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PHOTONIC CRYSTAL FIBER MODE CHARACTERIZATION
WITH MULTIPOLE METHOD

Dana Georgeta POPESCU, Paul STERIAN?

Photonic crystal fibers (PCFs) have shown great capacity in overcoming the
limits of conventional fibers and obtaining remarkable results the regular fiber
cannot achieve, such as high nonlinear effects, controlled dispersion, low bending
losses, low losses and high power transmittance. In this paper we considered a PCF
having N inclusions and a hole-diameter of d/a =0.3. For different values of the
wavelength varying between 1 um to 2 um and for different pitch size we studied the
fundamental mode of a PCF having the refractive index of the cylindersn, =1 (air)

and a silica background with the multipole method. This method takes into account
both the real and imaginary parts of the mode propagation constant, providing
information about losses using Bloch transform. It allows a clear distinction
between cladding and defect modes and it is highly stable when varying the fiber
parameters and wavelength.

Keywords: photonic crystal fiber, multipole method, field distribution, Bloch
transform.

1. Introduction

The first photonic crystal fiber (PCF) was realized after the prediction of
Birks et al. [1] in 1995. They highlight the guidance of the light through PBG
(photonic bang gap) effects in a hollow core along the length of a fiber with air
holes, which lead to the first PCF [2] that had remarkable properties such as
unprecedented dispersion [3], endlessly single mode guidance [4] and nonlinear
properties. These interesting features have led to multiple novel applications.
PCFs are attracting tremendous attention in recent years because of their
important properties and unique propagation characteristics that cannot be realized
with conventional optical fibers, incorporating a larger refractive index contrast
and requiring a complete electromagnetic treatment rather than a weak guidance
approximation [5-8]. PCF became a major topic of research because they have
allowed technological breakthrough, permitting the discovery of new physical
phenomena and unveiling new aspects of wave guidance. Endlessly single mode
fibers or hollow core guidance made possible the development of novel
application in sensing, metrology, nonlinear optics, and particle guidance or
dispersion management [9-12]. In cross-section, a photonic crystal fiber appears
as a periodic structure of dielectric materials, commonly a solid silica material

! PhD Student, University POLITEHNICA of Bucharest, Romania, e-mail:
dana.popescu@infim.ro
2 prof., Faculty of Applied Sciences, University POLITEHNICA of Bucharest, Romania, Romania



206 Dana Popescu, Paul Sterian

pierced by air holes grouped in a triangular lattice that extends parallel to the fiber
axes. The creation of a defect leads to an enhanced propagation of the light
through this periodic lattice. One type of MOF has a central air hole and confines
light in it by PBG effects making possible the propagation of the light in air.
However the location of the modes which propagates in this kind of fiber
represents a numerically difficult task. Another type of MOF is the one with silica
core, which allows the propagation of the light by means of modified total internal
reflection. To guide the design process precise numerical simulations are
essentials for reduction of the costs and the effort needed for the fabrication of
photonic crystal fibers. In this paper we determine the fundamental mode for a
PCF structure that is studied by numerical simulation based on multipole method
[13-14].

2. Method

Lately, remarkable progress has been made in the design and manufacture
of MOFs in an area of new applications as dispersion compensation and light
guiding in air. The finding and analyzing of PCF modes properties was possible
due to sophisticated numerical method called multipole method.

Multipole method is part of the important class of computational and
theoretical techniques used for photonic crystal (PhC) structures study, a
numerical formulation that developed the mode finding of holey fibers, being
useful as a mode solver. It concerns the both real and imaginary parts of the mode
propagation constant, providing information about losses and it is used for full
vector modal calculation of photonic band gap fibers, achieving rapid
convergence and high accuracy with modest computing resources. A freely
software is available [15] that implements this method for circular inclusions and
can be extended for the noncircular ones. In practice it deals with two types of
PCF: solid core PCF and air core PCF, surrounded by air holes, permitting the
modeling of a large number of inclusions, calculation time being reduced for a
structure with discrete rotational symmetry by capitalization of symmetry
properties of the modes.

To represent the electromagnetic field, the multipole method uses two
different kind of field expansion: the first one, the local expansion, which is valid
just outside each inclusion, is related to the field components that are scattered
away by the inclusions, being incident on them. The second one is valid along the
different parts of the structure.

The electromagnetic field must satisfy boundary conditions at the margins
of each inclusion which are given by the Maxwell’s equation. So we can find a
relation between the coefficients of expansions defined on the opposite side of the
boundary and another one by applying the Rayleigh identity, obtaining a
homogeneous system of algebraic equations in one of the coefficients only that



Photonic crystal fiber mode characterization with multipole method 207

can be expressed in a matrix form which depends on the propagation constant of
the mode that is propagation in PCF. Therefore we can reduce the problem of
finding modes that propagates in the photonic structure in a solution discovery
corresponding to finding the propagation constant.

Considering the balance of incoming and outgoing fields we can solve the
problem of scattering consisting of multipole inclusions [7, 13-14]. If we consider
a single inclusion in the matrix that can be seen in Fig. 1, the field being
U(r,0+2r)=U(r,6) periodic along the angular coordinate, we can expand U(r,6)
in a Fourier series fixing r:

U(r,0)= Y fulr)e"” (1)
nezZ

In relation (1), the Fourier coefficients £, () are regular functions of r.

For the Helmholtz equation,

(a+ 42 =0 2)
where k7 =k’n’-p° , k is the free space wave number, B is the propagation
constant, n;, is the real refractive index, by Fourier expansion we obtain:

2 r r I’lz 1
z{a fal) , 19, )+[k12 __Zan(r)}me o @

orl r or

neZ.
Because U(r,6) is a continuous function, one obtains
2 2
a fnz(V)'f—lafn(V)-i- 1_”_2 fn(V)ZO (4)
v v ov v
standing for all » where v =k . This equation is the Bessel differential equation

of order n.
The functions
fn(v) ZCan(V)+Dan(V) (%)
are linear combination of Bessel functions of the first and second kind of order n
(J,(m),7,(v)) or of Bessel and Hankel functions of the first kind of order »

(H,0)=J,0)+iY,(v)).

The expression

U(r,0)= Y (Cydy (kar) + Dy H , (kyr))e ™ (6)
neZ

is called a Fourier Bessel series.

The Fourier Bessel series can be split in two parts: the Bessel functions of
the first kind (regular everywhere) and the Hankel functions (they have a
singularity at 0). When we consider no inclusions, the whole space is
homogeneous. A source placed beyond the outer ring (Sy) radiates a field which is
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regular in the region delimited by the inner circle and its field expansion can only
contain Bessel functions. In this manner U(r,6) becomes:

U(r,0) = R(r,0)+0(r,0) @)
with
R(r,0)= C,J, (kyr)e™® (8)
nezZ
the regular part of U and
0(r,0) =Y. D, H, (kr)e™’ 9)
neZ

its singular counterpart.

Fig. 1. Single inclusion in the matrix where S, are sources.

For an inclusion, the field reaching it will be scattered. S,, R and O are
linked by a linear scattering operator S, where O=SR. S is represented by a matrix
which links the Fourier Bessel coefficients C, with R and D, with O. For two
inclusions the incoming field for inclusion 1 results from the superposition of the
field radiated from S, and the scattered field from inclusion 2 and similarly for the
incoming field for inclusion 2.

3. Results and discussion

We are interested in PCFs having the inclusions in the nodes of a periodic
lattice, their properties being closely related to the cladding’s band structure. We
used a discrete Fourier transformation on specific points along the structure to
isolate the Bloch components for a mode.

We considered a PCF having N inclusions centered around position
vectors c; (/ [1...N]). Supposing that the positions are defined by a finite subset

of a periodic lattice, we can generate a Bloch transform of a given PCF mode by
choosing a number of B,, (c ;) quantities which can characterize the complex field

amplitudes for each N inclusion. In multipole formulation this quantities are
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considered to be the multipole’s amplitudes occurring in the £, and H. expansion.
We define the Bloch transform for B,, quantities:

Bu(6) =" e By (c) (10).

Bloch transform term is usually used in Bloch-Floquet theory. If a mode
consist from a superposition of Nz Bloch waves having kg Bloch vectors and the

field distribution satisfy () = '8 ¢*5"v,,, (), where Vs () function has the
= B

oA
lchjBn
m:?

lattice periodicity, the B, (c;) quantities satisfy Bm(cj):anjle

where l§,”n is the complex amplitude of Bloch wave associated k3 Bloch vector in
By, (c ;) decomposition.

For a given mode the important information obtained from Bloch
transform can be visualized plotting | B,, (k)| vs. £. We can find the total Bloch

transform summing over transformations of all representative quantities:

BT =% —— |8, ()| (11)
m o PeR?|B, (k)]

All Bloch transform and field distribution figures are depict in a
normalized, linear color scale, as in Fig. 2. The darkest color represents the
smallest value of the distribution within the drawn frame and the brightest one

represents the maximum value.
Largest value

- B

Lowest value
Fig. 2. Color scale used for Bloch transform plots and field distribution.

The total Bloch transform was computed with the E. Bessel Fourier
coefficients, but the transform has the same graphical accuracy when calculated
with H. coefficients. The symmetry properties of the mode induce the symmetry
properties of the Bloch transform.

In Tables 1 to 4, using the Bloch transform we identified modes of PCFs
with different but comparable structures. These lines of contour plots relate to the
fundamental mode of a PCF with N,=4 holes of air inclusions in silica, with the
same relative hole size d/a=0.3, but with different values of the wavelength from
1 um to 2 wm and with different pitch.
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Comparing the figures from Tables 1 to 3 with the ones in Table 4 we
observe that the Bloch transform remains similar for the two values of the pitch
(0.254 um and 2.3 wm) even if the field patterns differ considerably, being only
one peak centered on k=0. For the wider mode the width of the peak changes,
being much narrower than for the well confined mode. Nevertheless, the shape of
the Bloch transform remains mainly unchanged, supporting the robustness of the
mode analysis based on the Bloch transform.

Since the challenge in numerical calculations of physical properties of
PCF is to minimize the otherwise time consuming computational costs i.e memory
load, CPU processing time resulting in efficient manipulation of information
acquired in simulations, the Bloch transform approach offers such a solution.

Based on the theorem which states the equivalence of the analysis
performed in real space of the field pattern and the reciprocal space analysis of the
Bloch transform characteristics, a tremendous reduction in time and
computational costs comes together with a high accuracy of the mode analysis in
PCF. Its analysis allows in this manner to avoid the more complex and resources
consuming attempt of studying the mode propagation based on the direct space
methods. The analysis performed in this framework is way less expensive
concerning the computational costs, at the end allowing the conversion from
Bloch transform to real space shape of the fields, up to a phase factor.

In this context, in Table I - 3 it is well pictured the Heisenberg-type
property for Bloch transform correlating it to the finite Fourier transform. The
Heisenberg relation links the width of the Bloch transform peaks with the spatial
extent of the mode: when the propagating mode is highly collimated, well
localized in the real space, the Bloch transform in the reciprocal space is sparse.
The most important property of the Bloch transform is the geometric distribution
of the peaks, meaning the form of the Bloch transform (the mode characteristic of
the PCF), being extremely stable when varying the wavelength and the fiber

parameters.
Table 1

Fundamental mode of a photonic crystal fiber with the same pitch @ = 0.254 um , hole
diameter d /a = 0.3 and number of rings N, = 4, but with different wavelength. The
refractive index of the cylindersis 7, =1 (air) and a silica background
A(um) 1.0 1.00005 1.1 1.2
1.45042 1.45042 1.44920 1.44805

ng;

|E; |
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et o

R(S2)

It is known that the field distribution and Bessel-Fourier coefficients of the
same mode can vary a lot with the modification of the fiber parameters and
because of that it is very difficult to identify the similar modes that have
comparable structures. Our simulations revealed that the Bloch transform of a
given mode does not change its form even if we modify the fiber parameters and
this is the most precise and the most convenient method for defining and
differentiating specific modes. This property is very difficult to demonstrate
without a clear classification of the modes, but it can be understood due to the
decomposition of each mode by the Bloch transform in natural bases of the
structure.

Upon a careful analysis of data depicted in Table I - 3 one can easily draw
a few conclusions. First of them is that, even small variations of the PBG fiber are
reflected in the different propagating patterns of the electric and magnetic fields.
This is not surprising since the dependence between the field patterns, dielectric
constants and geometric parameters is clearly stated and fixed by the Maxwell
equations. A striking fact is that, even when the electric and magnetic field are
featured by significant variations, the pattern deduced for the Bloch transform
does not change significantly. Based on the Bloch theorem, is easy to understand
why it is more convenient to choose in the last representation: it is easier to
manipulate it and at the end, the reformulation in the direct space may be realized,
allowing for a direct visualization of the field patterns.
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Table 2

Fundamental mode of a photonic crystal fiber with the same pitch a = 0.254 um , hole
diameter d /a = 0.3 and number of rings N, = 4, but with different wavelength. The
refractive index of the cylinders is 7. =1 (air) and a silica background

A(pm) 1.3

1.4

1.5

1.6

ng; 1.44692

1.44560

1.44462

|E |

| H |

R(Sz)

1.44342

Table 3

Fundamental mode of a photonic crystal fiber with the same pitch @ = 0.254 zm , hole
diameter d /a = 0.3 and number of rings N, = 4, but with different wavelength. The

refractive index of the cylindersis n,. =1 (air) and a silica background

A(nm) 1.7

1.8

1.9

2.0

ng 1.44217

[E; |

1.44087

1.43951

: |

1.43809

i |
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[H |

R(Sz)

On the other hand, in Table 4 are depicted the field patterns for a pitch size
of a=2.3um. Despite at a brief visual inspection of the Bloch transform we
would be tempted to conclude that the differences are only minor compared to the
previous cases, the conversion of fields in direct space shows a significant
difference. The losses minimized in this latter case, the modes being highly

collimated around the center of the PCF.

This result allows on one hand the optimization of dielectric and geometric
parameters of PCF in order to minimize the losses and on the other hand proves
the efficiency of Bloch transform method in predicting the optical properties of

systems with cylindrical symmetry, in particular of photonic band gap fibers.
Table 4

Fundamental mode of a photonic crystal fiber with the same pitch a = 2.3um , hole diameter

dla =0.3 and number of rings N,. = 4, but with different wavelength. The refractive

index of the cylindersis n,. =1 (air) and a silica background

A(p

1.0

1.5

2.0

ng;

|E |

1.45042

1.44462

1.43809




214 Dana Popescu, Paul Sterian

|H |

R(S,

6. Conclusions

In this paper we proved that the Bloch transform method is a very
powerful tool for the PCF mode study.

Its analysis in terms of Bloch resonant waves allows a better identification
of the modes and allows a clear distinction between cladding and defect modes.

Based on the equivalence between the description of the physical system
under study by a direct space approach and a reciprocal space description based
on the Bloch transform analysis, we showed that the analysis of the field patterns,
symmetry and propagation conditions can be efficiently described, reducing the
computational costs significantly. Additionally, the predicted results are highly
accurate.

We established under which conditions the losses can be minimized,
varying the dielectric and geometric parameters of the PCF.

These results will further furnish the premises for accurate calculations on
photonic systems with cylindrical symmetry in order to improve the working
parameters of PCF for applications in optical electronics.
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