U.P.B. Sci. Bull., Series C, Vol. 68, No. 2, 2006

PARTITIONING COMBINATIONAL CIRCUITS FOR K-LUT
BASED FPGA MAPPING

I. 1. BUCUR®

Partitionarea este o problemd centrald in automatizarea proiectarii VLSI
vizdnd manufacturabilitatea circuitelor. Partitionarea circuitelor are multe aplicatii
in proiectarea VLSI. Una dintre cele mai intdlnite este aceea a divizarii circuitelor
combinationale (de reguld cele cu dimensiuni mari, care nu incap intr-o singurd
capsuld), in mai multe capsule. Partitionarea joaca un rol practic important in
implementarea circuitelor in tehnologiile FPGA bazate pe k-LUT. In aceasti
lucrare este prezentat un algoritm pentru partitionarea circuitelor combinationale
mari astfel incdt sa se poatd utiliza eficient capsulele FPGA existente disponibile
comercial.

Partitioning is a central problem in VLSI design automation, addressing
circuit’s manufacturability. Circuit partitioning has multiple applications in VLSI
design. One of the most common is that of dividing combinational circuits (usually
large ones) that will not fit on a single package among a number of packages.
Partitioning is of practical importance for k-LUT based FPGA circuit
implementation. In this work is presented multilevel a multi-resource partitioning
algorithm for partitioning large combinational circuits in order to efficiently use
existing and commercially available FPGAs packages.

Keywords: two-way partitioning, multi-way partitioning, recursive partitioning,
flat partitioning, critical path, cutting cones, bottom-up clusters, top-down
min-cut.

Introduction

Partitioning is a technique of dividing a circuit or system into a collection
of smaller blocks (sub-circuits) with roughly equal sizes targeting to minimize the
number of interconnections between the blocks.

It is, on the one hand, a design task to break a large system into pieces to
be implemented on separate interacting components and, on the other hand, it
serves as an algorithmic method to solve difficult and complex combinatorial
optimization problems as in logic or layout synthesis. Partitioning has been an
active area of research for at least a quarter of a century [1, 2].
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The main reason that partitioning has become a central and sometimes-
critical design task today is the enormous increase of system complexity in the
past and the expected further advances of deep sub-micron electronic system
design and fabrication. Soaring system complexities result from a combination of
reasons:

e Increasing circuits complexity and
e Shorter turn-around time to reach the market with new products.

Broadly accepted powerful high-level synthesis tools allow the designers
to automatically generate huge systems. In a functional specification, by just
changing a few lines of code, the size of the resulting structural description (net
list) of a system can increase dramatically.

Synthesis and simulation EDA tools often hardly cope with the complexity
of the whole system under design, and engineer aim is to concentrate on critical
parts of a system in order to speed-up design cycle. It results that the present state
of design technology often requires a partitioning of the system [3, 4, 5].

Fabrication technology makes increasingly smaller feature sizes and
augmented die dimensions possible, thus allowing a circuit to accommodate huge
number of transistors. However, circuits are restricted in size and in the number of
external 1/0 connections. FPGASs devices are an appropriate example [5, 6].

Fabrication technology, obviously, requires the partitioning of a system
into components. Economical pressure yields larger systems, both to make
production cheaper and to exploit the optimization potential of the complete
system. The various parts of the system should be implemented in appropriate
ways to achieve low-cost fabrication, optimal system performance, and easy
adaptation to changing requirements. Thus, profit can be received by partitioning
a system optimally [6, 7, 8, 9].

Partitioning applications exist on all levels of abstraction, specifically on
the functional (behavioral) and on the structural (net list) level. In the early stages
of design, far-reaching decisions have to be made how to partition a design, often
based on incomplete knowledge.

It has been observed that structure synthesis tools, in general, do not
generate a hierarchy that can be used directly for mapping (FPGAs case) or for
layout design if this hierarchy is deep [9, 10]. To give the mapping and layout
synthesis tools the freedom they require to generate good results; net lists have to
be flattened out and repartitioned [9, 10, 11]. In particular, it has to be decided
whether to implement a component in various types of hardware technologies to
achieve an optimal size/performance trade-off. Because the granularity is low in
such situation, i.e. relatively few objects of moderate to high complexities, human
designers based on their experience can possibly do partitioning [5, 6, 9].
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The components resulting from system partitioning are implemented by a
team of designers or synthesized from a high-level description by using synthesis
tools that generate a structural implementation [3, 4, 9].

Field Programmable Gate Arrays (FPGASs), providing both large-scale
integration and user-programmability, are important circuit architectures. These
features have enormous impact on reducing integrated circuit manufacturing time
and costs. FPGA packages, as a general feature, have maximum size CLBs
constraints much larger than the number of input-output pins 10Bs.

Thus, implementation of a large logic network into working FPGA
involves network partitioning into a near balanced packing of Combinational
Logic Blocks (CLBs) and Input-Output Blocks (IOBs). Resulting 10Bs bottleneck
during circuit partitioning could involve more required devices and possibly more
ordinary signal wires crossing between packages. It implies more critical timing
paths between packages and drastically decreases frequency operational of the
circuits. Critical paths are long combinational path between sequential elements
and 10Bs. Cutting critical paths during circuit partitioning into separate packages
implies capacitances of packages interconnections that could drastically reduce
network speed [6, 9, 10, 11, 12, 13, 14, 15].

FPGA circuit implementation has two main phases. Placement phase, the
first one, is dedicated to assign desirable locations within the FPGA structure, to
the obtained blocks. This could be, however, an iterative process. Routing phase,
the last one, provides the interconnections between these blocks [6, 16, 17, 18, 19,
20, 21, 22]. Circuit partitioning is used, however, twice in FPGA implementation.
First usage concerns too large designs to fit available FPGA packages. A less
obvious usage of network partitioning is used in the blocks placement phase [21,
22, 23, 24]. Placement algorithms based on circuit partitioning yields astonishing
results efficiently.

In this work is presented multilevel multi-resource partitioning algorithm
for partitioning large combinational circuits in order to efficiently use existing and
commercially available FPGAs packages.

2. Previous work

Typical partitioning objectives such as minimum-width bisection and
minimum ratio cut are NP-complete and require such heuristics as simulated
annealing, greedy k-opt interchange or quadratic optimization (via relaxation or
spectral methods). Hopefully these heuristics are computing fine solution close
enough to the optimal one.

The objective of two-way partitioning, [2] is to either minimize the cut-
size when partitioning the network into two (roughly) equal-size blocks, or to
minimize the ratio cut size between the two blocks [25, 26]. The two-way
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partitioning algorithms include the Kernighan-Lin [1] successful heuristic and
iterative improvement methods [1] the graph spectrum method [17], and the net-
based partitioning method [18, 19].

The multi-way partitioning algorithms include the recursive Kernighan-
Lin two-way partitioning method, a generalization of the spectrum-based
partitioning method, [8], the generalization of the FM-algorithm [16] with look-
ahead scheme, [3, 12]. Most recent years a number of new thoughts have been
introduced supplementary improving the quality of partitioning solutions,
including communication-complexity based partitioning [4], cluster-based
partitioning methods [14], and partitioning with module replication [20, 23].

3. Problem formulation

In this paper, it is studied the partitioning problem for combinational
Boolean networks. A combinational Boolean network C can be represented as a
directed acyclic graph G = (V, E) where each node n (ne V) represents a logic gate
and a directed edge (i, /), ((i, /) €E) exists if the output of gate  is an input of gate
j. A primary input (Pl) node has no incoming edge and a primary output (PO)
node has no outgoing edge. A disjoint Q-way partitioning solution S = (41, A...
Ax) satisfies the following conditions:

AiMA4;=¢ fori=jand

U 4;,0<i<Q+1, contains all the gates in the network;
A1, Aa... Ak are known as clusters of G (C).

Each node in C has only one output line and limited number of input lines.
It is used input(v) to denote the set of fanins of gate. Given a subgraph H of the
Boolean network, let input(H) denote the set of distinct nodes outside H, which
supply inputs to the nodes in H (fanins of H). For a node = in the network, a w-
feasible cone at n, denoted K,, is a subgraph consisting of node » and its
predecessors (u is a predecessor of » if there is a directed path from « to »), such
that |input(K,)| < w and any path connecting a node in K, and = lies entirely in K.

The level of a node is the length of the longest path from any Pl node to n.
The level of a Pl node is zero. The depth of a network is the largest node level in
the network. A Boolean network is p-bounded if |input(n)| < p for each node n in
the network.

Since it is always attractive having disjointed partitioning solutions, the
word ’disjoint’ might be omitted in later discussions. The main objective is to
minimize the total number of nets between different partitions.

Moreover, for a multi-way partitioning solution S, one can define a
directed graph D(S), called the dependency graph of S, such that each node in
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D(S) represents a block in S, and there is a directed edge (4. 4) in D(S) if and only
if there exists an edge (x, y) in C such that x € 4:and y € 4;

The assumption that it is given a combinational network guarantees the
existence of disjoint partitioning solution. When it is given a general net list, one
can first remove all the sequential elements in order to obtain only a
combinational network, [21, 22, 11]. Most of existing partitioning methods model
a network as an undirected graph or hyper graph, and ignore the signal directions
during the partitioning process.

However, the study in this paper shows that considering signal directions
is very helpful in identifying the underlining circuit structure, which can lead to
significant improvement on the partitioning results.

4. Cluster partitioning algorithm

Cluster partitioning algorithm was implemented using SIS-1.2 structures
and routines and most of the terminology used in this paper is similar to the
terminology used in SIS-1.2 documentation.

Implemented algorithm split-up C using directed acyclic graph G (as
model of this combinational Boolean network), before mapping K-LUT nodes in
the circuit. Combinational circuits could be very large and cluster partitioning
helps obtaining more technological compliant mapping over the initial circuit.

Before starting the first network traversal, all nodes are inserted in a
partial-ordered structure, such that each node »; feeding node »; appears before »;
in this structure. Each internal node structure has an additional array denoted
po_label, mapping all POs nodes of the circuit; (po_label(f) is mapping POg, as
an example). This array it’s initialized with zero.

First traversal, depth first search from outputs, establish nodes affiliation
with respect to the primary output nodes. Primary output nodes in Fig. 1 are z, x,
v, and w. An internal node having more than one element not zero in its po_label
belongs to more than one primary output transitive cone, and it’s said to be
multiple dominated.

If node n belongs to the transitive cones of PO;, PO, and POgs, as an
example, than po label(1l) = po_label(2) = po label(3) = 1. All such nodes are
defining sub-cone(1,2,3) as the intersection of the three mentioned cones.

Node ¢ in Fig. 1, has po_label marking w, x, y, and z affiliation, while
primary output node w has affiliated only node y.

k-LUT mapping is made over homogenous dominated cones. It means that
all nodes dominated only by z, or by z and #, as an example, will be mapped in a
separate mapping session. This strategy separates nodes having fan-outs in more
than one single output cone and avoid interactions during mappings in different
primary output cones.
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Additionally, cones with multiple domination identification make simpler
the task of mapping for critical performance.

Node’s Level
7 6 5 4 3 2 1

Fig. 1. Directed acyclic graph representing
multilevel combinational circuit.
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Mapping phase starts by considering nodes that belongs to the set of
critical paths. The primary output node z and all nodes belonging to the transitive
cone rooted in this node define critical path, in Fig. 1, as an example.

Depending on the package’s internal connection resources all non-critical
path cones pending to the critical cone path could be duplicated and merged into
the critical path cone, for speed.

Non-critical path pending cones will be merged into the critical one based
on a linear criterion computed using graph quality factors (amount of internal
nodes in such a non-critical cone, number of internal connections, minimal delay
introduced etc).

However non-critical cones are considered in decreasing critical order and
will be mapped separately and this will save area (CLBs) and internal
interconnections resources. Mapping process was implemented using minDepth
algorithm [6] and minLevelMapll algorithm derived from the previous one but
with powerful additional heuristics as it was presented in [7].

5. Experimental results

Implemented  cluster algorithm working with  minLevelMapllv2
(technological mapping) was tested against minDepth used without cluster
partitioning. Results are presented in Table 1.

Circuits, in Table 1, are taken from MCNC91 multilevel examples
benchmark; being selected the most representative ones (as used in similar
works). Cone partitioning algorithm is similar to those previously presented in
literature, [5, 13, 15, 17, 18, 19], but modified to minimize first critical path delay.
This was implemented by merging those clusters containing nodes belonging to
the critical path but having enough slack in order to introduce no other costs to the
partitioning objective.

Heuristics introduced to evaluate cone’s costs are based on the published
results, [13, 16, 19], but them are slight modified because actual application was
exclusively targeted to map A-LUT based FPGAs having primary goal to find best
performance circuit and, after that, area optimal solution. Cluster generation, is
based upon algorithm illustrated in [6] and provided most of the application’s
backgrounds. Actual algorithm is computing all clusters Clusters(n) rooted on
internal node » and having less inputs than M (M> input(Clusters(n)) in an
efficient way compared to the method MaxFlow-MinCut used in most of the non-
heuristic existing works, see [8, 9, 13, 24].

Comparing results for minDepth and minLevelMaplIlv2 it’s obvious that
almost all results are a little less adequate, in Table 1, for minLevelMapllv2
(upgraded minDepth) with cluster partitioning. However, these results are better
than those previously reported in [27], because several heuristics were improved.
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Table 1.
Comparative experimental results on MCNC91 multilevel benchmark
minDepth MinLevelMapllv2
Circuit name with clustering
depth LUTcnt depth LUTcnt
Sxpl 2 21 2 22
9sym 5 7 5 8
C499 4 67 4 68
C5315 8 500 8 503
C880 7 130 7 136
alu2 5 129 5 131
alu4 5 549 5 550
apex2 5 150 5 153
apex4 5 875 5 885
apex6 4 222 4 225
apex7 4 67 4 72
b9 3 37 3 40
bw 1 28 1 30
clip 3 44 3 45
count 3 74 3 74
des 5 1014 5 1022
duke?2 4 151 4 153
e64 3 338 3 343
f5im 3 51 3 51
misexl 2 17 2 17
misex2 2 42 2 43
rd73 2 8 2 8
rd84 3 13 3 13
rot 6 204 6 209
sao2 4 57 4 57
vg2 3 35 3 35
z4ml 2 5 2 5

That’s because minLevelMapllv2 is still working, mainly on the non-
critical path cones, under the cone’s boundaries and is not always able to find best
merging nodes with this restriction, while minDepth is working ignoring cones
boundary restrictions and finds always best area results (even using less
sophisticated heuristics for that).

Although a number of clustering algorithms, such as the random walk
based clustering algorithms, [18, 9], the clique based method [14], and the multi-
commodity-flow based method [26], have been developed most of them are not
considering signal flow during cluster generation and finally cluster mapping.
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Conclusions

Existing cluster-based partitioning approaches have reported consistent
improvements, in terms of both the cut size and the run time, over direct
partitioning on the initial circuit. Since fully automatic partitioning is essential for
fast iterations in the design cycle, considerable effort is made in academia as well
as in industry to facilitate and improve the difficult decisions on functional level.

Both mapping algorithms are, actually, under research and development in
order to be able to accept various and complex delay models together with new
mapping heuristics in order to obtain better area results.

Cluster partitioning algorithm, also under development, will be enhanced
with new fast cost estimators making more efficient non-critical path cones
process. Additional to the technological mapping of FPGA circuits, cluster-
partitioning algorithm, has applications in large decision diagrams partitioning.
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