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MULTIPLICITY RESULTS FOR A CLASS OF NAVIER DOUBLY
EIGENVALUE BOUNDARY VALUE SYSTEMS DRIVEN BY A
(p1,...,pn)-BIHARMONIC OPERATOR

Armin Hadjian', Saleh Shakeri®

Existence results of three weak solutions for a Navier doubly eigenvalue bound-
ary value system involving the (p1,...,pn)-bitharmonic operator, under suitable assump-
tions, are established. The approach is fully based on Ricceri’s Variational Principle.
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1. Introduction and Preliminaries

In this paper we are interested in ensuring the existence of at least three weak solutions
for the following Navier doubly eigenvalue boundary value system
A(|Aw; P72 Au;) = AFy, (z,u1, - . . uy) + pGo, (T, ug, .. up,)  in Q)
w; = Au; =0 on 01},

(1)

for 1 < i < n, where Q ¢ RV(N > 1) is a non-empty bounded open set with a boundary
99 of class C, X and p are positive parameters and p; > max{1, N/2} for 1 <i < n. Here,
F,G: QxR"™ — R are measurable functions with respect to = € Q for every (t1,...,t,) € R”
and are C! with respect to (t1,...,t,) € R" for a.e. x € Q, and F,, and G,,, denotes the
partial derivative of F' and G with respect to u;, respectively.

Moreover, F' and G satisfy the following additional assumptions:

(Fy) for every M > 0 and every 1 < i < n,

sup |F, (2, t1, .., )] € LH(R).
[(t1sestn) <M

(F3) F(z,0,...,0) =0 for a.e. x € Q.
(G) for every M > 0 and every 1 <i < n,

sup |G, (2,1, )] € LH(RQ).
[(E1,estn) [<M

Here and in what follows, we let X be the Cartesian product of the n Sobolev spaces
W2Pi(Q) N WP (Q) for 1 <i <n,ie.,

X o= (WP Q)N WEPH(@)) x o x (WP (Q) WP (2))
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equipped with the norm

n
||UH 522”“1‘”1),;, U = (u17u27"~7un)7
i=1

[willp, = |:/Q |Au;(x) p”dl‘] "

Let us recall that for any positive integer k and any 1 < i < n, Wol’p'i(Q) is compactly
embedded in CY(Q) if p; > N/k, and that for 1 < i <n, W2Pi(Q) is compactly embedded
in CY(Q) if p; > max{1, N/2} (see [22, page 1026]). So, if p; > max{1, N/2} for 1 <i < n,
the embedding X < (C°(2))" is compact.

Let

where for 1 < i < n,

max.. o |u;(x)|Pi
. max{ - o lm@) forlgz_gn}_ o
w EW2Pi ()W, ' (2)\{0} s [

In the case p; > max{1, N/2} for 1 <i < n, since the embedding X < (C°(Q2))" is compact,
one has ¢ < +oo0.
As usual, a weak solution of system (1) is any u = (uq,us,...,u,) € X such that

/Q;|Aui(gc)Pr?Aui(m)Avi(x)da:—)\/Q;Fui(a:,ul(x),...,un(gs))vi(x)d;g

_M/Q ;Gul (1'7U1($)7 A ,un(x))vz(x)dx =0

for every v = (v1,v2,...,v,) € X (see [17, 21]).
Moreover, let

D := sup dist(z, Q).
€N

Simple calculations show that there is 2° € Q such that B(z%, D) C €, where B(x,r) stands
for the open ball in RN of radius r centered at z.

Put
LA(N +2)% (DN (2N — 1)\ VP )
T T e 9NT(1 + N/2) ’
4N [ cDNxN/2(3N _2N) Y
D2\~ 2NT(A+N/2) IV <4,
Ki 1= y (4)
Pi
16 [ cDNaN/2(3N _oN
D2 (22Nr(1(+zv/z))) , N =4,

for 1 <4 < n, where I' denotes the Gamma function defined by

+oo
I'(t) := / 2 le *dz
0

for all ¢t > 0.

There seems to be increasing interest in studying fourth-order boundary value prob-
lems, because the static form change of beam or the sport of rigid body can be described
by a fourth-order equation, and specially a model to study travelling waves in suspension
bridges can be furnished by the fourth-order equation of nonlinearity, so it is important to
Physics (see [14]). More general nonlinear fourth-order elliptic boundary value problems
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have been studied in recent years. Several results are known concerning the existence of
multiple solutions for fourth-order boundary value problems, and we refer the reader to
[2, 3,4, 5,6, 8, 11, 12, 15, 16] and references therein.

For example in [12], based on a recent three critical points theorem, the authors proved
the existence of at least three weak solutions for the following (p1, . . ., p, )-biharmonic system
with Navier boundary condition

A(|Au P2 Au) = AFy, (z,u1, ..., uy,)  in Q, (5)
Ui = Aul = 0 on aQ,

for 1 < i < n, where Q € RV(N > 1) is a non-empty bounded open set with a boundary
99 of class C1, X is a positive parameter, p; > max{1,N/2} for 1 <i<n, F: QxR* - R
is a measurable function with respect to x € Q for every (¢1,...,t,) € R" and is C' with
respect to (t1,...,t,) € R™ for a.e. x € , satisfying the condition

sup |Ful(mat17atn)|eL1(Q)

for every M > 0 and every 1 <i <mn, and F(z,0,...,0) =0 for a.e. z € Q.
In [15], Li and Tang considered the following p-biharmonic equation with Navier
boundary condition

A(AuP~2Au) = A (2, u) + pgla, ) in o
u=Au=0 on 012,

where \, i € [0,4+00[, @ C RN (N > 1) is a non-empty bounded open set with a boundary
99 of class C1, p > max{1, N/2}, f : xR — R is a continuous function, and g : QxR — R
is a Carathéodory function. Using the modified three critical points theorem of Ricceri [18],
they established the existence of an open interval A C [0, 400 and a positive real number
p such that, for each A\ € A, problem (6) admits at least three weak solutions whose norms
in W2P(Q) N Wy P (Q) are less than p. Also in [16], the authors unified and generalized Li
and Tang’s problem and established the existence of at least three solutions to a Navier
boundary problem involving the (p, ¢)-biharmonic systems.

The goal of this work is to establish some new criteria for system (1) to have at
least three weak solutions in X, by means of a very recent abstract critical point result of
Ricceri [19]. We first recall the following three critical points theorem that follows from a
combination of [7, Theorem 3.6] and [19, Theorem 1]. We also refer the reader to the recent
papers [1] and [10] where an analogous variational approach has been developed on studying
elliptic problems.

Lemma 1.1. Let X be a reflexive real Banach space; @ : X — R be a continuously Gateaux
differentiable and sequentially weakly lower semicontinuous functional whose Gateauz deriv-
ative admits a continuous inverse on X*, bounded on bounded subsets of X; ¥ : X — R
a continuously Gateauz differentiable functional whose Gateaur derivative is compact such
that

®(0) = ¥(0) = 0.
Assume that there exists r > 0 and T € X, with r < ®(T), such that
SUPg (x) < V() U(T) .
(ay) Pros = < SO
z) r

(ag) for each X € A, ;:} B

e T ——e) [, the functional ® — AV is coercive.
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Then, for each compact interval [a,b] C A, there exists p > 0 with the following property:
for every X € [a,b] and every C* functional J : X — R with compact derivative, there exists
0 > 0 such that, for each p € [0,6], the equation

O (x) = AV (2) — pJ () =0
has at least three solutions in X whose norms are less than p.

For other basic notations and definitions, we refer the reader to [9, 13, 22].

2. Main results

In the present section we discuss the existence of multiple solutions for system (1).
For any v > 0, we denote by K (7) the set

e
ti,...,ty) ER™: = <yp.
( ) 2_: Y2
=1
This set will be used in some of our hypotheses with appropriate choices of .
We formulate our main result as follows.

Theorem 2.1. Assume that there exist two positive constants 6 and & with Y ;_, ULDICEN

Pi
71—[71,9 o such that
i=1 7

(by) F(z,ty,...,t,) >0 for a.e. x € Q\B(2°,D/2) and all t; € [0,5] for 1 <i < n;

(b2)
0

—_ F(x,6,...,0)dx
Hizl bi ~/B(10,D/2) ( )

n ) i Pi
fm(Q)Z( ) sup F(z,ty,... 1) >0,
=P @t ) €K ()

where m(QY) is the Lebesque measure of the set §;

(b3)
(ITi1 »i) sup , F(z,t1,...,tn)
. Fa,t, . tn) (10t EQX K (i)
lim sup LD <
(It1]nltn )= (F00,..dro0) S0, FL= ¢
uniformly with respect to x € Q.
Then, setting
n So;)Pi
A= i=1 : pi) 0
] eSp@o.py2) F@6...,8)dz” ([T, pi)m(Q) sup Fx,t1,. - ta) |

(z,t1,..., tn)EQXK(ﬁ)
i=

for each compact interval [a,b] C A, there exists p > 0 with the following property: for every
A € [a,b], there exists 6 > 0 such that, for each p € [0,6], system (1) admits at least three
weak solutions in X whose norms are less than p.

Proof. Our aim is to apply Lemma 1.1 to our problem. To this end, for each u = (u1,...,u,) €
X, we let the functionals &, ¥ : X — R be defined by

= w3
O(u) := Z —

- Pi
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and
U(u) := /Q F(z,ui(z),. .. u,(x))de.

Clearly, ® is bounded on each bounded subset of X and it is known that ® and ¥ are well
defined and continuously Géateaux differentiable functionals whose derivatives at the point
u = (uq,...,u,) € X are the functionals ®'(u) and ¥’ (u) given by

@' (u)(v) = /Q > Aui(x) P2 Awg () Avg () da:
i=1

p—2
|[AulP72Au, Vu #0, ) and

(Since V(%\AUV’) = ¢(Au), where p(Au) := { 0 Yu =0

W () (v) = /Q 3 Fu, s (@), un ()i

for every v = (v1,...,v,) € X, as well as ® is sequentially weakly lower semicontinuous
(see Proposition 25.20 of [22]). Also, &' : X — X* is a uniformly monotone operator in X
(for more details, see (2.2) of [20]), and since @’ is coercive and hemicontinuous in X, by
applying Minty-Browder theorem (Theorem 26.A of [22]), ® admits a continuous inverse
on X*.

We claim that ¥’ : X — X* is a compact operator. To this end, it is enough
to show that ¥’ is strongly continuous on X. For this, for fixed (ui,...,u,) € X, let
(Wims -« s Unm) = (U1, ..., uy,) weakly in X as m — +o00. Then we have (41, - - ., Unm ) COD-
verges uniformly to (ug,...,u,) on Q as m — +oo (see [22]). Since F(z,-,..., ) is C' in R"
for every x € €, the derivatives of F' are continuous in R™ for every x € 2, so for 1 <14 < n,
F,,(z,u1m, -y Unm) = Fu,(z,u1,...,u,) strongly as m — +o0o. By the Lebesgue domi-
nated convergence theorem, W' (uim, - - -, Unm) — V' (u1,. .., u,) strongly as m — +oo. Thus
we proved that ¥’ is strongly continuous on X. Now, let (41, ..., Unm) be a bounded se-
quence in X. Since X is reflexive, there exists a subsequence, still denoted by (w1, - - ., Unm),
such that
(U1my -+ oy Unm) —  (u1,...,up) weakly in X as m —  +oo. Hence,
U (Uimy -« -5 Unm) — W' (U1, ..., uy,) strongly as m — +oo. Thus, ¥’ is compact and the
claim is true.

Moreover, we have

B(0) = U(0) = 0.
Next, put w(z) = (wi1(z),. .., w,(x)) such that for 1 <i < n,

0 z € Q\ B(z°, D),
4 4y 3 3 2072 2
wi(x) = 166 (3(1*— D*) 6D(;D4D )+3D% (12— D?)) € B, D)\ B®,D/2),
4 r € B(2°,D/2),
where [ := dist(z,2°) = Z?f:l(xj — 29)2. We have
ow;(z) | 0 z € Q\ B(z° D)U B(2° D/2),
oy | S (12(x; - 29) - 3L2i(w; — 29) + B2 (2; —29)) =z € B(«®,D)\ B(z",D/2),

0%w; () :{ 0 z€Q\ B(z°,D)U B(z°, D/2),

D2 %{?(%2 + (2= 22)(xj — 29?2/l - (32 - DI) =€ B(=" D)\ Bz D/2),
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iaﬂwi(x) o . z €Q\ Bz, D)U B(z°, D/2),
P SE((N+2)2 - 32(N+1)l+ B-N)) € B@° D)\ B’ D/2).
Clearly w = (wy,...,w,) € X and, in particular, one has for 1 <i <n,
 (640)Pi2rN/? / , 3D D* N1
= ol =T N +2)r2 — ZZ(N + 1)r + — NJPir¥ Ldr. 7
||wz||pi D4p‘F(N/2) D/2 |( + )T' 2 ( + )T+ D) r T ( )
Here, we obtain from (3), (4) and (7) that for 1 < ¢ <mn,
(5/%)1% ) ((501)1)‘
Put r := CH" . By the assumption > , (6';:)“ > Hﬁfl oo, it follows from (8) that

D(w) > r.
Since 0 < w;(z) < § for each z € Q for 1 <4 < n, condition (by) ensures that

/ F(z,wi(x),...,wn(z))de + F(z,wi(x),...,wn(x))dz > 0.
Q\B(20,D) B(29,D)\B(0,D/2)
Hence

/F(x,wl(x),...,wn(z))de/ F(x,6,...,0)dx.
Q B(2°,D/2)

Now, owing to assumption (bg) and (8), we have

m(Q) sup F(x,ty,...,ty)
(w,th...,tn)EQxK(ﬁ)
< G / 8,...,0)dx
(Zi:l ,;i [[i=ipi) /B@ D/Z)
< o H / x,0,...,0)dz
(21—1 p p, 11% (x0 D/2)
S c E (H] l,gsész)

Taking into account that for each u; € W2Pi(Q) N WP (Q),

i

7

sup [ug ()7 < cfjus[|
€

for 1 <i < n (see (2)), we have that

DL SR (10)

e€QiDy Pi - P
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for every u = (uq,...,u,) € X, and taking into account (9) and (10), it follows that

Therefore, assumption (a;) of Lemma 1.1 is satisfied.
Now, for fixed A € A, due to (bs), there exist two constants v,¥ € R with

such that

for all x € Q and for all (¢1,..

(IT= pe) sup

0<y<

($7t17---7tn)€QXK(ﬁ

sup U(u) = sup / F(z,ui(z),. .. uy(z))de
u€P—1(]—o0,r]) P(u)<rJQ
< m(Q) sup F(x,ty,... ty)
(x,tl,...,tn)efzxK(mjl )
_ 0 Jo Fz,wi(z),... ,wa(z))dz
¢ Zz:l(nj 1,j7$ipj)
B 0 [ F(z,wi(x),... wy(zx))de
B Y n szl\ﬁiﬁ
Mare oy, el
LG
)
P(w)

F(xatla"'vtn)
=)

0

n tipi
F(z,ty,... tn) <7<Z|;> + 9
i=1

tn) €ER™ Fix u = (uq,. ..,

Fle (@), <7(Z'Z

up) € X. Then

) +0 (11)

for all z € Q. So, for any fixed A € A, from (10) and (11) we have

D(u)

and thus

W
=1
?
F:

M(/ﬂ; |u1-<pa:iw

v
M 1
< |5 <
I8

V() = i%—)\/QF(;r,ul(;r),...,un(a:))dx

d:r:) — X m(Q)

" ||B
TPy (cm(Q) > %) — A m(Q)
i=1 z

0 o Jluallp;

1- i

B ( (ITizy p) sup F($7t17---,tn)>; Pi
(zt1,..., tn)EQXK(Hn%lm)
- 99
(cITiypi) sup F(z,t1,...,tn)’
(z,tl,.“,tn)eszxK(anl 57
i (®(u) — A\¥(u)) = +oo,
llwll =00

which means that the functional ® — AW is coercive. Then, also condition (as) of Lemma

1.1 holds.

In addition, since G : 2 x R™ — R is a measurable function with respect to x € € for

every (ti,...

)

tn) € R™ and is C'! with respect to (t1,..

)

t,) € R™ for a.e. x € Q, satisfying
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condition (G), the functional

J(u):AG(x,ul(x),...,un(x))dx

is well defined and continuously Gateaux differentiable on X with a compact derivative, and

= /Q Z G, (z,u1 (), .. up(x))vi(x)dz

for all u = (u1,...,un),v = (v1,...,v,) € X. Thus, all the hypotheses of Lemma 1.1 are
satisfied. Also note that the solutions of the equation

&' (u) — AV (u) — pJ' (u) =0
are exactly the weak solutions of (1). So, the conclusion follows from Lemma 1.1. O

We now point out the following special case of Theorem 2.1 when F' does not depend
on x € €.

Theorem 2.2. Let F : R” — R be a C'-function and assume that there exist two positive

constants 6 and & with Y, 6'{2)“ > H”i 5. such that
(ba) F(t1,...,tn) >0 for allt; €[0,0] for 1 <i<mn;
(bs)
o N/2 D\N
T (7) F(5,....0)
I(1+N/2) [T pi\ 2
Z sup F(t1,...,tn) > 0;
=1 Di (tlf -t )GK(Hn 1"1)
(bg) lim sup Ft,... - lpq) <0.
(11 ]seees [t )= (400, F00) 2P
Then, setting
PO+ N/2) X, B oy 0
cnN/2F(3,...,8) (B) " (e[T7y pi)m(Q) sup F(t1,... tn) |

for each compact interval [a,b] C A, there exists p > 0 with the following property: for every
X € [a,b], there exists § > 0 such that, for each u € [0,0], the system

(|Au|Pi2Au;) = AFy, (U1, . -« up) + pGu, (T, 01, .. yuy)  in Q,
U; = Au1 =0 on an

for 1 <i < n, admits at least three weak solutions in X whose norms are less than p.

(12)

Proof. Set F(x,t1,...,tn) = F(t1,...,t,) for all z € Q and ¢; € R for 1 < i < n. Since
,0)de = Lﬂ(%)NF((S, ...,0), Theorem 2.1 ensures the conclusion.

fB(:cO,D/Q) (6, ... T(1+N/2)
O

Let 0 = 01, kK = k1 and p = p;. Then we have the following existence result.

Corollary 2.1. Let f : R — ]R be a continuous function and g : 2 x R — R be an L!-
Carathéodory function. Put F(t fo €)d¢ for each t € R and assume that there exist
two positive constants § and 6 wzth (0k)P > 0 such that

(by) F(t) >0 for allt €10,9];
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(bs) 8575 (Z)VF(8) —m(Q)(@do)  sup  F(t) >0
te[- Y0, ¥0)

Then, setting

A=

I'(1+ N/2)(60)P (E)N 0
(pe)wN2E(3) \D/ "m(Q)(pc) sup  F(t) |’
te[- Y0, ¥0]

for each compact interval [a,b] C A, there exists p > 0 with the following property: for every
X € [a,b], there exists 6 > 0 such that, for each u € [0,6], the problem

{ A(|Aul2Au) = Af(u) + pg(a,u) in O,

u=Au=0 on 052 (13)

admits at least three weak solutions in W2P(2) N WyP(Q) whose norms are less than p.

If N = 1, we can get a better result than Theorem 2.2. For simplicity, we fix 2 = (0, 1)
and Note that in this situation we have p; > 1 for 1 <i <n.

Theorem 2.3. Let F' : R® — R be a‘Cl—function and assume that there exist two posi-
tive constants 6 and § with >\, (322;2171 > H“f o such that Assumptions (bs) and (bg) in
Theorem 2.2 holds, and N

(bro) g F 0, 6) = Soi, 2 sup F(t,...,t,) > 0.

1 Pi Cpi
(t17-~>tn)€K(ﬁ)

Then, setting

n 325)Pi
A Zi:1 ( pi) 0
' F(5,...,0) " ([T mi) sup F(ty, ... tn) |
(tlvn-vtn)EK(H?:sl Pi)

for each compact interval [a,b] C A, there exists p > 0 with the following property: for every
A € [a,b], there exists 6 > 0 such that, for each p € [0,6], the system

(\u;/|pi_2u;/)” = AFy, (u1, ... upn) + Gy, (T,u1, ... upn)  in (0,1),
ui(0) = u;(1) =0, (14)

"

u; (0) =u; (1) =0

?

for 1 <i < n, admits at least three weak solutions in
Y = (W2PH(0,1) N Wy (0,1)) x - x (W2P=(0,1) N W, *"(0,1))
whose norms are less than p.

Proof. For each u = (uy,...,u,) €Y, let

e
O(u) = —2,

i- P

W) = /0 Flun (@), ... un(z))dz,
and

J(u) = / G, wr (), .., un())da,
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: .
ity o= | [ 1wz

Since the critical points of the functional ® — AW — pJ on Y are exactly the weak solutions
of system (14), our aim is to apply Lemma 1.1 to ®, ¥ and J. As observed in Theorem 2.1,
O, U and J satisfy the regularity assumptions in Lemma 1.1. Also, thanks to (bg), for each
A > 0, the functional ® — AV is coercive.

where for 1 <i < n,

Now, put r := ﬁ and w(z) = (w1 (x),...,w,(z)) such that for 1 <1i < mn,
“1li=1 Pi
2 p
wi(a) ::{6—166@—@—5) ve 031U,

Y z € (3, 3)-

It is easy to verify that w = (w1,...,w,) €Y, and for 1 <i<n
o (320)
[|lw; ,’Zj = Yy

. n  (320)P 0
Now, under the assumption of )" | e T pr We have

— [[will}: 4
P(w) = & 7
(w) ; Di CH¢:1 Pi
Since 0 < w;(x) < 6 for each x € (0,1) for 1 <14 < n, it follows from (by) and (big) that

=r>0.

1
sup U(u) = sup /0 Fui(x),...,uy(x))dx

ueP—1(]—o0,r]) P(u)<r

IN

sup F(tl,...,tn)
(tl’“_,tn)GK(ﬁ)

0 Jy Fwi(2),. .., wa(2))dz

<

c n o i

> i1 (/[Ilpj)llwz— b
Yo
- 0 fol F(wi(z),...,wy(z))dz
B C HZL:l Di Zn ”wz”%
i=1 pi
D(w)’
Therefore, condition (a;) of Lemma 1.1 is satisfied, and the proof is complete. O

3. Conclusion

Based on a recent three critical points theorem obtained by Ricceri [19], we established
the existence of an open interval ]\, A"[ and § > 0, such that for each A €]A’, \"[ and for
each p € [0,0], a class of Navier doubly eigenvalue boundary value system involving the
(p1,- - - ,pn)-biharmonic operator and depending on parameters A\ and p admits at least
three weak solutions.
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