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AN END TO END WEB SERVICE COMPOSITION BASED ON 
QoS PREFERENCES 

Raluca IORDACHE1, Florica MOLDOVEANU2 

The service-oriented environment offers the opportunity to create new 
applications, by combining existing applications offered as services, in order to 
react to the business’ increasing pressure of quickly delivering new applications. 
With a large number of web services offering the same functionality, choosing the 
web services that meet best the client’s quality of service (QoS) requirements is a 
very important task.  We introduce a QoS-aware end to end web service composition 
approach that handles all the stages from the web service discovery step, to the 
actual binding of the services. This approach uses our method of expressing non-
functional preferences, which requires minimal effort on the part of the clients, but 
offers great flexibility in managing trade-offs. We define a QoS preferences ontology 
and use it in our semantic web service selection to choose an initial candidate list of 
services for every task in the orchestration model. Then, one concrete service is 
chosen from each candidate list and is boand to the corresponding task. This step 
involves computing and comparing the aggregated QoS of the resulting composite 
services. The selection is performed using a genetic algorithm. 

Keywords: semantic web, QoS ontology, multidimensional QoS preferences, 
service binding, service composition. 

1. Introduction 

In SOA environments, loosely coupled services can be orchestrated into 
composite services in order to implement complex business processes. A 
composite service is usually described by an orchestration model involving a 
series of tasks. In order to execute a composite service, each task must be 
associated with a concrete web service that offers the required functionality. 
Moreover, the component services should be chosen in a way that assures the best 
quality of service (QoS) for the resulting composite service. 

Web services have a dynamic nature: at every moment, a service may 
cease to exist or a new one may become available. Non-functional characteristics, 
such as the QoS, are also subject to frequent changes. Therefore, much research is 
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directed toward automated, dynamic web service composition approaches. In this 
paper, we propose an end-to-end approach to this problem, which involves two 
main phases: discovery and binding. 

The discovery phase is based on the using of ontologies in order to provide 
for each task a list of candidate services offering its required functionality. In the 
binding phase, for each task in the orchestration model, a unique service is 
selected from its list of candidate services. The selection process adopts a global 
optimization strategy devised to produce the composite service that best matches 
the aggregated QoS preferences expressed by the client. A novelty of our 
approach is that QoS preferences are also taken into account during the discovery 
phase, with the goal to restrict the number of elements in the list of candidate 
services for each task. This is achieved by extending the ontology with QoS 
preference information and using a local optimization strategy during the 
discovery phase. 

Another important contribution of this work is the use of QoSPref [1], our 
preference specification method of expressing non-functional preferences, which 
offers great flexibility in managing trade-offs, but is at the same time very 
intuitive. This method leads to a simple algorithm for selecting web services, 
which does not require sophisticated multicriteria decision techniques. 

We extend the OWL-Q [2] ontology to capture trade-off preferences 
expressed using our QoSPref notation. This  ontology extension [3] allows a 
symmetric specification of the QoS properties of the request and the offer.  

An initial list of candidate services is obtained for each task in the 
orchestration model by performing a semantic search based on the functional and 
non-functional requirements. For choosing the one concrete web service that will 
bind to a task from our composition, we compare them based on the overall QoS 
of the resulting composite services. This raises the issue of computing the 
aggregated QoS of a composite service based on the QoS of its component 
services. Most solutions to this problem are limited to composition models that 
can be represented as well-structured workflows. Our binding-as-a-service (BaaS) 
[4] implementation uses the aggregation method proposed by Yang et al. [5], 
which overcomes this restriction. The best mapping of concrete services to the 
tasks involved in the composition is foand using a genetic algorithm [6] that 
evaluates the fitness of a solution based on its aggregated QoS and on the QoS 
preferences expressed by the client using our QoSPref specification method. 

2. QoS - Quality of Service 

In SOA environments, the existence of numerous web services offering 
the same functionality needed by a given task leaves the application designer with 
several candidates to choose from. At this point, analyzing the quality of the 
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alternatives starts playing a fandamental role in the service selection. Non-
functional characteristics of a web service, such as availability, cost, response 
time, or supported security protocols define the Quality of Service (QoS) concept. 

Although considerable research has been done in the recent years, there is 
no widely accepted approach for the QoS-aware selection of web services. This is 
mainly due to the various issues that have to be addressed for providing a 
complete solution. These issues include the design of suitable frameworks and 
architectures [7][8], which should provide ontologies for the formal specification 
of QoS metrics [9] [10], methods of obtaining current metric values [11] and web 
service selection algorithms based on user-specified QoS criteria [12]. 

3. The aggregated QoS of composite services 

Various solutions have been proposed for the problem of estimating the 
aggregated QoS of a composite service, but they differ in the restrictions they 
impose on the topology of the composition. Most of them are limited to 
orchestration models that can be represented as well-structured workflows. Yang 
et al. [3] have introduced a method that overcomes these restrictions. This 
method, which is used in our binding-as-a service (BaaS) implementation, is 
presented in the remaining of this section. The input of this method is an 
orchestration model together with a binding that maps tasks to component 
services. An orchestration model is a directed graph with execution probabilities 
attached to its edges. The orchestration models are decomposed into orchestration 
components, which are subgraphs with a single-entry and single-exit point. The 
QoS is computed in a bottom-up manner for each orchestration component. Well-
structured orchestration models, that is, models where each split gateway has a 
corresponding join gateway, are straightforward to analyze. Different aggregation 
formulas are provided depending on the type of the QoS attribute, which can be 
classified into three categories: critical path, additive and multiplicative. A 
preliminary step of the QoS aggregation method is to use the block-structuring 
technique introduced in [5] to transform an unstructured orchestration model into 
a maximally structured orchestration model.  

We give an illustrative example that will be used throughout this paper in 
order to expose some of the issues related to the QoS-aware dynamic web service 
composition. We consider an online trading system offering services for trading 
various financial instruments. One of these services allows customers to buy both 
domestic and foreign stocks. The model can be transformed to a behaviorally 
equivalent model that is well-structured. The components that are irreducible 
using this technique are called rigid components and they are of two types: 
irreducible Directed Acyclic Graphs (DAG) and irreducible multiple-entry, 
multiple-exit (MEME) loops. The authors of [5] provide an algorithm that 
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transforms irreducible DAG components in equivalent choice components. 
Irreducible MEME loops can be transformed using the block-structuring 
technique into equivalent rigid components where the concurrency is fully 
encapsulated within child components. For these equivalent components, the 
expected number of times that a node in the MEME loop is visited can be 
calculated using standard methods. This allows computing the QoS of the 
irreducible component by applying the aggregation formulas characteristic to each 
category of QoS parameters. 

4. The problem of expressing preferences 

The ability of clients to express their QoS expectations plays a crucial role 
in the selection of the most suitable web service. While hard constraints are 
relatively easy to formulate, there is no standard way to deal with soft constraints 
that should reflect client's preferences in situations where no web service is 
capable of satisfying all QoS requirements. 

Of particular interest for the domain of QoS-aware service selection are 
the fields of multicriteria decision analysis and in particular of multiobjective 
optimization or Pareto optimization. Multiobjective optimization problems can 
also be foand in various areas where optimal decisions involve trade-offs between 
multiple (possibly conflicting) objectives. A Pareto optimal solution is a solution 
for which it is impossible to improve one objective without worsening another 
one. Multiobjective optimization uses a priori or a posteriori approaches, 
depending on the moment when the decision maker's preferences are articulated. 

The best known and simplest method for preference articulation is the 
weighted sum method. The method uses weight values supplied by the user to 
describe the importance of the objectives. One drawback of this method is that the 
weights must both compensate for differences in objective function magnitudes 
and provide a value corresponding to the relative importance of an objective. 
Another drawback is that it is not able to find certain solutions in the case of a 
non-convex Pareto curve. The authors of [13] conclude that the weighted sum 
method "is fandamentally incapable of incorporating complex preference 
information ". 

Lexicographic preferences is another simple method used for modeling 
rational decision behavior. Preferences are defined by a lexical ordering, which 
leads to a strict ranking. While being very easy to use, lexicographic preferences 
have the major drawback of being non-compensatory. An extension of this 
method is lexicographic semiorder, where a tradeoff is addressed in situations 
where there is a significant improvement in one objective that can compensate an 
arbitrarily small loss in the most important objective.  This is based on Tversky’s  
lexicographic semiorder notion where an alternative x is considered better than an 
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alternative y if the first criterion that distinguishes between x and y ranks x higher 
than y by an amount exceeding a fixed threshold [14] [15]. The advantage of this 
method is that it ensures that a solution that is slightly better on the most 
important objective but a lot worse on the other objectives will not be selected. 

5. QoSPref - The conditional lexicographic approach 

As mentioned before, QoS expectations can take the form of hard and soft 
constraints. While all hard constraints must be satisfied in order for a web service 
to be selected, soft constraints represent rather desirable characteristics of the 
chosen service. If no web service meets all soft constraints, users should have the 
possibility to express their tradeoff preferences, in order to allow the dynamic 
selection of services.  

Our approach to articulate the QoS preferences is based on the observation 
that, when trying to find a set of rules allowing them to choose between several 
alternatives, people start by ranking their preferences, in accordance with their 
perceived importance. This action is equivalent to imposing a lexicographic order 
on the different criteria that have to be considered. In most situations, using such a 
strict hierarchy is not sufficient to capture people's real preferences. In this case, 
people usually introduce additional rules that change the criteria priorities when 
some specific condition is met. 

We propose a method to establish a total order on the set of existing web 
service alternatives, by attaching conditions to lexicographic preferences and we 
introduce a preference specification language that can be used for authoring QoS 
preferences.  

We illustrate the method based on our online trading system example 
introduced in [4]. Some of the tasks in this model (such as those for order 
registration) represent internal actions of the online trading system. Other tasks 
(such as those for getting stock quotes) require interaction with external systems. 
The online trading system implements the stock buying service as a composite 
web service. For the tasks involving interaction with external systems, it is 
necessary to find providers offering the required functionality as a web service. 
Usually, there are several alternatives for each of these tasks. For example, there 
are many web services that provide stock quotes. The online trading system has to 
decide which of the possible service components to bind to each task in its 
composition model. This service binding is a dynamic process, because over time, 
some component services may cease to exist and new ones may become available.  

In order to be able to dynamically bind component services to the tasks 
specified in the composition model of the stock buying service, the online trading 
system must have an automated method of comparing composite services based 
on their QoS. 
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In our example, we consider that only the following QoS attributes are 
interesting for the online trading system: execution time, cost, and reliability. The 
QoS of the composite stock buying service is determined by the QoS of its service 
components, which are assumed to be known. However, it is not clear how to 
estimate the QoS of the composite service. While the aggregated cost can be 
easily computed by adding the costs of all component services, there is no obvious 
method for estimating execution time and reliability. 

Our preference specification language allows specifying both constraints 
and preferences. Constraints are declared as a list of comma separated boolean 
conditions that must be satisfied by the service. They are enclosed in a constraints 
block, as shown below: 

constraints { 
 cost < 1000, 
  reliability > 0.95, 
 executionTime < 60 
} 

The order of constraint conditions is irrelevant, but order plays a key role 
in the articulation of QoS preferences. For the beginning, we consider that the 
client provides a strict ranking of preferences. This is expressed in our 
specification language by using a preferences block that includes the comma 
separated list of relevant QoS attributes in the order of their importance: 

preferences { 
 cost: low, 
 reliability: high, 
 execTime: low 
 } 

For each QoS attribute, the client should indicate the direction associated 
with better values. This piece of information appears after the attribute name, 
separated by a colon. Possible values for direction are low and high.  

In the example above, cost is the most important QoS attribute, and 
services with a lower cost are considered better. However, this specification of 
preferences does not accurately capture client's preferences. We add a few more 
details about the online trading system to illustrate why comparing composite 
services characterized by multiple QoS attributes is not a trivial task. 

The executives of this system try to maximize their profit, therefore they 
see the cost as the most important QoS parameter. However, they are willing to 
ignore small cost differences (not exceeding 10 cents) if the composite service 
with a higher cost has better values for reliability and execution time. 
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For the customers of this system, it is very important that trading orders 
are executed as soon as possible. Therefore, the online trading systems guarantees 
that the execution time of its stock buying service does not exceed 30 seconds. 
For every violation of this agreement, the owners of the online trading system 
must pay a penalty proportional with the delay. This means that, when comparing 
two composite services, the execution time becomes the most important parameter 
if at least one of the compared services has an execution time exceeding the 30 
seconds limit. It is clear that traditional methods such as weighted sum or 
parameter ranking are not appropriate for this scenario. 

We consider that the executives of the online trading see the cost as the 
most important QoS attribute, followed by reliability and then by execution time. 
As mentioned before, the executives are willing to ignore small cost differences 
(not exceeding 10 cents) if the composite service with a higher cost has better 
values for reeliability and execution time. Furthermore, there are penalties to be 
paid if the execution time of the composite service exceeds 30 seconds. Therefore, 
when comparing two composite services, the execution time becomes the most 
important parameter if at least one of the compared services has an execution time 
exceeding the 30 seconds limit. In order to be able to articulate preferences for 
scenarios like the one above, our specification language provides four unary 
preference operators, which are shown in Table 1: 

Table 1 
Preference operators 

Preference operator Meaning 
AT_LEAST_ONE(condition) condition(service1) OR condition(service2) 
EXACTLY_ONE(condition) condition(service1) XOR condition(service2) 
ALL(condition) condition(service1) AND condition(service2) 
DIFF(attribute) |service1.attribute - service2.attribute| 

The first three operators take as argument a boolean formula, which 
usually involves one or more QoS attributes. The formula is evaluated twice, once 
for each of  the web services to be compared. The two resulting boolean values 
are passed as arguments to the boolean operator (OR, XOR, or AND) associated 
with the given preference operator, in order to obtain the return value. 

The preference operator DIFF takes as argument a QoS attribute and 
returns the modulus of the difference of its corresponding values from the two 
web services compared.  

In the remainder of this paper, we use the term preference rule to denote an 
entry in the preferences block. As already seen, a preference rule has three 
components: an optional condition, an attribute indicating the QoS dimension 
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used in comparisons and a direction flag stating which values should be 
considered better. 

In our specification language, the preferences corresponding to the above 
described scenario can be articulated as shown in Figure 1. (The preference rule 
indexes appearing at the left side of the figure are only informative and are not 
part of the preference specification.)  The preferences corresponding to the above 
described scenario can be articulated as follows in our specification language: 

 
  preferences { 
1)   [AT LEAST ONE(execTime > 30)] execTime : low, 
2)   [DIFF(cost) > 10] cost : low, 
3)   reliability : high, 
4)   execTime : low, 
5)   cost : low, 
 } 

Figure 1. A more elaborate specification of preferences 

The specification language can deal with situations where people are not 
fully aware of their preferences. When users notice that the current rules do not 
accurately capture their preferences, they can simply add a new conditional rule, 
thus incrementally improving the preference specification. 

In what follows, we use the notation ݏଵ ظ  ଶ to indicate that the webݏ
service ݏଵ is preferred to the web service ݏଶ, and the notation ݏଵ ׽  ଶ to indicateݏ
that the service ݏଵ is indifferent to the web service ݏଶ. Additionally, we introduce 
the notation ݏଵ ௞ظ  ଵ is preferred to the webݏ ଶ to indicate that the web serviceݏ
service ݏଶ and that the preference rule ݇ has been decisive in establishing this 
relationship. We also introduce the complementary operators  and ط௞, defined 
by the following relations: ݏଵ ط ଶݏ ଶ, iffݏ ظ ଵݏ ଵ andݏ ௞ط ଶݏ ଶ, iffݏ ௞ظ  ଵݏ

Our algorithm for comparing two web services based on the preferences 
expressed using our conditional lexicographic approach examines all entries in the 
preferences block in the order in which they appear. If the current preference rule 
has no attached condition, or the attached condition evaluates to true, the values 
corresponding to the attribute specified by this entry are compared. If the attribute 
values are not equal, the algorithm returns a tuple containing the result of the 
current comparison and the index of the preference rule that has been decisive in 
establishing the preference relationship. Otherwise, the execution continues with 
the next preference rule. The algorithm returns either an indifference relation 
between the two web services, or a tuple that identifies a relation of type ط௞ or ظ௞ 
between them.  

In a series of experiments, Tversky [6] has shown that people have 
sometimes intransitive preferences. Therefore, being able to capture such 
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preferences is an important feature of our specification language. However, a 
consequence of allowing intransitive preferences is that the pairwise comparison 
of all web service alternatives is in general not sufficient to impose a total order 
on these services. An illustrative example of how our method is used in a context 
containing intrasnsitive preferences is given in our paper [1].  

In order to obtain a total order on the set of web service alternatives, we 
attach to each web service ݅ a score vector of integer values: ௜ܸ א Գ௥ାଵ, where ݎ is 
the number of preference rules. The score vector of one web service contains for 
every preference rule the number of times this web service was prefered to 
another one due to this specific preference rule and a last entry containing the 
number of times this web service was indifferent to another one.  

Using the score vectors, we are able to provide an algorithm for the 
ranking of web service alternatives. Please refer to [1] for pseudocode and further 
details. This algorithm induces a total order on the set of web service alternatives, 
thus allowing us to rank them accordingly, eliminating the intransitivity.  

6. Ontology extension for expressing tradeoff preferences 

Semantic web has gained popularity in the recent years, in part due to the 
need to automate the service discovery process. The use of ontologies facilitates 
machine reasoning, allowing the implementation of complex web service 
selection engines that offer accurate results. The selection of web services, as well 
as the specification of the process workflow based on ontologies has been also 
advocated by the authors of [16]. Usually, the web service selection process 
includes the discovery step and the selection step. The discovery step involves 
searching for appropriate web services, based on functional criteria. During the 
selection step, the best fitting service is selected from the services discovered in 
the previous step, by taking into account the client's non-functional requirements. 
Therefore, ontologies for semantic web should be able to deal with both 
functional and non-functional requirements. 

We argue that the capability to express QoS preferences and trade-offs 
between them is crucial for selecting the best web service. While hard constraints 
are relatively easy to formulate, there is no standard way to deal with soft 
constraints that should reflect client’s preferences in situations where no web 
service is capable of satisfying all QoS requirements. 

Currently, there is no established standard for describing the QoS 
properties. After analyzing the existing QoS ontologies we have chosen to extend 
the OWL-Q ontology, a complex ontology designed into several facets that can be 
extended and enriched independently. This ontology allows a symmetric 
specification of the QoS properties of the request and the offer. For the 
matchmaking algorithm, the approach transforms the comparison to a Constraint 
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Satisfaction Problem and extends the existing CSP-based approaches. OWL-Q 
addresses the problem of specifying the requester’s priority for QoS constraints, 
by allowing the requester to provide weights to metrics of his interest. The 
weights express the impact of the attributes and allow the ranking of the offers.  

We argue that providing weights for the metrics isn’t enough for capturing 
complex QoS requirements. In order to use the flexibility of our QoSPref method 
for expressing trade-off preferences in a semantic context, we extend the OWL-Q 
ontology to use our conditional lexicographic method. 

In OWL-Q [2] the QoS offers and requests are defined by the QoSSpec 
Facet. The QoSSpec class contains the QoS description of a web service.  It 
contains several attributes like the cost of using the service and the currency, 
security and transaction protocols, the validity of the offer. QoSSpec is separated 
into two subclasses, disjoint to each other: QoSOffer and QoSDemand where the 
WS providers and requesters can define in the same way, symmetrically, their 
QoS constraints.  

The WS requester can provide constraints by using the QoSDemand class 
and can also provide weights to metrics of his interest, by using the QoSSelection 
class. The QoSSelection class contains list of <metric,weight> entries.  The 
weight value can have the value of 2.0 if it is a hard constraint or a value in (0:0; 
1:0) if it is soft.The entry <metric,weight>  is defined by the QosSelectElem class 
and the QoSSelectElemeList contains a list of QosSelectElem-s. 

OWL-Q also contains a Metric Value Type Facet that describes the types 
of values a QoS metric can take. The MetricValueType class has two subclasses 
indicating the direction of values for the QoS metric that owns one of these two 
subtypes: PositivelyMonotonic value types have a direction of values from the 
lowest to the highest value where the highest value is mapped to the highest 
quality level that can be achieved while a NegativelyMonotonic value type has an 
opposite direction of values where the highest quality level is mapped to the 
lowest value. As an example, a QoS metric measuring the Availability QoS 
attribute has as value type a positively monotonic value type while a 
ReponseTime QoS Attribute has a negatively monotonic value type, as the lowest 
values are the better ones. Thus, when describing a preference rule from out 
QosPref approach, we don’t need to explicitly write the direction flag of a metric 
anymore, as this is already described by the metric itself.  

For our extension of the OWL-Q Requirements Specification to capture 
preference trade-offs, we can keep from OWL-Q the QoSOffer description, as the 
provider specification remains unmodified. For this reason, we choose to extend 
the existing facet by adding new classes for the preference selection, and not 
create another facet. 

We define a new QoSSelectionWithTradeoffs class that will incorporate a 
list of preferences, described similar to our QosPref’s notation. The hard 
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constraints are specified using the QoSDemand class, just like in the OWL-Q 
ontology. A preference is described by a QoSPreference class that incorporates a 
preference rule. As already seen, a preference rule has three components: an 
optional condition, an attribute indicating the QoS metric used in comparisons and 
a direction flag stating which values should be considered better. As the direction 
flag is specified using the MetricValueType class from OWL-Q, a preference rule 
has to include the optional condition and the metric. A preference rule entry looks 
like that: <(optional condition) metric>.  

For the optional condition the three logical operators AT_LEAST_ONE 
(OR operator), EXACTLY_ONE (XOR operator), ALL (AND operator) and the 
arithmetic operator DIFF (-) as seen in Table 1 have to be included in the 
ontology. The optional condition can be described as <operator, metric>. 

Another observation is that the order of the preferences is an important 
factor for the ranking algorithm, with the first preference being the most 
important.  So, the order of preferences in the preferences list is important. To 
make the semantic notation easy to follow we choose to explicitly attach the 
priority to every preference rule so that an entry in the QoSPreference class will 
look like that: <priority, (condition) metric>. The QoSRequest class will point to 
both QoSSelectionWithTradeoffs and QoSSelection class. The requester can 
decide which QoS specification he wants to use, depending on the use case. The 
ontology extension allows the requester to use a notation to flexibility define 
complex constraints and trade-offs of preferences in a semantic context. 

7. BaaS -Binding as a Service 

There are several web service composition frameworks, with different 
architectures and methodologies. Nonetheless, service binding is a task required 
by all these frameworks. Therefore, it is useful to offer this functionality as a 
service. The typical client of a BaaS provider is a module of a web service 
composition framework, which needs to find the best mapping of concrete web 
services to the tasks of a composition model. 

We provide a QoS-aware BaaS implementation [4] based on the QoS 
aggregation method of Yang et al. [5] and on our preference handling approach 
detailed in the previous section. 

A web service request sent to our BaaS provider must contain the 
following information: the orchestration model, the list of QoS attributes, for each 
task in the orchestration model, a list of concrete web services offering the 
required functionality, the QoS constraints and the QoS preferences. 

The orchestration model is represented as a workflow with execution 
probabilities attached to its edges. If probabilities are missing, our implementation 
will assign default probabilities. Edges starting from an XOR gateway are 
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assigned a probability of 1/k, where k is the number of outgoing edges of the 
given XOR gateway. All other edges are assigned a probability of 1. 

The list of QoS attributes must contain information about the aggregation 
category of each attribute. The list of concrete web services offering the required 
functionality of a given task must specify for each concrete web service its QoS 
values.  Not all web services have all QoS attributes of the composite service. For 
example, a composite service that converts data sets to graphic charts may have a 
QoS attribute indicating the number of colors of the resulting image. The 
composite service may have a component service that sorts the data set. The 
number of colors is clearly not a QoS attribute of the sorting service. In situations 
where a QoS attribute is missing for a component service, our implementation 
provides default values, in accordance with the aggregation category of the 
missing QoS attribute.  

Some of the tasks in an orchestration model may be internal actions. For 
these tasks, the list of concrete web services implementing their functionality is 
empty. 

The QoS preferences are specified using the preference notation 
introduced in the previous section. Optimizing the aggregated QoS of a composite 
service is an NP-hard problem. An exhaustive search is feasible only for simple 
compositions models, having a small number of tasks and a small number of 
available services for each task. To overcome these issues, the BaaS 
implementation uses a genetic algorithm, which finds the best mapping of 
concrete services to the tasks involved in the composition. The algorithm uses the 
method presented above, in the QoSPref Section, to estimate the fitness of the 
mappings that make up a population of candidate solutions. 

A genetic algorithm maintains a population of chromosomes, where each 
chromosome encodes a possible solution of the problem. In our case, a 
chromosome encodes a possible mapping of web services to tasks. The 
chromosome is structured as a vector of ݊ elements, where ݊ is the number of 
tasks in the orchestration model. The value of the element ݅ in this vector is an 
integer indicating the index of the component service assigned to the task ݅. Our 
genetic algorithm uses the two-point crossover operator for recombination. 
Mutations are performed by randomly choosing a task and randomly changing the 
index of its assigned component service. 

A peculiarity of our approach for preference specification is that the fitness 
of a solution can only be evaluated in the context of a given population, because 
the ranking algorithm performs pair wise comparisons of all candidate solutions. 
Therefore, it is not possible to offer an absolute value for the fitness of a solution. 
Our genetic algorithm computes the fitness of a solution based on its ranking in 
the current population, by assigning the maximum value to the top ranking 
solution and the minimum value to the solution at the last position in the ranking. 
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Since there is no absolute value for the fitness of a solution, checking the 
occurrence of the third condition is not a trivial operation. In order to solve this 
issue, the genetic algorithm maintains a list of best-so-far solutions. At the end of 
each generation, the best solution in the current population is searched in the list 
of best-so-far solutions. If not already present, it is added to this list and ranked 
against the other elements. An improvement has occurred only if the current best 
solution is at the top of the resulting ranking. The size of the list of best-so-far 
solutions is limited by a value configured as a parameter of the algorithm. If, as a 
consequence of adding the current best solution to the list of best-so-far solutions, 
its size exceeds the limit, the element with worst ranking will be removed.  

For a detailed description of the genetic algorithm, usage examples and 
experimental results please refer to our paper [6]. 

8. Conclusions 

We propose a dynamic web service composition approach that can deal 
with complex QoS preferences. We offer an end to end solution, starting from the 
service discovery step, based on a preferences enriched semantic search, to the 
actually service binding step. In our work, we have combined powerful 
technologies. We use a semantic search that takes into consideration the required 
QoS preferences in order to restrict the number of elements in the list of candidate 
services for each task. This is achieved by using our ontology extension to capture 
complex QoS preference tradeoffs.  We introduce a new approach of ranking 
service alternatives based on the user’s QoS expectations. The users can define 
their requirements and their preferences by using a simple and intuitive 
specification language. The service alternatives are compared using a simple 
algorithm that allows dealing with tradeoffs of the preferences.  

To overcome the challenges brought by measuring the QoS of a 
composition of web services we use the aggregation method of Yang et al. [5], 
which has the major advantage of being able to deal with unstructured 
orchestration models. Finally, we use a genetic algorithm for finding the best 
mapping of component services to the tasks involved in a service composition. 

We offer a extension for the OWL-Q ontology, implemented with Protégé. 
For the (BaaS) provider we offer a prototype implementation written in Java as an 
open source project at: http://baas.sourceforge.net/. A prototype implementation 
of the ranking engine based on our method of preferences specification, offering a 
graphical interface as well, is available at http://qospref.sourceforge.net/. 
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