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COOPERATION GAME-BASED RESOURCE ALLOCATION 

FOR TASK OFFLOADING IN MOBILE EDGE COMPUTING 

Ruixia LI1,2, Chia Sien LIM2, Muhammad Ehsan RANA2, Jinsong TU3, 

To improve the users’ satisfaction and resource utilization of task offloading 

in Mobile Edge Computing (MEC), an incentive mechanism for resource allocation 

is considered. It motivates edge service providers to actively participate in task 

offloading by setting the resource price. A bargaining-based cooperative game model 

is proposed to charge terminal devices and reward edge servers. The Nash 

equilibrium is analyzed with complete information game theory. The result indicates 

that this strategy PSNCG can ensure that edge nodes participating in cooperative 

resource allocation can obtain maximum utility at an acceptable cost, thereby 

improving users’ experience and resource utilization.  

Keywords: Cooperative game, mobile edge computing, resource allocation, task 

offloading 

1. Introduction 

Cloud computing has become a key factor driving the development of social 

intelligence and the integration of cloud networks. However, with the popularity of 

mobile smart devices and continuous emergence of various network applications, 

more and more users are accessing cloud computing centers, which brings new 

challenges to the development of cloud computing. For example, new users such as 

the Internet of Things (IoT), Industry 4.0 and the smart agriculture have different 

requirements for computing, storage, and service performance, which makes it 

difficult for users far from cloud computing centers to receive timely and effective 

services. To overcome the limitations of cloud computing, further improve the 

quality and resource utilization of user service, MEC has received widespread 

attention [1]. As shown in Fig. 1, MEC can effectively shorten the distance between 

users and computing storage services, reducing possible network congestion and 

transmission delay [2].  
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Task offloading in MEC means that users can offload tasks to adjacent edge 

nodes for processing and then save battery capacity and break through computing 

performance limitations [3]. Cloud computing centers and edge nodes collaborate 

or compete to provide support for user task offloading requests [4].  
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Fig. 1. The MEC architecture framework 

 

Compared with traditional cloud computing, the resources of the edge 

servers are limited, which may lead to long processing time and low efficiency. It 

will affect the user’s service experience if there is no reasonable mechanism of 

resource allocation. 

Resource allocation is focused in MEC. The resource pricing and incentive 

mechanism in Section 3 is based on Nash bargaining game theory, encouraging 

service providers to actively engage in task offloading and improving system 

resource utilization. The main contributions can be summarized as follows: 

⚫ Nash bargaining process is introduced to determine the winning 

coalition for factors affecting resource prices; the final price and payment price are 

obtained to guarantee the quality of service and the enthusiasm of edge service 

providers; 

⚫ A cooperative game model is developed, in which a scientific utility 

function is designed to maximize the benefits of users and service providers; 

⚫ Nash equilibrium solution will be established to confirm the 

effectiveness of this strategy. 

The structure is arranged as follows: Section 2 presents a review of relevant 

researches on task offloading and resource allocation in MEC; Section 3 analyzes 



Cooperation game-based resource allocation for task offloading in Mobile Edge Computing    79 

the factors influencing pricing and the Nash bargaining process; Section 4 explains 

the cooperative game model; Section 5 proves the Nash equilibrium solutions in a 

complete information game theory and proposes an algorithm for the Nash 

bargaining process; Section 6 evaluates the proposed strategy, and Section 7 gives 

the conclusion. 

2. Related works 

From the perspective of computing resource allocation, an auction scheme 

was designed for computing resource trading to ensure the privacy of buyers as well 

as sellers while maximizing social welfare [5]. Guo et al. [6] considered blockchain 

and established an incentive mechanism based on a game model to ensure the 

acquisition of computing resources and the active participation of service providers. 

Achieving peak performance of the entire system is challenging for 

communication or computing resources. Wei et al. [7] considered the coupling of 

calculation and transmission delay, as well as calculation and channel capacity, and 

optimized the completion time of discrete task by designing corresponding resource 

allocation strategies. Zhu et al. [8] used task offloading algorithms to allocate the 

resources and applying delay constraints to minimize the total energy consumption 

of the system. 

The pricing strategy of bandwidth resources was studied for resource 

pricing [9]. Baek et al. [10] established a resource pricing mechanism in MEC, 

which can effectively allocate resources. Chen et al. [11] proposed a pricing 

resource allocation method that maximizes the profits of operators and uses 

Lyapunov optimization techniques to optimize utility maximization while ensure 

system stability. 

Some researchers have proposed incentive mechanism based on economic 

theory and game theory to address the incentive challenges associated with task 

offloading in MEC. Based on a non-cooperative environment, the resource 

allocation of virtual machines was modeled as a graph matching problem [12]. The 

introduction of auction mechanism aims to optimize collective social welfare. 

Considering the utility of edge nodes and user profit constraints, Wang et al. [13] 

designed an incentive algorithm to maximize the profit of edge servers. 

The impact of resource allocation of incentive mechanism on task 

offloading is seldom considered and conducted in non-collaborative environments. 

There are few incentive mechanisms for resource allocation considering 

cooperative games. In response to the above issues, we focus on the incentive 

mechanism for resource allocation in cooperative game scenarios. Then a complete 

information game model is established to investigate the Nash equilibrium solution 

with an edge node and multiple terminal devices. 
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Several works have investigated resource pricing in MEC economics. For 

example, Zhou et al. [9] studied time-dependent bandwidth pricing under 

information asymmetry, Baek et al. [10] proposed dynamic pricing schemes for 

IoT-edge environments, and Chen et al. [11] developed an online dynamic pricing 

framework for edge computing. Compared with these pricing methods, our PSNCG 

(Pure Strategy Nash Cooperative Game) focuses on bargaining-based coalition 

formation, which integrates both economic pricing and cooperative incentives.  

3. Preliminary assumptions to resource allocation in MEC 

3.1. Assumptions 

The model relies on the following assumptions: (i) quasi-static Rayleigh 

fading channels, (ii) a trusted third party assists in resource allocation, and (iii) 

cooperation among edge nodes is disabled in the current setup. These assumptions 

are adopted for analytical tractability and are clearly stated here for completeness. 

3.2. Factors affecting price setting of resource allocation 

Due to limited resources for edge nodes, pending applications offloaded to 

edge nodes may exceed their service capabilities. A trusted third party is introduced 

to assist edge nodes to allocate resources [13]. To simply the analysis, only one 

edge node is used to demonstrate the proposed mechanism with multiple edge nodes. 

Cooperation between edge nodes is not considered. 

Resource allocation is considered by setting the resource price, so that 

service providers are willing to actively participate in task offloading. Game theory 

is a widely adopted trading strategy for efficiently allocating sellers’ resources to 

buyers in a competitive market with fair pricing [14]. Referring to the notation and 

definition rules [15], Table 1 shows the main notations. 

 

 Table 1 

 Description of notations 

Notation Definition 

0node  The edge node 

inode  Terminal device i   

Price  The final agreeing price 

iPrice  The payment price of terminal device 
inode  

0r  The reservation price of edge node 
0node     

0b
 

The bidding price of edge node 
0node     

ir  The reservation price of terminal device 
inode  
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is
 

The asking price of terminal device 
inode  

{ , }
i ii node nodeu s s

−
 The utility function of terminal node 

inode  

0 00{ , }node nodeu s s
−

 The utility function of edge node 
0node  

inodes  The strategy of terminal node 
inode  

inodes
−

 The strategies of other nodes except for terminal node  
inode  

iW  The task i  

0D  The cache resource of edge node 
0node    

0C
 

The CPU cycles of edge node 
0node    

iD  The data size of task 
iW  

iC  The required number of CPU cycles to complete task 
iW  

i

lDelay  The delay processed the task 
iW  locally 

i

mDelay  The delay offloading the task 
iW  to edge node 

i

lEnergy  The constraint of energy consumption processing local task 
iW  

i

mEnergy  The required energy consumption offloading the task 
iW  to edge node 

if  
The CPU resource allocated by the edge node to the task 

iW  

0Bandwidth  The bandwidth of edge node 
0node  

iBandwidth  The bandwidth to complete the task 
iW  

3.2.1. Delay  

Let { , , , }l l

i i i i iW D C Delay Energy=  denote a task, where iD  and iC  represent the 

data size and the required number of CPU cycles of the task iW  respectively. 
l

iDelay  and 
l

iEnegy  denote the constraints of delay and energy consumption 

processing local task iW . Delay is an important factor affecting the price of task 

offloading. The smaller the delay required to complete a task, the higher the price 

it should provide [16]. 

                       (1) 

2log (1 )
up

i i

i i

i

p h
rate Bandwidth

N
= +                          (2) 

where if  represents the CPU resource allocated to the task iW by the edge node. 

irate denotes the data transmission rate of offloading tasks to edge nodes,  s

i nh d −=  , 

4s = , and [0,50]nd =  [16]. iBandwidth  denotes the user bandwidth, that is, the 

i

m i i

i i

C D
Delay

f rate
= +
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bandwidth required to complete task  iW . 
up

iP  and iN  represent the transmission 

power consumption and the noise power respectively. 

3.2.2. Energy consumption 

Energy consumption is another important factor affecting task offloading, 

the lower the energy consumption required to complete a task, the higher the price. 

We focus on terminal devices to address the energy consumption by defining the 

energy consumption required to process task iW  [17]. 

( )
i

i

m upi i
i

i

D C
Energy P

rate f
= + 

 

                            (3) 

3.2.3. Bandwidth 

The channel is assumed to be quasi-static Rayleigh fading, which means 

that the bandwidth of terminal devices remains unchanged during each of the period 

[17]. Given a task offloading request of iW , the smaller the delay required to 

complete a task, the higher the bandwidth it should be provided. The required 

bandwidth iBandwidth  can be obtained as follows: 

i

i
i m

D
Bandwidth

Delay
=

 

                         (4) 

To simply the analysis, a single-edge-node model is adopted to investigate 

the pricing and allocation of limited edge resources. This modeling choice allows 

for a clear examination of the core interactions between edge resources and terminal 

devices without involving additional inter-node complexity. 

It is worth noting that although this study uses a single-node setting, the 

underlying concepts and pricing mechanisms discussed here are also applicable to 

multi-node MEC environments. Cooperation among edge nodes, such as distributed 

coordination or inter-node negotiation, is a promising direction but is beyond the 

scope of this work. 

Although this study adopts a single-edge-node setting for tractability and 

clarity of theoretical analysis, we acknowledge that inter-edge coordination is 

highly relevant in realistic MEC scenarios. Future extensions of PSNCG will 

explicitly consider multi-edge cooperation through distributed or hierarchical 

game-theoretic frameworks. 
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3.3. Bidding price 

The reservation price 0r  indicates the minimum price that the seller is 

willing to accept. If the seller 0node  accepts the task offloading, a bidding price  0b  

should be provided based on the reservation price  0r . For a given edge node  0node , 

the value of reservation price  0r  is typically determined by the factors such as 

cache resources 0D , the number of CPU cycles 0C , and the maximum available 

bandwidth  0Bandwidth . The reservation price  0r  is calculated as follows:  

0 0 0 0 0rr w D C Bandwidth=   
 

                            (5) 

where  0rw  denotes the weighting, 0row  .  0r  is positively correlated with 0D
, 

0C
, and 0Bandwidth

; 0b  is an increasing function of 0r , and 0 0b r . 

3.4. Asking price 

Terminal device inode  must provide an asking price is  for each node before 

participating in task offloading, which usually depends on its reservation price ir . 

ir  refers to the highest price that terminal device  inode  can pay for task offloading. 

Given the task  iW  that needs to be offloaded, reservation price  ir  will be affected 

by two aspects: 1) the task, including iD  and iC ; 2) the constraints of delay and 

energy consumption. Then, reservation price  ir  of terminal device inode   is 

expressed as follows:  

0 1 1
( (1 ) )

i i i i i

l l

i s i i s sr w D C w Energy w Delay=     + − 
 

                                          (6) 

where 0isw
 and 1isw

 represent the weight, and  0
0

isw 
, 1

0 1
isw 

; 1isw
 represent the 

weight of energy consumption. If there is no requirement for energy consumption, 

1
0

isw =
; on the contrary, if only energy consumption is concerned, 1

1
si

w =
, and here 

1
0.5

isw =
 [18]. For buyers inode

, the asking price  is
 is proportional to its 

reservation price ir . Without loss of generality, we will regard the asking price  is  

as an increasing function of its reservation price  ir , i ir s . 

3.5. Nash bargaining process 

When the terminal device inode  sends a task offloading request to the edge 

node, a Nash bargaining game between the terminal devices and the edge node 

begins. The specific process is described as follows: 
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First, edge node 0node  calculates a reservation price 0r , chooses its bidding 

price 0 0 0( )b b r  and sends its relevant resource parameters ( 0D , 0C  and 0Bandwidth ) 

to the trusted third party [15]. The sent message does not include 0r  and 0b ; 

Then, the trusted third party broadcasts the information to all possible 

terminal devices, and all the terminal devices within the coverage area of the edge 

node 0node  with task offloading request will calculate their reservation price ir  

according to (6) and provide their own asking price ( )i i is s r . 

Then the bargaining process begins, with the edge node 0node  and all 

terminal devices  inode  requiring resources to handle their offloading tasks 

submitting their sealed prices  0b  and is  respectively. Let 0{ 2 |  }
i

i

node C

C s b


=  MC  

be a set of coalitions, where C  is coalition. If there is a unique coalition C  in C

(that is | | 1=C ), then the coalition C  is selected to bargain ( that is all members of 

C  participate in task offloading ). If | | 0=C , the bargain fails. If | | 1C , one coalition 

in max arg | |
j

j

C

MN max C


=
C

 is selected. After a coalition C  is selected, it is referred to as 

the C-Coalition. Once the bargain is finalized, the game will conclude with an 

agreeing price Price , expressed as follows: 

0 (1 ) ,  0 1
i

i

node C

Price b s  


=  + −   
 
                        (7) 

where 0 1  .   is a weighting factor used to determine the final transaction price 

between the buyers (terminal device) and the seller (edge node). A higher value of 
  makes the final price closer to the buyers’ quote, while a lower value favors the 

seller’s price. 

Here  is set to 0.5 to reflect a balanced bargaining outcome and ensure fairness 

between participants. This choice aligns with the principle of equitable negotiation 

found in Nash bargaining solutions. 

Different   can significantly impact the allocation results: increasing   can 

enhance user satisfaction, but may reduce edge server incentives; decreasing   does 

the opposite. Future work may consider dynamically adjusting   based on user 

priority, service level, or real-time resource demand. 

 

The payment price iPrice  of terminal devices inode  is obtained as follows:  

| |

i

i

node C

i i

-Price s

Price s
C



+

= −


                         (8) 

If a node outside the coalition fails, its utility is equal to zero. 
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4. Cooperative game model 

Game theory is introduced in this scheme, and the model for task offloading 

and resource allocation can be considered as a cooperative game. A key issue in the 

final decision-making of game theory is to consider its costs and benefits.  

Definition 1. The resource allocation game G  is denoted by a triple 
( , , )NODE S U ,  

⚫ 0{ } { }iNODE node node=   is the set of participants.  

⚫ 0{ }
i

N

node iS s ==  is the strategy set, when the terminal device has a task 

offloading request, it has two options:  ( )Cooperation CP  or ( )Defect D . For the edge 

node 0node , when it chooses CP , it will allocate resources to the terminal devices; 

on the contrary, if it chooses D , any task offloading request will be rejected. 

Therefore, the strategy set 
inodes  of terminal device inode  is { , }CP D . We use 

inodes  

denote the strategy set of terminal device  inode ,  
inodes

−
 represents the strategy of 

other nodes, then the strategy of all nodes can be expressed as { , }
i inode nodes s

−
. 

⚫ 0{ }N

i iU u ==  is the utility function set, and { , }
i ii node nodeu s s

−
 denotes the 

utility function of  inode . The utility function 
0 00{ , }node nodeu s s

−
 of edge node 0node  is 

defined as follows: 

0

0 0

0
00

2

| | arg max | |{ , }

0

i- j

node

j

inode Cnode node
C

if s CP and C such that
Price r

s b and C Cu s s

else




  =  
  −  = = 

 




N

C
                      (9) 

When the transaction is successful, the profit obtained by 0node is measured 

by the difference between its bidding price and the final agreed price. If the 

transaction fails, 0node  will not be able to obtain any profit. 

The utility function { , }
i ii node nodeu s s

−
 of terminal device inode  is defined as 

follows: 

   

{ , }    
| |

0  

i

i

i i i

i

i node i

i

node C

i node node i i node i

node

r if s CP and node C

-Price s

u s s r s if s CP and node C
C

if s D

−



− = 


+


= − + = 

 =





，

，

，

                        (10) 

⚫ where the utility of any terminal device outside the coalition is 

negative because it consumes resources to participate in task offloading; 
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⚫ The utility of the terminal device within any coalition is 

| |

i

i

node C

i i

-Price s

r s
C



+

− +


;  

⚫ The terminal device refuses task offloading, and its utility is equal 

to 0. 

According to game theory, the behavior of each node is rational, and choose 

a strategy that maximizes its utility when the strategies of other nodes are given. In 

this case, it represents the optimal response of  inode  to the strategies of other nodes, 

denoted as  
* arg ( , )

i i i
nodei

node i node node
s

s maxu s s
−

= . 

Definition 2. 
*S  is a Nash equilibrium strategy if and only if 

* * *( , ) ( , ), 1 ,
i i i i i ii node node i node node node nodeu s s u s s i N s S

− −
      . In the Nash equilibrium condition, no 

participant can increase its utility by unilaterally changing the strategy, and the 

Nash equilibrium can ensure the stability of the game.  

Definition 3. ( )v T  is used to denote the collective Pareto-optimal utility, 

and T N  is a subset of total nodes. If the utility function of a coalition with only 

one member is represented as ( )v i . The utility function of inode  in the coalition T  

is expressed as ix . If ( )ix v i , and 
| |

1

( )i

i

x v
=

=
T

T , the vector 1 | |( ,... , )x x x= T  is a 

reasonable utility distribution. 

Lemma 1. Given a coalition C  defined in subsection 3.5, the utility 

distribution of (10) is rational.  

Proof. Suppose inode C , its utility function is expressed as follows: 

0(1 )( )

| | | |

i i

i i

node C node C

i i i i i

-Price s s b

u r s r s
C C


 

+ − −

= − + = − +

 
                                    (11) 

0i ir s−   and 0 0
i

i

node C

s b


−  , then 0iu  . The utility of the coalition of a single 

member is either 0 or ir− , and Lemma 1 is proved. 

5. Cooperative game with complete information 

Each player has common knowledge about the strategy space and utility of 

all other players in the game and has complete information. 

Lemma 2. For a N player−  game, if 0

i

i

node C

s b


  , then 0 1( , ,... )NCP CP CP  represents 

a pure strategy Nash equilibrium, where maxN MN= , 
1... Nnode node  is a member of C-

Coalition and iCP  represents the strategy of inode  is CP .  

Proof. For the edge node 0node , its utility is 0Price r−  when its strategy is 

cooperating. On the contrary, if it chooses to defect instead of cooperating 
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unilaterally, its utility becomes zero, which is lower than the cooperation utility. 

Similarly, for the terminal device inode , if it unilaterally deviates from cooperation 

to defect, its utility consistently remains lower than 

0
| |

i

i

node C

i i

-Price s

r s
C



+

− + 

 . 

Therefore, when 0

i

i

node C

s b


 , 0 1( , ,... )NCP CP CP  is a pure strategy Nash equilibrium, 

Lemma 2 is proved. 

Lemma 3. For a N player−  game, when 0

i

i

node C

s b


 , all defect strategies are 

a pure-strategy Nash equilibrium.  

Proof. When the terminal device  inode  chooses defect, its utility is equal to 

0. If it chooses cooperation, its utility is less than 0, and Lemma 3 is proved.  

Theorem 1. For a N player−  game, when coalition C  exists, 0

i

i

node C

s b


  and 

| | maxC MN , there exists at least one pure strategy Nash equilibrium.  

Proof. Given a coalition C , there must be a coalition 
* arg max | |

j

j

C C
C C


= , where 

jC  represents the coalition. Therefore, the best response of the edge node  0node  is 

CP , i.e. 
0

*

nodeS CP= . Let 
*

*

i

i

node

CP if node C
S

D else

 
= 


, then 

0 1

* * *( , ,... )
Nnode node nodeS S S  be a pure strategy 

Nash equilibrium.  

Lemma 2 indicates that for any 
*

inode C  that deviates unilaterally from 

cooperation to defect, its utility is always lower than the cooperation utility, which 

means its utility does not increase. Similarly, for any 
*

inode C  that deviates 

unilaterally from defect to cooperation, its utility will change from 0 to negative. 

Therefore, all players are unwilling to change their strategies. 

When the terminal devices request the edge node for computation 

offloading, a Nash bargaining game in the terminal devices and the edge node starts. 

The detailed process is shown in Algorithm 1. 
 

Algorithm 1: Pure Strategy Nash Cooperative Game (PSNCG) 

1: Edge node 0node  selects a proper weight 0rw ; each terminal device inode  ( )1 i N   selects 

two proper weight 0siw  and 1siw .  

2: Edge node 0node  calculates its cache resource 0D , CPU cycles 0C  and the required 

bandwidth 0Bandwidth , reservation price 0r  according to (5), choose a bidding price 

0 0 0( )b b r  and then broadcasts its relevant parameters ( 0D , 0C  and 0Bandwidth ) to 

terminal devices within its communication range through the trusted third party; 

3: FOR each terminal device (buyer) inode M  DO 
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4: 
Receive 0D , 0C  and 0Bandwidth ; 

5: 
Collect the related parameter (

i

lDelay , 
i

lEnergy  and iBandwidth ), then calculate its 

reservation price ir  and choose an asking price is  according to (6); 

6: END FOR 

7: 
Edge node 0node  calculates its bidding price 0b  and each terminal device inode M  

calculates its asking price is  by adopting the equilibrium excursion method as in [18]; 

8: Edge node 0node  submits 0b , and each terminal device inode M  submits is ; let 

0{ 2 |  and max }
i

N

i

node C

C s b C MN


=   C . IF 1C , a coalition C  in arg | |
j

j

C

max C
C

 is chosen 

to participate in resource allocation; 

9: Finally, the utilities are allocated to nodes in the coalition C  according to (10). 

 

The computational complexity of the algorithm 1 is analyzed to evaluate its 

feasibility during runtime. The algorithm consists of four main stages: 

Initialization involves the allocation of weights and basic parameters, 

resulting in a constant computational cost of O(1).  

Price setting requires each terminal device to calculate its reservation price 

independently. For N devices, this results in a total complexity of O(N). The most 

computationally intensive part is the coalition formation and Nash bargaining stage. 

This process enumerates all possible subsets of terminal devices to identify feasible 

coalitions whose total offers meet or exceed the bidding price of edge node. The 

worst-case complexity of this exhaustive search is O(2ᴺ). 

After determining the coalition, the stages of benefit distribution and 

resource allocation only involve basic arithmetic operations, maintaining the 

complexity of O(1). 

Therefore, the total running time of algorithm 1 is mainly influenced by the 

coalition selection step. Despite exponential growth in the worst-case scenario, this 

complexity is still acceptable for small and medium-sized MEC systems, as the 

number of active terminal nodes per edge server is relatively limited. 

To enhance scalability, future implementations may incorporate heuristic or 

greedy coalition formation methods, threshold-based pruning, or parallel subset 

evaluations. These approaches could significantly reduce the exponential cost of 

coalition selection while maintaining near-optimal performance. 

6. Performance evaluation 

The PSNCG method is compared with RCFL [19] and CPFL [20], we note 

that RCFL and CPFL are not direct resource-pricing baselines but are widely used 
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cooperative benchmarks in MEC and federated settings. They are included to 

demonstrate the comparative advantages of PSNCG in system-level metrics. 

Meanwhile, related MEC pricing schemes [9-11] are conceptually compared in 

Section 2 to provide readers with a broader perspective on pricing-based approaches. 

Based on gradient-descent federated learning, RCFL optimizes the trade-off 

between local model updates and global aggregation under constrained resource 

budgets, minimizing the loss function in distributed learning tasks. CPFL 

introduces a synergistic cloud-edge framework for personalized federated learning, 

aiming to address device heterogeneity and reduce communication and computation, 

meeting the latency demands of IoT applications. In contrast, the PSNCG does not 

focus on joint learning optimization, but solves the incentive-compatible resource 

pricing and allocation in MEC through a bargaining-based cooperative game model. 

PSNCG enables interactive negotiation between terminal devices and edge servers 

for resource trading, incorporating Nash bargaining theory to achieve fairness and 

system-wide utility maximization. This theoretical design allows PSNCG to 

dynamically balance resource supply and demand in a decentralized MEC 

environment, which is beyond the scope of RCFL and CPFL.  

The simulation environment consists of a MEC system with 10 edge nodes 

and 100 terminal devices uniformly distributed. Each edge node is connected to 10 

terminal devices, which generate tasks with various service levels [21]. Task 

generation rate in individual devices follows a Poisson process, and the task load 

ranges from 1 to 5. 100 simulations are conducted to obtain system performance 

metrics, which are plotted as a function of task request load. The performance 

metrics include normalized device benefits, bandwidth utilization, and task success 

rate in the MEC system. 

Figures 2-4 summarize the performance of the proposed MEC system under 

different scenarios. Fig. 2 shows the average task completion time under different 

offloading strategies, where the X-axis represents task generation rate (requests per 

unit time) and the Y-axis shows completion time (ms), illustrating the impact of 

offloading strategies on performance. Fig. 3 presents resource utilization across 

various MEC scenarios, with the X-axis representing the number of edge servers 

and the Y-axis indicating resource utilization (%), highlighting system efficiency 

under different configurations. Fig. 4 depicts system throughput versus task arrival 

rate, where the X-axis corresponds to task arrival rate (requests per unit time) and 

the Y-axis shows throughput (tasks per second), demonstrating how varying task 

loads affect overall system performance. Error bars and confidence intervals are not 

shown in the current figures but will be reported in future work. 
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Fig. 2. Normalized device benefits and task generation rate under PSNCG, RCFL, and CPFL 

 

In Fig. 2, the normalized benefits of devices are plotted against the task 

generation rate. As the number of task requests increases per device, more service 

is applied. The results demonstrate that the PSNCG can effectively manage 

resources under different task load from light to heavy, yielding higher device 

benefits within the MEC infrastructure. Notably, PSNCG operates interactively and 

strengthens the influence of the cooperative game model. 

 
Fig. 3. Bandwidth utilization and task generation rate under PSNCG, RCFL, and CPFL 

 

Fig. 3 shows the bandwidth utilization of task generation rate under different 

solutions. Compared with RCFL and CPFL, the PSNCG can ensures more stable 

and higher bandwidth utilization, achieving the bandwidth allocation process within 

the MEC system. 
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Fig. 4. Task success rate and task generation rate under PSNCG, RCFL, and CPFL 
 

Fig. 4 shows the task success rate in these three schemes. Since the tasks are 

generated with their time constrained, system entities should fine tune the limited 

computation and communication resources to improve task success rate. The 

PSNCG can provide the optimal tradeoff for current system until the best solution 

has been found during the bargaining process. As shown in in Fig. 4, PSNCG can 

share system resources of different devices and obtain the maximum benefits while 

maintaining a rather higher task success rate than RCFL and CPFL. 

From Figs. 2 to Fig. 4, numerical analysis is conducted to draw insights for 

validation. The bargaining approach PSNCG can achieve an appropriate 

performance balance in the MEC infrastructure. The results in Figs. 2 to 4 were 

obtained by averaging the results of 100 independent simulations for each setting. 

Although the observed performance gains of PSNCG relative to RCFL and CPFL 

are consistent in all experiments, statistical significance testing and confidence 

interval reporting will be incorporated in future work to provide more rigorous 

validation. 

Current performance evaluation is based on a simulated MEC environment 

with uniformly distributed edge and terminal nodes. Although this setting provides 

a controlled baseline for comparing algorithms, real-world deployments involve 

varied and typically dynamic topologies. The current evaluation presents averaged 

results over 100 runs, which serve as proof-of-concept evidence. We acknowledge 

that future studies should incorporate confidence intervals, statistical significance 

tests, and sensitivity analyses of key parameters such as ε, reservation weights, 

and traffic heterogeneity to further substantiate robustness. In future work, the 

PSNCG scheme will be evaluated under diverse network structures such as 

clustered, grid-based, and random graph topologies, as well as using real-world 

traces from mobile networks or MEC benchmarks. In this way, the robustness and 
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adaptability of the scheme under more realistic and heterogeneous scenarios will be 

validated. 

7. Conclusion 

An incentive mechanism that encourages edge service providers to 

participate in MEC task offloading by setting resource prices. A cooperative game 

model is proposed for resource allocation, aiming to maximize the profits of edge 

service providers while ensuring the quality of service for terminal devices. The 

Nash equilibrium with complete information game indicates that this model is 

reasonable. Compared with RCFL and CPFL, extensive simulations validate the 

performance of the proposed approach in normalized device advantages, bandwidth 

utilization, and task success rate. Future work will focus on designing a bargaining 

process that considers incentive-based interaction under incomplete information 

games. In this case, the resource allocation model can be formulated as a Bayesian 

game, where each participant has private information and forms beliefs about others. 

Under standard assumptions (finite type sets, compact strategy spaces, and 

continuous utility functions), the Bayesian Nash equilibrium can be established. 

This provides a theoretical basis for extending PSNCG to more realistic MEC 

scenarios with asymmetric information. 

Beyond the single-node setting studied here, extending PSNCG to multi-

edge cooperative MEC environments remains an important direction. Distributed 

bargaining and inter-node coordination will be incorporated in future research to 

enhance external validity. 
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