
U.P.B. Sci. Bull., Series C, Vol. 77, Iss. 3, 2015 ISSN 2286-3540

AN END TO END WEB SERVICE COMPOSITION BASED ON
QoS PREFERENCES

Raluca IORDACHE1, Florica MOLDOVEANU2

The service-oriented environment offers the opportunity to create new
applications, by combining existing applications offered as services, in order to
react to the business’ increasing pressure of quickly delivering new applications.
With a large number of web services offering the same functionality, choosing the
web services that meet best the client’s quality of service (QoS) requirements is a
very important task. We introduce a QoS-aware end to end web service composition
approach that handles all the stages from the web service discovery step, to the
actual binding of the services. This approach uses our method of expressing non-
functional preferences, which requires minimal effort on the part of the clients, but
offers great flexibility in managing trade-offs. We define a QoS preferences ontology
and use it in our semantic web service selection to choose an initial candidate list of
services for every task in the orchestration model. Then, one concrete service is
chosen from each candidate list and is boand to the corresponding task. This step
involves computing and comparing the aggregated QoS of the resulting composite
services. The selection is performed using a genetic algorithm.

Keywords: semantic web, QoS ontology, multidimensional QoS preferences,
service binding, service composition.

1. Introduction

In SOA environments, loosely coupled services can be orchestrated into
composite services in order to implement complex business processes. A
composite service is usually described by an orchestration model involving a
series of tasks. In order to execute a composite service, each task must be
associated with a concrete web service that offers the required functionality.
Moreover, the component services should be chosen in a way that assures the best
quality of service (QoS) for the resulting composite service.

Web services have a dynamic nature: at every moment, a service may
cease to exist or a new one may become available. Non-functional characteristics,
such as the QoS, are also subject to frequent changes. Therefore, much research is

1 PhD Student, “Automatic Control and Computers” Doctoral School, University POLITEHNICA

of Bucharest, Romania, e-mail: riordache@outlook.com
2 Prof., Dept. of Computer Science and Engineering, Faculty of Automatic Control and

Computers, University POLITEHNICA of Bucharest, Romania, e-mail:
florica.moldoveanu@cs.pub.ro

4 Raluca Iordache, Florica Moldoveanu

directed toward automated, dynamic web service composition approaches. In this
paper, we propose an end-to-end approach to this problem, which involves two
main phases: discovery and binding.

The discovery phase is based on the using of ontologies in order to provide
for each task a list of candidate services offering its required functionality. In the
binding phase, for each task in the orchestration model, a unique service is
selected from its list of candidate services. The selection process adopts a global
optimization strategy devised to produce the composite service that best matches
the aggregated QoS preferences expressed by the client. A novelty of our
approach is that QoS preferences are also taken into account during the discovery
phase, with the goal to restrict the number of elements in the list of candidate
services for each task. This is achieved by extending the ontology with QoS
preference information and using a local optimization strategy during the
discovery phase.

Another important contribution of this work is the use of QoSPref [1], our
preference specification method of expressing non-functional preferences, which
offers great flexibility in managing trade-offs, but is at the same time very
intuitive. This method leads to a simple algorithm for selecting web services,
which does not require sophisticated multicriteria decision techniques.

We extend the OWL-Q [2] ontology to capture trade-off preferences
expressed using our QoSPref notation. This ontology extension [3] allows a
symmetric specification of the QoS properties of the request and the offer.

An initial list of candidate services is obtained for each task in the
orchestration model by performing a semantic search based on the functional and
non-functional requirements. For choosing the one concrete web service that will
bind to a task from our composition, we compare them based on the overall QoS
of the resulting composite services. This raises the issue of computing the
aggregated QoS of a composite service based on the QoS of its component
services. Most solutions to this problem are limited to composition models that
can be represented as well-structured workflows. Our binding-as-a-service (BaaS)
[4] implementation uses the aggregation method proposed by Yang et al. [5],
which overcomes this restriction. The best mapping of concrete services to the
tasks involved in the composition is foand using a genetic algorithm [6] that
evaluates the fitness of a solution based on its aggregated QoS and on the QoS
preferences expressed by the client using our QoSPref specification method.

2. QoS - Quality of Service

In SOA environments, the existence of numerous web services offering
the same functionality needed by a given task leaves the application designer with
several candidates to choose from. At this point, analyzing the quality of the

An end to end web service composition based on QoS preferences 5

alternatives starts playing a fandamental role in the service selection. Non-
functional characteristics of a web service, such as availability, cost, response
time, or supported security protocols define the Quality of Service (QoS) concept.

Although considerable research has been done in the recent years, there is
no widely accepted approach for the QoS-aware selection of web services. This is
mainly due to the various issues that have to be addressed for providing a
complete solution. These issues include the design of suitable frameworks and
architectures [7][8], which should provide ontologies for the formal specification
of QoS metrics [9] [10], methods of obtaining current metric values [11] and web
service selection algorithms based on user-specified QoS criteria [12].

3. The aggregated QoS of composite services

Various solutions have been proposed for the problem of estimating the
aggregated QoS of a composite service, but they differ in the restrictions they
impose on the topology of the composition. Most of them are limited to
orchestration models that can be represented as well-structured workflows. Yang
et al. [3] have introduced a method that overcomes these restrictions. This
method, which is used in our binding-as-a service (BaaS) implementation, is
presented in the remaining of this section. The input of this method is an
orchestration model together with a binding that maps tasks to component
services. An orchestration model is a directed graph with execution probabilities
attached to its edges. The orchestration models are decomposed into orchestration
components, which are subgraphs with a single-entry and single-exit point. The
QoS is computed in a bottom-up manner for each orchestration component. Well-
structured orchestration models, that is, models where each split gateway has a
corresponding join gateway, are straightforward to analyze. Different aggregation
formulas are provided depending on the type of the QoS attribute, which can be
classified into three categories: critical path, additive and multiplicative. A
preliminary step of the QoS aggregation method is to use the block-structuring
technique introduced in [5] to transform an unstructured orchestration model into
a maximally structured orchestration model.

We give an illustrative example that will be used throughout this paper in
order to expose some of the issues related to the QoS-aware dynamic web service
composition. We consider an online trading system offering services for trading
various financial instruments. One of these services allows customers to buy both
domestic and foreign stocks. The model can be transformed to a behaviorally
equivalent model that is well-structured. The components that are irreducible
using this technique are called rigid components and they are of two types:
irreducible Directed Acyclic Graphs (DAG) and irreducible multiple-entry,
multiple-exit (MEME) loops. The authors of [5] provide an algorithm that

6 Raluca Iordache, Florica Moldoveanu

transforms irreducible DAG components in equivalent choice components.
Irreducible MEME loops can be transformed using the block-structuring
technique into equivalent rigid components where the concurrency is fully
encapsulated within child components. For these equivalent components, the
expected number of times that a node in the MEME loop is visited can be
calculated using standard methods. This allows computing the QoS of the
irreducible component by applying the aggregation formulas characteristic to each
category of QoS parameters.

4. The problem of expressing preferences

The ability of clients to express their QoS expectations plays a crucial role
in the selection of the most suitable web service. While hard constraints are
relatively easy to formulate, there is no standard way to deal with soft constraints
that should reflect client's preferences in situations where no web service is
capable of satisfying all QoS requirements.

Of particular interest for the domain of QoS-aware service selection are
the fields of multicriteria decision analysis and in particular of multiobjective
optimization or Pareto optimization. Multiobjective optimization problems can
also be foand in various areas where optimal decisions involve trade-offs between
multiple (possibly conflicting) objectives. A Pareto optimal solution is a solution
for which it is impossible to improve one objective without worsening another
one. Multiobjective optimization uses a priori or a posteriori approaches,
depending on the moment when the decision maker's preferences are articulated.

The best known and simplest method for preference articulation is the
weighted sum method. The method uses weight values supplied by the user to
describe the importance of the objectives. One drawback of this method is that the
weights must both compensate for differences in objective function magnitudes
and provide a value corresponding to the relative importance of an objective.
Another drawback is that it is not able to find certain solutions in the case of a
non-convex Pareto curve. The authors of [13] conclude that the weighted sum
method "is fandamentally incapable of incorporating complex preference
information ".

Lexicographic preferences is another simple method used for modeling
rational decision behavior. Preferences are defined by a lexical ordering, which
leads to a strict ranking. While being very easy to use, lexicographic preferences
have the major drawback of being non-compensatory. An extension of this
method is lexicographic semiorder, where a tradeoff is addressed in situations
where there is a significant improvement in one objective that can compensate an
arbitrarily small loss in the most important objective. This is based on Tversky’s
lexicographic semiorder notion where an alternative x is considered better than an

An end to end web service composition based on QoS preferences 7

alternative y if the first criterion that distinguishes between x and y ranks x higher
than y by an amount exceeding a fixed threshold [14] [15]. The advantage of this
method is that it ensures that a solution that is slightly better on the most
important objective but a lot worse on the other objectives will not be selected.

5. QoSPref - The conditional lexicographic approach

As mentioned before, QoS expectations can take the form of hard and soft
constraints. While all hard constraints must be satisfied in order for a web service
to be selected, soft constraints represent rather desirable characteristics of the
chosen service. If no web service meets all soft constraints, users should have the
possibility to express their tradeoff preferences, in order to allow the dynamic
selection of services.

Our approach to articulate the QoS preferences is based on the observation
that, when trying to find a set of rules allowing them to choose between several
alternatives, people start by ranking their preferences, in accordance with their
perceived importance. This action is equivalent to imposing a lexicographic order
on the different criteria that have to be considered. In most situations, using such a
strict hierarchy is not sufficient to capture people's real preferences. In this case,
people usually introduce additional rules that change the criteria priorities when
some specific condition is met.

We propose a method to establish a total order on the set of existing web
service alternatives, by attaching conditions to lexicographic preferences and we
introduce a preference specification language that can be used for authoring QoS
preferences.

We illustrate the method based on our online trading system example
introduced in [4]. Some of the tasks in this model (such as those for order
registration) represent internal actions of the online trading system. Other tasks
(such as those for getting stock quotes) require interaction with external systems.
The online trading system implements the stock buying service as a composite
web service. For the tasks involving interaction with external systems, it is
necessary to find providers offering the required functionality as a web service.
Usually, there are several alternatives for each of these tasks. For example, there
are many web services that provide stock quotes. The online trading system has to
decide which of the possible service components to bind to each task in its
composition model. This service binding is a dynamic process, because over time,
some component services may cease to exist and new ones may become available.

In order to be able to dynamically bind component services to the tasks
specified in the composition model of the stock buying service, the online trading
system must have an automated method of comparing composite services based
on their QoS.

8 Raluca Iordache, Florica Moldoveanu

In our example, we consider that only the following QoS attributes are
interesting for the online trading system: execution time, cost, and reliability. The
QoS of the composite stock buying service is determined by the QoS of its service
components, which are assumed to be known. However, it is not clear how to
estimate the QoS of the composite service. While the aggregated cost can be
easily computed by adding the costs of all component services, there is no obvious
method for estimating execution time and reliability.

Our preference specification language allows specifying both constraints
and preferences. Constraints are declared as a list of comma separated boolean
conditions that must be satisfied by the service. They are enclosed in a constraints
block, as shown below:

constraints {
 cost < 1000,
 reliability > 0.95,
 executionTime < 60
}

The order of constraint conditions is irrelevant, but order plays a key role
in the articulation of QoS preferences. For the beginning, we consider that the
client provides a strict ranking of preferences. This is expressed in our
specification language by using a preferences block that includes the comma
separated list of relevant QoS attributes in the order of their importance:

preferences {
 cost: low,
 reliability: high,
 execTime: low
 }

For each QoS attribute, the client should indicate the direction associated
with better values. This piece of information appears after the attribute name,
separated by a colon. Possible values for direction are low and high.

In the example above, cost is the most important QoS attribute, and
services with a lower cost are considered better. However, this specification of
preferences does not accurately capture client's preferences. We add a few more
details about the online trading system to illustrate why comparing composite
services characterized by multiple QoS attributes is not a trivial task.

The executives of this system try to maximize their profit, therefore they
see the cost as the most important QoS parameter. However, they are willing to
ignore small cost differences (not exceeding 10 cents) if the composite service
with a higher cost has better values for reliability and execution time.

An end to end web service composition based on QoS preferences 9

For the customers of this system, it is very important that trading orders
are executed as soon as possible. Therefore, the online trading systems guarantees
that the execution time of its stock buying service does not exceed 30 seconds.
For every violation of this agreement, the owners of the online trading system
must pay a penalty proportional with the delay. This means that, when comparing
two composite services, the execution time becomes the most important parameter
if at least one of the compared services has an execution time exceeding the 30
seconds limit. It is clear that traditional methods such as weighted sum or
parameter ranking are not appropriate for this scenario.

We consider that the executives of the online trading see the cost as the
most important QoS attribute, followed by reliability and then by execution time.
As mentioned before, the executives are willing to ignore small cost differences
(not exceeding 10 cents) if the composite service with a higher cost has better
values for reeliability and execution time. Furthermore, there are penalties to be
paid if the execution time of the composite service exceeds 30 seconds. Therefore,
when comparing two composite services, the execution time becomes the most
important parameter if at least one of the compared services has an execution time
exceeding the 30 seconds limit. In order to be able to articulate preferences for
scenarios like the one above, our specification language provides four unary
preference operators, which are shown in Table 1:

Table 1
Preference operators

Preference operator Meaning
AT_LEAST_ONE(condition) condition(service1) OR condition(service2)
EXACTLY_ONE(condition) condition(service1) XOR condition(service2)
ALL(condition) condition(service1) AND condition(service2)
DIFF(attribute) |service1.attribute - service2.attribute|

The first three operators take as argument a boolean formula, which
usually involves one or more QoS attributes. The formula is evaluated twice, once
for each of the web services to be compared. The two resulting boolean values
are passed as arguments to the boolean operator (OR, XOR, or AND) associated
with the given preference operator, in order to obtain the return value.

The preference operator DIFF takes as argument a QoS attribute and
returns the modulus of the difference of its corresponding values from the two
web services compared.

In the remainder of this paper, we use the term preference rule to denote an
entry in the preferences block. As already seen, a preference rule has three
components: an optional condition, an attribute indicating the QoS dimension

10 Raluca Iordache, Florica Moldoveanu

used in comparisons and a direction flag stating which values should be
considered better.

In our specification language, the preferences corresponding to the above
described scenario can be articulated as shown in Figure 1. (The preference rule
indexes appearing at the left side of the figure are only informative and are not
part of the preference specification.) The preferences corresponding to the above
described scenario can be articulated as follows in our specification language:

 preferences {
1) [AT LEAST ONE(execTime > 30)] execTime : low,
2) [DIFF(cost) > 10] cost : low,
3) reliability : high,
4) execTime : low,
5) cost : low,
 }

Figure 1. A more elaborate specification of preferences

The specification language can deal with situations where people are not
fully aware of their preferences. When users notice that the current rules do not
accurately capture their preferences, they can simply add a new conditional rule,
thus incrementally improving the preference specification.

In what follows, we use the notation ݏଵ ظ ଶ to indicate that the webݏ
service ݏଵ is preferred to the web service ݏଶ, and the notation ݏଵ ׽ ଶ to indicateݏ
that the service ݏଵ is indifferent to the web service ݏଶ. Additionally, we introduce
the notation ݏଵ ௞ظ ଵ is preferred to the webݏ ଶ to indicate that the web serviceݏ
service ݏଶ and that the preference rule ݇ has been decisive in establishing this
relationship. We also introduce the complementary operators and ط௞, defined
by the following relations: ݏଵ ط ଶݏ ଶ, iffݏ ظ ଵݏ ଵ andݏ ௞ط ଶݏ ଶ, iffݏ ௞ظ ଵݏ

Our algorithm for comparing two web services based on the preferences
expressed using our conditional lexicographic approach examines all entries in the
preferences block in the order in which they appear. If the current preference rule
has no attached condition, or the attached condition evaluates to true, the values
corresponding to the attribute specified by this entry are compared. If the attribute
values are not equal, the algorithm returns a tuple containing the result of the
current comparison and the index of the preference rule that has been decisive in
establishing the preference relationship. Otherwise, the execution continues with
the next preference rule. The algorithm returns either an indifference relation
between the two web services, or a tuple that identifies a relation of type ط௞ or ظ௞
between them.

In a series of experiments, Tversky [6] has shown that people have
sometimes intransitive preferences. Therefore, being able to capture such

An end to end web service composition based on QoS preferences 11

preferences is an important feature of our specification language. However, a
consequence of allowing intransitive preferences is that the pairwise comparison
of all web service alternatives is in general not sufficient to impose a total order
on these services. An illustrative example of how our method is used in a context
containing intrasnsitive preferences is given in our paper [1].

In order to obtain a total order on the set of web service alternatives, we
attach to each web service ݅ a score vector of integer values: ௜ܸ א Գ௥ାଵ, where ݎ is
the number of preference rules. The score vector of one web service contains for
every preference rule the number of times this web service was prefered to
another one due to this specific preference rule and a last entry containing the
number of times this web service was indifferent to another one.

Using the score vectors, we are able to provide an algorithm for the
ranking of web service alternatives. Please refer to [1] for pseudocode and further
details. This algorithm induces a total order on the set of web service alternatives,
thus allowing us to rank them accordingly, eliminating the intransitivity.

6. Ontology extension for expressing tradeoff preferences

Semantic web has gained popularity in the recent years, in part due to the
need to automate the service discovery process. The use of ontologies facilitates
machine reasoning, allowing the implementation of complex web service
selection engines that offer accurate results. The selection of web services, as well
as the specification of the process workflow based on ontologies has been also
advocated by the authors of [16]. Usually, the web service selection process
includes the discovery step and the selection step. The discovery step involves
searching for appropriate web services, based on functional criteria. During the
selection step, the best fitting service is selected from the services discovered in
the previous step, by taking into account the client's non-functional requirements.
Therefore, ontologies for semantic web should be able to deal with both
functional and non-functional requirements.

We argue that the capability to express QoS preferences and trade-offs
between them is crucial for selecting the best web service. While hard constraints
are relatively easy to formulate, there is no standard way to deal with soft
constraints that should reflect client’s preferences in situations where no web
service is capable of satisfying all QoS requirements.

Currently, there is no established standard for describing the QoS
properties. After analyzing the existing QoS ontologies we have chosen to extend
the OWL-Q ontology, a complex ontology designed into several facets that can be
extended and enriched independently. This ontology allows a symmetric
specification of the QoS properties of the request and the offer. For the
matchmaking algorithm, the approach transforms the comparison to a Constraint

12 Raluca Iordache, Florica Moldoveanu

Satisfaction Problem and extends the existing CSP-based approaches. OWL-Q
addresses the problem of specifying the requester’s priority for QoS constraints,
by allowing the requester to provide weights to metrics of his interest. The
weights express the impact of the attributes and allow the ranking of the offers.

We argue that providing weights for the metrics isn’t enough for capturing
complex QoS requirements. In order to use the flexibility of our QoSPref method
for expressing trade-off preferences in a semantic context, we extend the OWL-Q
ontology to use our conditional lexicographic method.

In OWL-Q [2] the QoS offers and requests are defined by the QoSSpec
Facet. The QoSSpec class contains the QoS description of a web service. It
contains several attributes like the cost of using the service and the currency,
security and transaction protocols, the validity of the offer. QoSSpec is separated
into two subclasses, disjoint to each other: QoSOffer and QoSDemand where the
WS providers and requesters can define in the same way, symmetrically, their
QoS constraints.

The WS requester can provide constraints by using the QoSDemand class
and can also provide weights to metrics of his interest, by using the QoSSelection
class. The QoSSelection class contains list of <metric,weight> entries. The
weight value can have the value of 2.0 if it is a hard constraint or a value in (0:0;
1:0) if it is soft.The entry <metric,weight> is defined by the QosSelectElem class
and the QoSSelectElemeList contains a list of QosSelectElem-s.

OWL-Q also contains a Metric Value Type Facet that describes the types
of values a QoS metric can take. The MetricValueType class has two subclasses
indicating the direction of values for the QoS metric that owns one of these two
subtypes: PositivelyMonotonic value types have a direction of values from the
lowest to the highest value where the highest value is mapped to the highest
quality level that can be achieved while a NegativelyMonotonic value type has an
opposite direction of values where the highest quality level is mapped to the
lowest value. As an example, a QoS metric measuring the Availability QoS
attribute has as value type a positively monotonic value type while a
ReponseTime QoS Attribute has a negatively monotonic value type, as the lowest
values are the better ones. Thus, when describing a preference rule from out
QosPref approach, we don’t need to explicitly write the direction flag of a metric
anymore, as this is already described by the metric itself.

For our extension of the OWL-Q Requirements Specification to capture
preference trade-offs, we can keep from OWL-Q the QoSOffer description, as the
provider specification remains unmodified. For this reason, we choose to extend
the existing facet by adding new classes for the preference selection, and not
create another facet.

We define a new QoSSelectionWithTradeoffs class that will incorporate a
list of preferences, described similar to our QosPref’s notation. The hard

An end to end web service composition based on QoS preferences 13

constraints are specified using the QoSDemand class, just like in the OWL-Q
ontology. A preference is described by a QoSPreference class that incorporates a
preference rule. As already seen, a preference rule has three components: an
optional condition, an attribute indicating the QoS metric used in comparisons and
a direction flag stating which values should be considered better. As the direction
flag is specified using the MetricValueType class from OWL-Q, a preference rule
has to include the optional condition and the metric. A preference rule entry looks
like that: <(optional condition) metric>.

For the optional condition the three logical operators AT_LEAST_ONE
(OR operator), EXACTLY_ONE (XOR operator), ALL (AND operator) and the
arithmetic operator DIFF (-) as seen in Table 1 have to be included in the
ontology. The optional condition can be described as <operator, metric>.

Another observation is that the order of the preferences is an important
factor for the ranking algorithm, with the first preference being the most
important. So, the order of preferences in the preferences list is important. To
make the semantic notation easy to follow we choose to explicitly attach the
priority to every preference rule so that an entry in the QoSPreference class will
look like that: <priority, (condition) metric>. The QoSRequest class will point to
both QoSSelectionWithTradeoffs and QoSSelection class. The requester can
decide which QoS specification he wants to use, depending on the use case. The
ontology extension allows the requester to use a notation to flexibility define
complex constraints and trade-offs of preferences in a semantic context.

7. BaaS -Binding as a Service

There are several web service composition frameworks, with different
architectures and methodologies. Nonetheless, service binding is a task required
by all these frameworks. Therefore, it is useful to offer this functionality as a
service. The typical client of a BaaS provider is a module of a web service
composition framework, which needs to find the best mapping of concrete web
services to the tasks of a composition model.

We provide a QoS-aware BaaS implementation [4] based on the QoS
aggregation method of Yang et al. [5] and on our preference handling approach
detailed in the previous section.

A web service request sent to our BaaS provider must contain the
following information: the orchestration model, the list of QoS attributes, for each
task in the orchestration model, a list of concrete web services offering the
required functionality, the QoS constraints and the QoS preferences.

The orchestration model is represented as a workflow with execution
probabilities attached to its edges. If probabilities are missing, our implementation
will assign default probabilities. Edges starting from an XOR gateway are

14 Raluca Iordache, Florica Moldoveanu

assigned a probability of 1/k, where k is the number of outgoing edges of the
given XOR gateway. All other edges are assigned a probability of 1.

The list of QoS attributes must contain information about the aggregation
category of each attribute. The list of concrete web services offering the required
functionality of a given task must specify for each concrete web service its QoS
values. Not all web services have all QoS attributes of the composite service. For
example, a composite service that converts data sets to graphic charts may have a
QoS attribute indicating the number of colors of the resulting image. The
composite service may have a component service that sorts the data set. The
number of colors is clearly not a QoS attribute of the sorting service. In situations
where a QoS attribute is missing for a component service, our implementation
provides default values, in accordance with the aggregation category of the
missing QoS attribute.

Some of the tasks in an orchestration model may be internal actions. For
these tasks, the list of concrete web services implementing their functionality is
empty.

The QoS preferences are specified using the preference notation
introduced in the previous section. Optimizing the aggregated QoS of a composite
service is an NP-hard problem. An exhaustive search is feasible only for simple
compositions models, having a small number of tasks and a small number of
available services for each task. To overcome these issues, the BaaS
implementation uses a genetic algorithm, which finds the best mapping of
concrete services to the tasks involved in the composition. The algorithm uses the
method presented above, in the QoSPref Section, to estimate the fitness of the
mappings that make up a population of candidate solutions.

A genetic algorithm maintains a population of chromosomes, where each
chromosome encodes a possible solution of the problem. In our case, a
chromosome encodes a possible mapping of web services to tasks. The
chromosome is structured as a vector of ݊ elements, where ݊ is the number of
tasks in the orchestration model. The value of the element ݅ in this vector is an
integer indicating the index of the component service assigned to the task ݅. Our
genetic algorithm uses the two-point crossover operator for recombination.
Mutations are performed by randomly choosing a task and randomly changing the
index of its assigned component service.

A peculiarity of our approach for preference specification is that the fitness
of a solution can only be evaluated in the context of a given population, because
the ranking algorithm performs pair wise comparisons of all candidate solutions.
Therefore, it is not possible to offer an absolute value for the fitness of a solution.
Our genetic algorithm computes the fitness of a solution based on its ranking in
the current population, by assigning the maximum value to the top ranking
solution and the minimum value to the solution at the last position in the ranking.

An end to end web service composition based on QoS preferences 15

Since there is no absolute value for the fitness of a solution, checking the
occurrence of the third condition is not a trivial operation. In order to solve this
issue, the genetic algorithm maintains a list of best-so-far solutions. At the end of
each generation, the best solution in the current population is searched in the list
of best-so-far solutions. If not already present, it is added to this list and ranked
against the other elements. An improvement has occurred only if the current best
solution is at the top of the resulting ranking. The size of the list of best-so-far
solutions is limited by a value configured as a parameter of the algorithm. If, as a
consequence of adding the current best solution to the list of best-so-far solutions,
its size exceeds the limit, the element with worst ranking will be removed.

For a detailed description of the genetic algorithm, usage examples and
experimental results please refer to our paper [6].

8. Conclusions

We propose a dynamic web service composition approach that can deal
with complex QoS preferences. We offer an end to end solution, starting from the
service discovery step, based on a preferences enriched semantic search, to the
actually service binding step. In our work, we have combined powerful
technologies. We use a semantic search that takes into consideration the required
QoS preferences in order to restrict the number of elements in the list of candidate
services for each task. This is achieved by using our ontology extension to capture
complex QoS preference tradeoffs. We introduce a new approach of ranking
service alternatives based on the user’s QoS expectations. The users can define
their requirements and their preferences by using a simple and intuitive
specification language. The service alternatives are compared using a simple
algorithm that allows dealing with tradeoffs of the preferences.

To overcome the challenges brought by measuring the QoS of a
composition of web services we use the aggregation method of Yang et al. [5],
which has the major advantage of being able to deal with unstructured
orchestration models. Finally, we use a genetic algorithm for finding the best
mapping of component services to the tasks involved in a service composition.

We offer a extension for the OWL-Q ontology, implemented with Protégé.
For the (BaaS) provider we offer a prototype implementation written in Java as an
open source project at: http://baas.sourceforge.net/. A prototype implementation
of the ranking engine based on our method of preferences specification, offering a
graphical interface as well, is available at http://qospref.sourceforge.net/.

R E F E R E N C E S

[1] R. Iordache and F. Moldoveanu, „A conditional lexicographic approach for the elicitation of
QoS Preferences,“ in s Lecture Notes in Computer Science vol. 7565, pp 182-193,

16 Raluca Iordache, Florica Moldoveanu

Rome, 2012.
[2] K. Kritikos and D. Plexousakis, „OWL-Q for Semantic QoS-based Web Service Description

and Discovery,“ in s Fifth IEEE European Conference on Web Services, Halle,
Germany, 2007.

[3] R. Iordache and F. Moldoveanu, „QoS-aware web service semantic selection based on
preferences,“ in s 24th DAAAM International Symposium on Intelligent
Manufacturing and Automation, Zadar, Croatia, 2013.

[4] R. Iordache and F. Moldoveanu, „A web service composition approach based on QoS
preferences,“ in s Proceedings of the 6th IEEE International Conference on Service
Oriented Computing & Applications (SOCA 2013), Kauai, Hawaii, 2013.

[5] Y. Yang, M. Dumas, L. García-Bañuelos, A. Polyvyanyy and L. Zhang, „Generalized
aggregate Quality of Service computation for composite services,“ Journal of Systems
and Software, Nr. 85(8), pp. 1818-1830, 2012.

[6] R. Iordache and F. Moldoveanu, „A genetic algorithm for automated service binding,“ in s
24th DAAAM International Symposium on Intelligent Manufacturing and
Automation, Zadar, Croatia, 2013.

[7] E. M. Maximilien and M. P. Singh, „A Framework and Ontology for Dynamic Web Services
Selection,“ IEEE Internet Computing, Bd. Bd. 8, Nr. 5, pp. 84--93, 2004.

[8] L. Zeng and B. Benatallah, „QoS-Aware Middleware for Web Services Composition,“ IEEE
Transactions on Software Engineering, Issue 5, Bd. Bd. 30, Nr. 5, pp. 311--327, 2004.

[9] C. Zhou, L.-t. Chia and B.-s. Lee, „DAML-QoS Ontology for Web Services,“ in s
Proceedings of IEEE International Conference on Web Services, San Diego, CA,
USA, 2004.

[10] I. V. Papaioannou, D. T. Tsesmetzis, I. G. Roussaki and M. E. Anagnostou, „QoS Ontology
Language for Web-Services,“ Vienna, Austria, 2006.

[11] L. Zeng, H. Lei and H. Chang, „Monitoring the QoS for Web Services,“ in s International
Conference on Service Oriented Computing, 2007.

[12] J. Day and R. Deters, „Selecting the best web service,“ in s Proceedings of the 2004
conference of the Centre for Advanced Studies on Collaborative research, 2004.

[13] R. T. Marler and J. S. Arora, „The weighted sum method for multi-objective optimization:
new insights,“ Structural and Multidisciplinary Optimization, Bd. 41, Nr. 6, pp. 853-
862, 2010.

[14] A. Tversky, „Intransitivity of Preferences,“ Psychological Review, Bd. Vol. 76, Nr. Jan 1969,
pp. 31-48, 1969.

[15] P. Manzini and M. Mariotti, „Choice by lexicographic semiorders,“ Theoretical Economics ,
pp. 1-23, 2012.

[16] A. Costan and V. Cristea, „A workflow management engine for scientific applications,“ in s
U.P.B. Sci. Bull., Series C, Vol. 73, Iss. 2, Bucharest, Polytechnic Institute of
Bucharest, 2011, pp. 73-88.

