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PARTITIONING COMBINATIONAL CIRCUITS FOR K-LUT 
BASED FPGA MAPPING 

I. I. BUCUR∗ 

Partiţionarea este o problemă centrală în automatizarea proiectării VLSI 
vizând manufacturabilitatea circuitelor. Partiţionarea circuitelor are multe aplicaţii 
în proiectarea VLSI. Una dintre cele mai întâlnite este aceea a divizării circuitelor 
combinaţionale (de regulă cele cu dimensiuni mari, care nu încap într-o singură 
capsulă), în mai multe capsule. Partiţionarea joaca un rol practic important în 
implementarea circuitelor în tehnologiile  FPGA bazate pe k-LUT. În această 
lucrare este prezentat un algoritm pentru partiţionarea circuitelor combinaţionale 
mari astfel încât să se poată utiliza eficient capsulele FPGA existente disponibile 
comercial. 

 
Partitioning is a central problem in VLSI design automation, addressing 

circuit’s manufacturability. Circuit partitioning has multiple applications in VLSI 
design. One of the most common is that of dividing combinational circuits (usually 
large ones) that will not fit on a single package among a number of packages. 
Partitioning is of practical importance for k-LUT based FPGA circuit 
implementation. In this work is presented multilevel a multi-resource partitioning 
algorithm for partitioning large combinational circuits in order to efficiently use 
existing and commercially available FPGAs packages.  

Keywords: two-way partitioning, multi-way partitioning, recursive partitioning, 
flat partitioning, critical path, cutting cones, bottom-up clusters, top-down 
min-cut. 

Introduction 

Partitioning is a technique of dividing a circuit or system into a collection 
of smaller blocks (sub-circuits) with roughly equal sizes targeting to minimize the 
number of interconnections between the blocks.  

It is, on the one hand, a design task to break a large system into pieces to 
be implemented on separate interacting components and, on the other hand, it 
serves as an algorithmic method to solve difficult and complex combinatorial 
optimization problems as in logic or layout synthesis. Partitioning has been an 
active area of research for at least a quarter of a century [1, 2].  
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The main reason that partitioning has become a central and sometimes-
critical design task today is the enormous increase of system complexity in the 
past and the expected further advances of deep sub-micron electronic system 
design and fabrication. Soaring system complexities result from a combination of 
reasons: 

• Increasing circuits complexity and 
• Shorter turn-around time to reach the market with new products. 

Broadly accepted powerful high-level synthesis tools allow the designers 
to automatically generate huge systems. In a functional specification, by just 
changing a few lines of code, the size of the resulting structural description (net 
list) of a system can increase dramatically.  

Synthesis and simulation EDA tools often hardly cope with the complexity 
of the whole system under design, and engineer aim is to concentrate on critical 
parts of a system in order to speed-up design cycle. It results that the present state 
of design technology often requires a partitioning of the system [3, 4, 5]. 

Fabrication technology makes increasingly smaller feature sizes and 
augmented die dimensions possible, thus allowing a circuit to accommodate huge 
number of transistors. However, circuits are restricted in size and in the number of 
external I/O connections. FPGAs devices are an appropriate example [5, 6]. 

Fabrication technology, obviously, requires the partitioning of a system 
into components. Economical pressure yields larger systems, both to make 
production cheaper and to exploit the optimization potential of the complete 
system. The various parts of the system should be implemented in appropriate 
ways to achieve low-cost fabrication, optimal system performance, and easy 
adaptation to changing requirements. Thus, profit can be received by partitioning 
a system optimally [6, 7, 8, 9].  

Partitioning applications exist on all levels of abstraction, specifically on 
the functional (behavioral) and on the structural (net list) level. In the early stages 
of design, far-reaching decisions have to be made how to partition a design, often 
based on incomplete knowledge. 

It has been observed that structure synthesis tools, in general, do not 
generate a hierarchy that can be used directly for mapping (FPGAs case) or for 
layout design if this hierarchy is deep [9, 10]. To give the mapping and layout 
synthesis tools the freedom they require to generate good results; net lists have to 
be flattened out and repartitioned [9, 10, 11]. In particular, it has to be decided 
whether to implement a component in various types of hardware technologies to 
achieve an optimal size/performance trade-off. Because the granularity is low in 
such situation, i.e. relatively few objects of moderate to high complexities, human 
designers based on their experience can possibly do partitioning [5, 6, 9].  
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The components resulting from system partitioning are implemented by a 
team of designers or synthesized from a high-level description by using synthesis 
tools that generate a structural implementation [3, 4, 9]. 

Field Programmable Gate Arrays (FPGAs), providing both large-scale 
integration and user-programmability, are important circuit architectures. These 
features have enormous impact on reducing integrated circuit manufacturing time 
and costs. FPGA packages, as a general feature, have maximum size CLBs 
constraints much larger than the number of input-output pins IOBs.  

Thus, implementation of a large logic network into working FPGA 
involves network partitioning into a near balanced packing of Combinational 
Logic Blocks (CLBs) and Input-Output Blocks (IOBs). Resulting IOBs bottleneck 
during circuit partitioning could involve more required devices and possibly more 
ordinary signal wires crossing between packages. It implies more critical timing 
paths between packages and drastically decreases frequency operational of the 
circuits. Critical paths are long combinational path between sequential elements 
and IOBs.  Cutting critical paths during circuit partitioning into separate packages 
implies capacitances of packages interconnections that could drastically reduce 
network speed [6, 9, 10, 11, 12, 13, 14, 15]. 

FPGA circuit implementation has two main phases. Placement phase, the 
first one, is dedicated to assign desirable locations within the FPGA structure, to 
the obtained blocks. This could be, however, an iterative process. Routing phase, 
the last one, provides the interconnections between these blocks [6, 16, 17, 18, 19, 
20, 21, 22]. Circuit partitioning is used, however, twice in FPGA implementation. 
First usage concerns too large designs to fit available FPGA packages. A less 
obvious usage of network partitioning is used in the blocks placement phase [21, 
22, 23, 24]. Placement algorithms based on circuit partitioning yields astonishing 
results efficiently. 

In this work is presented multilevel multi-resource partitioning algorithm 
for partitioning large combinational circuits in order to efficiently use existing and 
commercially available FPGAs packages. 

 
2. Previous work 
 
Typical partitioning objectives such as minimum-width bisection and 

minimum ratio cut are NP-complete and require such heuristics as simulated 
annealing, greedy k-opt interchange or quadratic optimization  (via relaxation or 
spectral methods). Hopefully these heuristics are computing fine solution close 
enough to the optimal one. 

The objective of two-way partitioning, [2] is to either minimize the cut-
size when partitioning the network into two (roughly) equal-size blocks, or to 
minimize the ratio cut size between the two blocks [25, 26]. The two-way 
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partitioning algorithms include the Kernighan-Lin [1] successful heuristic and 
iterative improvement methods [1] the graph spectrum method [17], and the net-
based partitioning method [18, 19].  

The multi-way partitioning algorithms include the recursive Kernighan-
Lin two-way partitioning method, a generalization of the spectrum-based 
partitioning method, [8], the generalization of the FM-algorithm [16] with look-
ahead scheme, [3, 12]. Most recent years a number of new thoughts have been 
introduced supplementary improving the quality of partitioning solutions, 
including communication-complexity based partitioning [4], cluster-based 
partitioning methods [14], and partitioning with module replication [20, 23]. 

  
3.  Problem formulation 
 
In this paper, it is studied the partitioning problem for combinational 

Boolean networks. A combinational Boolean network C can be represented as a 
directed acyclic graph G = (V, E) where each node n (n∈V) represents a logic gate 
and a directed edge (i, j), ((i, j) ∈E ) exists if the output of gate i is an input of gate 
j. A primary input (PI) node has no incoming edge and a primary output (PO) 
node has no outgoing edge. A disjoint Q-way partitioning solution S = (A1, A2... 
AK) satisfies the following conditions: 

Ai ∩Aj = φ for i ≠ j and  
∪ Ai, 0<i<Q+1, contains all the gates in the network; 
A1, A2... AK are known as clusters of G (C). 

 
Each node in C has only one output line and limited number of input lines. 

It is used input(v) to denote the set of fanins of gate. Given a subgraph H of the 
Boolean network, let input(H) denote the set of distinct nodes outside H, which 
supply inputs to the nodes in H (fanins of H). For a node n in the network, a w-
feasible cone at n, denoted Kn, is a subgraph consisting of node n and its 
predecessors (u is a predecessor of n if there is a directed path from u to n), such 
that |input(Kn)| ≤ w and any path connecting a node in Kn and n lies entirely in Kn.  

The level of a node is the length of the longest path from any PI node to n. 
The level of a PI node is zero. The depth of a network is the largest node level in 
the network. A Boolean network is p-bounded if |input(n)|  ≤  p for each node n in 
the network. 

Since it is always attractive having disjointed partitioning solutions, the 
word ’disjoint’ might be omitted in later discussions. The main objective is to 
minimize the total number of nets between different partitions.  

Moreover, for a multi-way partitioning solution S, one can define a 
directed graph D(S), called the dependency graph of S, such that each node in 
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D(S) represents a block in S, and there is a directed edge (Ai, Aj) in D(S) if and only 
if there exists an edge (x, y) in C such that x ∈ Ai and y ∈ Aj.  

The assumption that it is given a combinational network guarantees the 
existence of disjoint partitioning solution. When it is given a general net list, one 
can first remove all the sequential elements in order to obtain only a 
combinational network, [21, 22, 11]. Most of existing partitioning methods model 
a network as an undirected graph or hyper graph, and ignore the signal directions 
during the partitioning process. 

However, the study in this paper shows that considering signal directions 
is very helpful in identifying the underlining circuit structure, which can lead to 
significant improvement on the partitioning results. 

  
4. Cluster partitioning algorithm 
 
Cluster partitioning algorithm was implemented using SIS-1.2 structures 

and routines and most of the terminology used in this paper is similar to the 
terminology used in SIS-1.2 documentation.  

Implemented algorithm split-up C using directed acyclic graph G (as 
model of this combinational Boolean network), before mapping K-LUT nodes in 
the circuit. Combinational circuits could be very large and cluster partitioning 
helps obtaining more technological compliant mapping over the initial circuit. 

Before starting the first network traversal, all nodes are inserted in a 
partial-ordered structure, such that each node ni feeding node nj appears before nj 
in this structure. Each internal node structure has an additional array denoted 
po_label, mapping all POs nodes of the circuit; (po_label(β) is mapping POβ, as 
an example).  This array it’s initialized with zero. 

First traversal, depth first search from outputs, establish nodes affiliation 
with respect to the primary output nodes. Primary output nodes in Fig. 1 are z, x, 
y, and w. An internal node having more than one element not zero in its po_label 
belongs to more than one primary output transitive cone, and it’s said to be 
multiple dominated.  

If node n belongs to the transitive cones of PO1, PO2 and PO3, as an 
example, than po_label(1) = po_label(2) = po_label(3) = 1. All such nodes are 
defining sub-cone(1,2,3) as the intersection of the three mentioned cones.  

Node t, in Fig. 1, has po_label marking w, x, y, and z affiliation, while 
primary output node w has affiliated only node y. 

k-LUT mapping is made over homogenous dominated cones. It means that 
all nodes dominated only by z, or by z and t, as an example, will be mapped in a 
separate mapping session. This strategy separates nodes having fan-outs in more 
than one single output cone and avoid interactions during mappings in different 
primary output cones.  
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Additionally, cones with multiple domination identification make simpler 
the task of mapping for critical performance. 
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Fig. 1. Directed acyclic graph representing 
multilevel combinational circuit.
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Mapping phase starts by considering nodes that belongs to the set of 
critical paths.  The primary output node z and all nodes belonging to the transitive 
cone rooted in this node define critical path, in Fig. 1, as an example. 

Depending on the package’s internal connection resources all non-critical 
path cones pending to the critical cone path could be duplicated and merged into 
the critical path cone, for speed. 

Non-critical path pending cones will be merged into the critical one based 
on a linear criterion computed using graph quality factors (amount of internal 
nodes in such a non-critical cone, number of internal connections, minimal delay 
introduced etc).  

However non-critical cones are considered in decreasing critical order and 
will be mapped separately and this will save area (CLBs) and internal 
interconnections resources. Mapping process was implemented using minDepth 
algorithm [6] and minLevelMapII algorithm derived from the previous one but 
with powerful additional heuristics as it was presented in [7]. 

 
5. Experimental results 
 
Implemented cluster algorithm working with minLevelMapIIv2 

(technological mapping) was tested against minDepth used without cluster 
partitioning. Results are presented in Table 1. 

 Circuits, in Table 1, are taken from MCNC91 multilevel examples 
benchmark; being selected the most representative ones (as used in similar 
works). Cone partitioning algorithm is similar to those previously presented in 
literature, [5, 13, 15, 17, 18, 19], but modified to minimize first critical path delay. 
This was implemented by merging those clusters containing nodes belonging to 
the critical path but having enough slack in order to introduce no other costs to the 
partitioning objective.  

Heuristics introduced to evaluate cone’s costs are based on the published 
results, [13, 16, 19], but them are slight modified because actual application was 
exclusively targeted to map k-LUT based FPGAs having primary goal to find best 
performance circuit and, after that, area optimal solution. Cluster generation, is 
based upon algorithm illustrated in [6] and provided most of the application’s 
backgrounds.  Actual algorithm is computing all clusters Clusters(n) rooted on 
internal node n and having less inputs than M (M> input(Clusters(n)) in an 
efficient way compared to the method MaxFlow-MinCut used in most of the non-
heuristic existing works, see [8, 9, 13, 24]. 

Comparing results for minDepth and minLevelMapIIv2 it’s obvious that 
almost all results are a little less adequate, in Table 1, for minLevelMapIIv2 
(upgraded minDepth) with cluster partitioning. However, these results are better 
than those previously reported in [27], because several heuristics were improved. 
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Table 1. 

Comparative experimental results on MCNC91 multilevel benchmark 
 
Circuit name 

minDepth MinLevelMapIIv2 
with clustering 

depth LUTcnt depth LUTcnt 
5xp1 2 21 2 22 
9sym 5 7 5 8 
C499 4 67 4 68 
C5315 8 500 8 503 
C880 7 130 7 136 
alu2 5 129 5 131 
alu4 5 549 5 550 

apex2 5 150 5 153 
apex4 5 875 5 885 
apex6 4 222 4 225 
apex7 4 67 4 72 

b9 3 37 3 40 
bw 1 28 1 30 
clip 3 44 3 45 

count 3 74 3 74 
des 5 1014 5 1022 

duke2 4 151 4 153 
e64 3 338 3 343 

f51m 3 51 3 51
misex1 2 17 2 17 
misex2 2 42 2 43 
rd73 2 8 2 8
rd84 3 13 3 13 
rot 6 204 6 209 

sao2 4 57 4 57
vg2 3 35 3 35 
z4ml 2 5 2 5 

 
That’s because minLevelMapIIv2 is still working, mainly on the non-

critical path cones, under the cone’s boundaries and is not always able to find best 
merging nodes with this restriction, while minDepth is working ignoring cones 
boundary restrictions and finds always best area results (even using less 
sophisticated heuristics for that). 

Although a number of clustering algorithms, such as the random walk 
based clustering algorithms, [18, 9], the clique based method [14], and the multi-
commodity-flow based method [26], have been developed most of them are not 
considering signal flow during cluster generation and finally cluster mapping.  
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Conclusions 
 
Existing cluster-based partitioning approaches have reported consistent 

improvements, in terms of both the cut size and the run time, over direct 
partitioning on the initial circuit. Since fully automatic partitioning is essential for 
fast iterations in the design cycle, considerable effort is made in academia as well 
as in industry to facilitate and improve the difficult decisions on functional level. 

Both mapping algorithms are, actually, under research and development in 
order to be able to accept various and complex delay models together with new 
mapping heuristics in order to obtain better area results.  

Cluster partitioning algorithm, also under development, will be enhanced 
with new fast cost estimators making more efficient non-critical path cones 
process. Additional to the technological mapping of FPGA circuits, cluster-
partitioning algorithm, has applications in large decision diagrams partitioning. 
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