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(%1, %5)-CHAOS AND SENSITIVITY FOR TIME-VARYING DISCRETE
SYSTEMS

Xinxing Wu', Yang Luo', Lidong Wang?, Jianhua Liang®

We prove that the (F1,%2)-chaoticity and sensitivity of two uniformly
topological equiconjugate time-varying discrete systems are equivalent, improving the
main result in [Annales Polonici Mathematici, 107 (2013), 49-57]. Moreover, some
examples are given to show that Li-Yorke chaos, distributional chaos, and distributional
chaos in a sequence on general metric spaces are not preserved under topological conju-

gation.
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1. Introduction

Li and Yorke firstly gave the concept of ‘chaos’ in their famous paper [7] in 1975.
Meanwhile, it was the first description the conception ‘chaos’ with strict mathematical lan-
guage. A dynamical system is a pair (X, f), where X is a compact metric space with a metric
dand f: X — X is a continuous map. A subset D C X is called a Li- Yorke scrambled set
of f if any different points x,y € D satisfy

limsupd(/" (@), /() > 0, limint d(f" (@), /" (3)) = 0.

(X, f) is chaotic in the sense of Li-Yorke (or Li-Yorke chaotic) if there exists an uncountable
Li-Yorke scrambled set. Since then, the research of chaos has greatly influenced dynami-
cal systems. Various definitions of chaos had been given according to property of iterative
mapping, such as Devaney chaos [4], distributional chaos [I0], Li-Yorke sensitivity [2], dis-
tributional chaos in a sequence [13], etc.

Throughout this paper, let N = {1,2,3,...} and ZT = {0,1,2,...}. A time-varying
discrete system (TVDS) can be written in the following form

Tn+1 = fn($n)7 n e Z+7 (1)
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where f,, : D, — Dp41 is a map and D,, is a subset of a metric space (X,d). Consider
another TVDS

Yn+1 = gn(yn)a ne ZJra (2)

where g, : F;, — Fp41 is a map and FE,, is a subset of a metric space (Y, 0).

Definition 1.1. System is said to be topologically {h,}>2, conjugate to system (@ if for
eachn > 0, there exists a homeomorphism h,, : D, — E,, such that hy,y10fy, = gnohn,n > 0.
The sequence {h,}22 is said to be uniformly equicontinuous in {D} if for any e > 0,
there exists a positive constant & such that p(hn(z),hn(y)) < € for allm > 0 and x,y €
D,, with d(z,y) < 6. System is said to be uniformly topologically {h,}52, conjugate
(resp. equiconjugate) to system @ if {hn}2y and {h,;1}°, are uniformly continuous
(resp. equicontinuous) in {D,}°2, and {E,}2,.

fo

Do D, -~ p, 2, p,..D,,

N be o

go g1 92 In—1 gn
EO E1 E2 E3 ...... En—l En En—i—l .....

For any n > 2, denote fén) = fa_10---f1 0 fo and fél) = fo, féo) = idp,.
Clearly, x, = fén)(a:o). These TVDS have been considered by several mathematicians
([3L [T, 14, 19, 29]). For example, Wu and Zhu [29] proved that some chaotic properties are
preserved under iterations for TVDS which is uniformly converges. Wang et al. [14] studied
distributional chaos for TVDS and proved that two uniormly topological equiconjugate time-
varying discrete systems have simultaneously the distributional chaos in a sequence and the
weakly mixing property. Recently, Shao et al. [I1] obtained more results on distributional
chaos for TVDS.

Recently, the notion of (%1, %5 )-chaos via a Furstenberg family couple .%; and %, was
introduced by Tan and Xiong [12]. In this paper, we prove that the (%, .%3)-chaoticity and
sensitivity of two uniformly topological equi-conjugate time-varying systems are equivalent,
improving the main result in [I4]. Finally, we give some examples to show that Li-Yorke
chaos, distributional chaos, and distributional chaos in a sequence are not preserved under

topological conjugation.

2. Basic definitions

We recall some basic concepts related to the Furstenberg families (see [I] for more
details). Let P be the collection of all subsets of ZT. A collection . C P is called a
Furstenberg family if it is hereditary upwards, i.e., F} C Fy and F} € % imply F» € F. A
family .% is proper if it is a proper subset of P, i.e., neither empty nor the whole P. It is
easy to see that .Z is proper if and only if Z* € .# and @ ¢ .Z#. Let .#;, s be the collection
of all infinite subsets of ZT. All the families considered below are assumed to be proper.

For A C Z*, define d(A) = limsup,,_, . 1 [AN[0,n —1]|, and d(A) = liminf, o L |A
N[0,n — 1]|. Then, d(A) and d(A) are the upper density and the lower density of A, respec-
tively. Fix any « € [0, 1] and denote by M (resp. ///Z;) the family consisting of sets A C ZT
with d(A) > a (resp. d(A) > ).



(Z1, F2)-chaos and sensitivity for time-varying discrete systems 155

Definition 2.1. [12] Let (X,T) %1, %2 be Furstenberg families. D C Dy.

(1) D is a (F,F2)-scrambled subset of system if for any two different points u,v € D,
there exists § > 0 such that
(a) {n€Z+:d(f" (u), f7(0)) < e} € Z for all e > 0;
(b) {n € Z* - d(f§ (w), £ (v)) > 6} € Fa.
(2) System is (F1, Fa)-chaotic if it admits an uncountable (F1,.Fa)-scrambled subset.

It follows directly from Definition that system is Li-Yorke chaotic (resp., dis-
tributionally chaotic) if and only if it is (Fnf, Fing)-chaotic (resp., (////\17 ////T)-chaotic).

For U C X and € > 0, let N(U,e) ={n € Z" : diam(fon)(U)) > e}. Tt is easy to see
that system is sensitive if and only if there exists € > 0 such that, for any nonempty open
subset U C X, N(U,¢) # @. For a dynamical system, Moothathu [§] initiated a preliminary
study of stronger forms of sensitivity formulated in terms of some subsets of Z*, namely
the syndetical sensitivity and cofinite sensitivity. Recently, Li [6] introduced the concept of
ergodic sensitivity. Let .# be a Furstenberg family. System is said to be .Z -sensitive
if there exists ¢ > 0 such that for any nonempty open subset U C X, N(U,¢) € #. More
results on sensitivity can be found in [5l 9 [15] [16] 17, 18] 20, 211, 22} 23] 24, 25], 26}, 27, 28], [30].

Akin and Kolyada [2] introduced the concept of Li-Yorke sensitivity which links the Li-
Yorke chaos with the notion of sensitivity and proved that every weakly mixing dynamical
system is Li-Yorke sensitive. According to Akin and Kolyada [2], system is Li-Yorke
sensitive if there exists some d > 0 such that any neighbourhood of any = € X contains a
point y satisfying liminf,, . d( é") (x), é") (y)) = 0 and limsup,,_, d(fén)(x)7fé") (y)) >
0.

3. Chaoticity of uniformly topological conjugate systems

This section proves that both (%7, %#5)-chaoticity and sensitivity are preserved under
uniform topological equiconjugation for TVDS.

Theorem 3.1. Let %, and F5 be two proper Furstenberg families. If systems and (@)
are uniformly topologically equiconjugate, then system is (%1, Fo)-chaotic if and only if
system (9) is (F1, F»)-chaotic.

Proof. 1t suffices to check the necessity, because the sufficiency can be verified similarly. Take
an uncountable (%1, %#3)-scrambled subset D C Dy of system and choose E = ho(D).
We shall show that F is a (%, %2)-scrambled subset D C Dy of system (2)).

Given any two distinct points x,y € E, there exist u,v € D such that ho(u) = 2 and
ho(v) = y. The (F1, F#2)-chaoticity of system implies that there exists § > 0 such that

(a) {i € Z* :d(f{" (u), £ (v)) < e} € F for all € > 0;
(b) i €zt d(f" (), £ (v)) > 8} € Fo.

For any € > 0, noting that {h,,}52, is uniformly equicontinuous, it follows that there
exists 0 < &1 < € such that g(hy (1), hn(z2)) < € holds for all n € Z* and 21,25 € D,, with
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d(z1,x2) < £1. This implies that

i ezt o0’ (@).96" () < e}
= ez oulfe” (W), hilfs" () <€}
o {ieztd(f{? ), £ (v) < 1} € Fu.
So, {i e Z" : Q(géi) (x),g(()i)(y)) < e} € Fy, as F is hereditary upwards.

Similarly, since {h,,1}5%, is uniformly equicontinuous, then there there exists 0 <
ga < & such that d(h,'(z1),h, (z2)) < 6 holds for all n € Z* and z1,22 € E, with
o(x1,x2) < 9. This, together with (]ED, implies that

{i e Z* - d(f§" (u), £§" (v) > 6}
= {iezbdh M (g (@) h7 (95 W) > 0}
C {ieZ” oo’ (@).00" W) > 22} € Pa.
]

Corollary 3.1. If systems and (@ are uniformly topologically equiconjugate, then system
is Li-Yorke chaotic (resp., distributionally chaotic, distributionally chaotic in a sequence)
if and only if system (@ is (resp., distributionally chaotic, distributionally chaotic in a

sequence) .
According to the proof of Theorem we can obtained the following.

Theorem 3.2. Let % be a Furstenberg families. If systems and (@ are uniformly
topologically equiconjugate, then system is & -sensitive (resp., sensitive, multi-sensitive,
Li-Yorke sensitive) if and only if system (@ is F -sensitive (resp., sensitive, multi-sensitive,

Li-Yorke sensitive).

4. Examples

In [T4] Theorem 2.12], Wang et al. proved that distributional chaos in a sequence is
preserved under uniform topological equiconjugation. Here, we use some examples to show
that Li-Yorke chaos, distributional chaos, and distributional chaos in a sequence are not
preserved under topological conjugation. Firstly, we define a-map, S-map, and vy-map as
follows:

a-map. Let X =[0,400). Define g1 : X x X — [0,1] by

0, =1y,
01(z,y) = ¢ 501, [2] =[y] =1 (mod 2) and z # y,

1, otherwise.
Define « : (X, 01) — (X, 01) by

0, z =0,
az) = %7 x:w—k(n—l) for some n > 2,

x4+ 1, otherwise.
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B-map. Define go : X x X — [0,1] by

0, ==y,

02(z,y) =
1, z#y,

and choose (3 : (X, 02) — (X, 02) such that f(z) = a(z) for any =z € X.
~v-map. Define g3 : X x X — [0,1] by

0, z=y,
_ 1 2k 2k+1
Q3($,y)— 22k » x#y€[07b1) Orx#ye Zj:lbj72j:1 bj)akENa
1, otherwise.

where by = 2, b; = 201 +bi-1 (7 > 2) and take v : (X, 03) — (X, 03) as v(z) = a(x) for
any ¢ € X.

Clearly, each p; is a discrete metric on X. So, a-map, S-map, and y-map are all
continuous. From the definitions of a-map, S-map, and y-map, it can be verified that the

following result holds.
Proposition 4.1. Any pair of a-map, B-map, and y-map are topologically conjugate.
Proposition 4.2. a-map is distributioally chaotic in a sequence.

Proof. Take D = (0,1) C X and let by = 2, b; = 201 +bi1 (5 > 2),

Qk—i—l, k <b or Z?ilb]<kgzj2i—ﬁl-lbj (I{?EN),
Pr = k 2k—1 2k
2", Yoy by <k <Y by (keN).

Clearly, {pr}ren Is an increasing sequence of positive integers.

Given any two distinct points z,y € D, we claim that (z,y) is a distributionally
chaotic pair of c-map along {pg }ren-

For any ¢ > 0, choose a sufficient large integer kg € N such that 2%0 < t. It can

be verified that for any k& > k¢ and any Z?il b < i< Z?iﬁl bj, o1(aP(x),aPi(y)) =
1

1 . .
SEID @) < ok < b implying that

Fy o, (t,{pk b ren, @)

1
— limsup | {1 <k <n:oy(aP(x), 0P (y)) < ]
n

n— oo

2i+1
1
> limsup 77— {1 <k < thin(Oép’“(I),ap’“(y))<t
i— 00 Zh:l bh h=1
Bos 9b1+---+b2i
Z hm 2141 _ —

i—oo 1320 by + - + by; + 201+ Fbo =
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2k—1

Observe that for any k € N and any > 57, b; <i < Z?il bj, o1(aPi(x),aP(y)) = 1. Then,

Fyy(1/2,{p }ren, @)

= liminf%\ {1<k<n:o(aP*(z),aP*(y)) <1/2}]

n—oo

< liminf% {1 <k< ibh co1(aPR(x), aPx(y)) < 1/2}‘
0 2 h=10n h=1
by + -+ by _ by + -+ boi
= zlggo % - zlggo by +--- ‘1|'—;)_2i—1—:' 22b1‘:"'+b27?—1 =0
Therefore, a-map is distributionally chaotic along {py }ren- |
Proposition 4.3. 5-map is not Li- Yorke chaotic.
Proof. The results follows directly from the definition of gs. O

Proposition 4.4. v-map is distributionally chaotic.

Proof. Let D = (0,1) and take any two distinct points x,y € D. For any ¢ > 0, choose a

sufficient large integer hg € N such that 22%0 < t. It is not difficult to check that for any

h > hg and any Z?L by <m < (Z?ZJ{I b;) — 1, 03s(Y™(2), 7" (y)) = 3r < 5ary < t. This
implies that

F;,y(tv {k}kENv 7)

. 1
= limsup EHI <k <n:o3s(v*(2),7*(v) <t}

n— oo

2j+1
. 1
> limsup g [{1 <k <) butos(hF(2),7"(y) <t
jreo h=1 bn h=1
boiv1 —1 obi++b2;
> lim 2 = lim ' ~ 1
j—o0 l; j—00 by + -+ + by + Qb1+ +ba;
2k—1

Since for any k € N and any ) -

o1 b i< 2321 bj, 03(v'(x),7'(y)) = 1, it follows that

Fw:y(1/27 {k/’}kel\h 7)

= hminfll{l <k <n:o3(v"(x),7"(y) < 1/2}|

n—,oo M
2i
< liminf —; {1 <k< th co3(vF (), 7% (y) < 1/2}‘
T 2 h=10n h=1
<  lim b1+”.+b2i71+1:1im bt b1 fl =0.
T i—oo Ji i—oo by + -+ boi_1 + 2brttbaiog
Hence, y-map is distributionally chaotic. O

Summing up Proposition [{.1} Proposition [£.4] it easy to see that Li-Yorke chaos, dis-
tributional chaos, and distributional chaos in a sequence are not preserved under topological

conjugation.
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