variations of the quantities plotted in these 
figures may be enough assimilate to some sinusoidal variations. But, for a   
velocity of 5.5 m/s, excepting zg, the others quantities present variations which are 
not sinusoidal. So, the non-linearity of the system is emphasized. In connection 
with this it is necessary to observe that the maximum acceleration of the sprung 
mass is smaller than the absolute value of the minimum acceleration (for v=5.5 
m/s there are the following values: 80.5max =gz m.s-2, 83.8min −=gz  m.s-2 and 
for v=18.0 m/s: 75.8max =gz  m.s-2,  75.9min −=gz  m.s-2). In this example the 
values of the angle of the swing arm does not go beyond 11.5 degrees. 
Consequently, the following approximations can be made: sinφ≈φ and cosφ≈1.0. 
It is found that for the two velocities of the sprung mass displacement variations 
are clearly different, which is not case for the others quantities. 
 Although the two functions (35) describe the same depth of the road 
irregularity, the micro profiles are not identical. Therefore, if the second function 
(35) is used, the normal tire reaction ceases for hrmax=0.085 m. The analysis of the 
obtained results, which is not presented here, shows that the conclusions which 
can be draw are similar to those of the preceding excitation.  
 

  
 
 
 
 
 
 
 
 

 
 

Fig.8. Frequency response functions of sprung mass displacement, sprung mass acceleration, 
dynamic normal force of the tire and tire lateral force 

 
In usual conditions, the heights of the road undulations considered before 

are uncommon. For this reason, the linearised equations (21) can be employed. In 
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this case, it is very advantageous to use the frequency characteristics of the 
system. They are obtained from (21) by using Laplace transformation, considering 
that the initial values are zero. By means of a computer program written in 
Mathematica® we get the expressions of the transfer functions which are enough 
complicated and they are not presented here. After that, substituting ωe√-1 for the 
Laplace variable s we get the frequency response expressed by gain factor (ωe is 
circular frequency of the excitation produced by the road). The frequency 
response is dependent on the automobile velocity since the coefficients p32 and p33 
are dependent on the velocity (see Fig. 8). 
 To emphasize more clearly the effects of the tire lateral deformations it is 
advantageous to compare the root-mean-square values of the various quantities 
corresponding to the swing axle suspension model and the quarter-car model. For 
this purpose it is necessary to take into account the characteristics of the road, 
which are defined by the expressions for the power spectral density of roughness 
roads. Between them, there is the one considered by ISO [7]: 
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where fs0 [cycle/m] is the spatial frequency and the following exponent values are 
considered: n1=2.0 and n2=1.5. According to ISO, the class of a road is given by 
the value of Sd(fs0) [7]. 
 To turn from the expression with the spatial frequency to the expression 
with the so-called frequency f the following relations are used: 
                                             ./)/()(, vvfSfSvff ddfs =⋅=                          (37) 
The root-mean-square (rms) value of the sprung mass acceleration is given by the 
relation [6, 7] 

                                        ∫
∞

Δ= 0

242 ,)()(4 dffSfHf dfzz gg
πσ                      (38) 

where HΔzg represents the transfer function for Δzg. Also, for the root-mean-square 
value of the dynamic tire normal reaction we can write 

                                       ∫
∞

ΔΔ = 0
2 ,)()(2 dffSfH dfZwZw πσ                           (39) 

where HΔZw is the transfer function for the increase of the tire normal reaction. 
 In the case of the quarter-car model, the suitable transfer functions are 
employed. If 0)(

gzσ   and 0)( ZwΔσ  are the values corresponding to this model, 

the following expression are employed in order to make comparisons: 
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Fig.9. Variations of δ1 and δ2 with vehicle velocity 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.10. Root-mean-square of lateral force as a function of vehicle speed 
 

It is easy to see that δ1 and δ2 do not depend on the road class defined by 
Sd(fs0). Results relating to quantities δ1 and δ2 are shown in Figure 9.  

From Figure 9 it is found that the effect of the lateral deformations is to 
increase the root-mean-square values of the vertical acceleration and the wheel 
normal reaction. This increase is dependent of the vehicle velocity. For v≈10 m.s-1 
δ1 and δ2 have the minimum values of 10.5% and 8% respectively. The relative 
increases δ1 and δ2 attain the values of 18% and 13% respectively. 

Regarding the root-mean-square value of the lateral force we use a relation 
similar to (39) which contains the transfer function of the lateral force. 
From Fig. 10 one can see that for a given class, the rms of the lateral forces is 
independent of the vehicle velocity. Obviously, when the degree of roughness 
increases, the root-mean-square of the lateral forces increases also. 
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 4. Conclusions 
 
 The non-linear differential equations established in this paper for the 
swing axle suspension allow the study of heave vibrations of an automobile when 
it travels over surface with large undulations. 
 During traveling over the surface of common roads, it is advantageous to 
use the linearised equations which are deduced from the non-linear ones. 
 In the case of the swing axle suspension, the tire lateral deformations 
produced by the track width variation diminish the ride quality and the road 
holding of an automobile at both small and large velocity. 
 The usual ride quarter-car model is not enough suitable for the swing axle 
suspension. 
 During the testing of the suspension and the experimental determination 
the suspension elastic characteristic, significant errors are produced if the wheels 
are not supported on the plates with balls. 
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