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STABILITY FOR SMALL DELAYS, METZLER MATRICES 
AND AN APPLICATION TO A FLIGHT CONTROLLER 

DESIGN

Ana-Maria Bordei1 and Andrei Halanay2

In this paper a stability theorem for linear systems of delay differ-
ential equations with small delays is proved and an application to control
design for flight control of an aircraft in a longitudinal flight is given.
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1. Introduction

The study of stability for linear delay differential equations (DDE) with
small delays originated in some papers in the last decades of the twentieth
century. The papers [15], [10] contain the first results on asymptotic stability
for some systems of linear DDEs using the hypothesis that the delays are small.
For example, in [10], for the equation

x′(t) = L(t, xt) (1)

with L : R × C([−τ, 0],Rn) → Rn continuous, L(t, ·) linear on C([−τ, 0],Rn)
that satisfies

‖L(t, φ)‖ ≤ Ksup{‖φ(s)‖, s ∈ [−τ, 0]} (2)

the asymptotic behavior of solutions is described when

τKe < 1. (3)

The approach related to small delays was further developed in [8], [1], [9].
For Ak ∈M(Rn), k = 0, . . . , N , τk > 0, k = 1, . . . , N, consider the DDEs

system

x′(t) = A0x(t) +
N∑
k=1

Akx(t− τk). (4)

A condition of small delays is coupled, in [9], Proposition 2.3., with the condi-
tion that all Ak be Metzler to yield a criterion of asymptotic stability for (4).
The basic property used in the proof is the positivity of the Cauchy matrix.
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We give a new proof of this, with more direct arguments, using a modified
version of a theorem of Gyori: [13], Theorem 2.1.

The criterion in Proposition 2.3. in [9] will then be applied to give con-
ditions for the design of a stabilizing controller for an aircraft in a longitudinal
flight.

2. Metzler matrices and exponential stability

Proposition 2.1. Let a0, ..., aN be real numbers and τ0, ..., τN be positive real
numbers. Define

τ = max {τ0, ..., τN} (5)

and suppose that

0 < τ

N∑
j=0

|aj| <
1

e
. (6)

Then the equation

x =
N∑
k=0

|ak|exτk (7)

has a real root in the interval (0, 1
τ
).

Proof. Define

f(x) =
N∑
k=0

|ak|exτk − x.

Then f(0) =
∑N

k=0 |ak| and

f(
1

τ
) =

N∑
k=0

|ak|e
τk
τ − 1

τ
≤

N∑
k=0

|ak|e−
1

τ
< 0

by (6) and the result follows. �

The next theorem is a slight modification of Th. 2.1. in [13]. It relies on a
condition of small delays (that was not the case in the original one) and proves
a property for the fundamental matrix of solutions for (4), another difference
to the Th.2.1 in [13]where a continuity condition was supposed. Nevertheless
the basic steps in the proof are preserved.

Theorem 2.1. (see[13], Th 2.1) Let Ak ∈ Mn(R)(real n × n matrices), k =
0, ..., N and τk ≥ 0, k = 0, ..., N be given. Let τ > 0 be defined in (5) and
suppose

τ
N∑
k=0

‖Ak‖ <
1

e
. (8)

Then the equation

x =
N∑
k=0

‖Ak‖exτk (9)
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has a real root in the interval
(
0, 1

τ

)
and the solution of the Cauchy problem

Ẋ(t) =
N∑
k=0

AkX(t− τk) (10)

X(t) = 0, t ∈ [−τ, 0) , X(0) = In (11)

has the property that det (X(t)) > 0,∀t > 0.

Proof. We will give a slightly different proof from that in [13] using condition
(8), thus avoiding an apparently flawed argument in the original proof.

We proceed now to the proof of the theorem. Since X(0) = In and X
is continuous on [0,∞) (see [13]), one has det (X(t)) > 0 for t sufficiently

small. If
∑N

k=0 ‖Ak‖τk = 0, (10) becomes an ordinary differential equation
with constant coefficients and X(t) = eAt with A the sum of non zero matrices
in (10) and the result follows.

Suppose then that
∑N

k=0 ‖Ak‖τk > 0 and denote by x0 ∈
(
0, 1

τ

)
a solution

of (9). Remark that
∑N

k=0 ‖Ak‖ ≤ x0 so, for small t ≥ 0, one has

v(t) := ‖
N∑
k=0

AkX (t− τk)X−1(t)‖ ≤ x0 (12)

(X(t − τk) = 0 if t − τk < 0). If the conclusion of the theorem is not valid it
would exist t1 > 0 so that

det(X(t)) > 0,∀t ∈ [0, t1) , det(X(t1)) = 0 (13)

We prove now that (12) holds for t ∈ [0, t1) . Suppose this is not true. Then
there exists ε > 0 so that v(t) < x0 + ε, ∀t ∈ [0, t2) ⊂ [0, t1) and v(t2) = x0 + ε.
Since v is continuous we can choose ε as small as we want. Rewrite (10) as

Ẋ(t) =
N∑
k=0

AkX(t− τk)X−1(t)X(t), t ∈ [0, t1) (14)

and introduce

Z(t) :=
N∑
k=0

AkX(t− τk)X−1(t), t ∈ [0, t1) (15)

Y (s) := X(t− s)X−1(t), 0 ≤ s ≤ t < t1 (16)

and Y (s) = 0 if t− s < 0.
(14 ) implies that

Ẏ (s) = −Ẋ(t− s)X−1(t)

= −
N∑
k=0

AkX(t− s− τk)X−1(t− s)

X(t− s)X−1(t) = −Z(t− s)X(t− s)X−1(t) = −Z(t− s)Y (s)
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so

Y (s) = Y (0)e−
∫ s
0 Z(t−r)dr, 0 ≤ s ≤ t < t1 (17)

When the Bellman-Gronwall inequality ([6]) is used, since,
for a continuous B : [0,∞) −→Mn(R), we have

‖e
∫ s
0 B(r)dr‖ = ‖

∫ s

0

d

dr
(e

∫ r
0 B(η)dη)dr + 1‖ =

= ‖1 +

∫ s

0

B(r)e
∫ r
0 B(η)dηdr‖ ≤ 1 +

∫ s

0

‖B(r)‖‖e
∫ r
0 B(η)dη‖dr

it follows that

‖e
∫ s
0 B(r)dr‖ ≤ e

∫ s
0 ‖B(r)‖dr, s ≥ 0.

Applied to (17) this gives, since Y (0) = In,

‖Y (s)‖ ≤ e
∫ s
0 ‖Z(t−r)‖dr = e

∫ t
t−s ‖Z(ζ)‖dζ , 0 ≤ s ≤ t < t1 (18)

Remark that ‖AkX(t − τk)X−1(t)‖ = 0 whenever t < τk and that, for τk > 0
and t ∈ [τk, t1), k = 0, ..., N ,

‖AkX(t− τk)X−1(t)‖ ≤ ‖Ak‖‖X(t− τk)X−1(t)‖ = ‖Ak‖‖Y (τk)‖

for 0 ≤ t < t1, hence,

v(t) ≤
N∑
k=0

‖AkX(t− τk)X−1(t)‖ ≤
N∑
k=0

‖Ak‖‖Y (τk)‖ ≤

≤
N∑
k=0

‖Ak‖e
∫ t
t−τk

‖Z(ζ)‖dζ
=

N∑
k=0

‖Ak‖e
∫ t
t−τk

v(ζ)dζ ≤

≤
N∑
k=0

‖Ak‖e(x0+ε)τk , 0 ≤ t ≤ t2

Once again, remark that v(t) = 0 if t− τk < 0,∀k = 0, ..., N . Then

v(t2) = x0 + ε ≤
N∑
k=0

‖Ak‖ex0τk · eετk (19)

By (9), x0 =
∑N

k=0 ‖Ak‖ex0τk so (19) gives

N∑
k=0

‖Ak‖ex0τk + ε ≤
N∑
k=0

‖Ak‖ex0τkeετk ⇔

⇔ ε ≤
N∑
k=0

‖Ak‖ex0τk(eετk − 1) =
N∑
k=0

‖Ak‖ex0τkετkh(ετk)
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with h(x) =
∑∞

j=1
xj−1

j!
so h(0) = 1. Simplifying ε, (ε > 0) one gets

N∑
k=0

‖Ak‖ex0τkτkh(ετk) ≥ 1

and, for ε→ 0, this gives, by (5),

1 ≤
N∑
k=0

‖Ak‖ex0τkτk ≤ τ

N∑
k=0

‖Ak‖ex0τk = τx0

a contradiction to τx0 < 1. It follows that t2 = t1 so (12) holds for all t ∈ [0, t1).
Since

lim
t→t1
t<t1

det(X−1(t)) =∞

it follows that

lim
t→t1
t<t1

‖X−1(t)‖ = lim
t→t1
t<t1

‖Y (t)‖ =∞

Consider now Y (t) = X−1(t), 0 ≤ t < t1. Then

Ẏ (t) = −X−1(t)Ẋ(t)X−1(t) = −Y (t)
N∑
k=0

AkX(t− τk)X−1(t).

Since Y (0) = In it follows that

Y (t) = e−
∫ t
0

∑N
t=0 AkX(s−τk)X−1(s)ds.

As above, one gets

‖Y (t)‖ ≤ e
∫ t
0 ‖

∑N
t=0 AkX(s−τk)X−1(s)‖ds = e

∫ t
0 v(s)ds ≤ ex0t1 , 0 ≤ t ≤ t1

so

lim
t→t1
t<t1

‖Y (t)‖ ≤ ex0t1 <∞

a contradiction that proves t1 = ∞ so that det(X(t)) 6= 0,∀t ≥ 0 and since
det(X(0)) > 0 we have det(X(t)) > 0, ∀t ≥ 0. �

Corollary 2.1. (see[13], Corollary 2.1) Consider the following scalar differ-
ential equation

u̇(t) =
N∑
k=0

aku(t− τk), τk ≥ 0, k = 0, N (20)

Define τ = max{τ0, ..., τn} and suppose (6) if fulfilled. Then the solution u0 of
(20) with

u(s) = 0,−τ ≤ s < 0, u(0) = 1 (21)

is positive on [0,∞).
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Proof. Proposition 2.1 and Theorem 2.1 ensures that the equation

x =
N∑
k=0

|ak|exτk

has a real root in the interval (0, 1
τ
). Since det(X(t)) = u0(t) one has, by

Theorem 2.1, that u0(t) > 0,∀t ∈ [0,∞). �

Consider again the problems (10), (11) and define, following [8] and [9],
the Cauchy matrix as C(t, s) = [cij(t, s)]1≤i,j≤n so that, for fixed s ≥ 0, it
verifies

C ′t(t, s) =
n∑
k=0

AkC(t− τk, s), t ∈ [s,∞)

C(ξ, s) = 0, ξ < s, C(s, s) = In
The solution of the non-homogeneous system

ẋ =
N∑
k=0

Akx(t− τk) + f(t), x(t) = 0, t < 0

is given by (see[9])

x(t) =

∫ t

0

C(t, s)f(s)ds+ C(t, 0)x(0),

If X0 is a fundamental system of solutions for (10) (see[13])then C(t, s) =
X0(t− s) is a Cauchy matrix.

Recall from [9], the followin definition.
Definition. A matrix A ∈M(Rn) is called a Metzler matrix if and only

if aij ≥ 0,∀i 6= j.
Suppose, following [9], that the matrices Ak, k = 0, . . . , N in (10) are

Metzler so akij ≥ 0,∀i 6= j, ∀ k = 0, . . . , N , where akij denotes the element aij
in Ak.

The following Proposition is stated in [9].

Proposition 2.2. (see[9], Proposition 2.3). Suppose Ak is Metzler for every
k = 0, N and suppose that

τ
N∑
k=0

|akii| <
1

e
,∀i = 1, n. (22)

Then, if the matrix A = A0 + A1 + ... + AN is Hurwitz, (10) is exponentially
stabile.

Proof. The proof of this proposition follows from Theorem 2 in [8] since, by
Corrollary 1, the Cauchy functions of the scalar equations

ẋi =
N∑
k=0

akiixi(t− τk), xi(s) = 0, s < 0, i = 1, n
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are positive and then, since A is Hurwitz, the condition that equation (4)
in [8] has a positive solution is satisfied and Theorem 1 in [8] concludes the
exponential stability. It is to be remarked that the proof of Theorem 1 in [8]
uses the Perron condition (see [14], Theorem 4.15.) �

3. Flight control for ADMIRE

The differential model used in this study is an aircraft model, ADMIRE
(Aero-Data Model In a Research Environment) [12]. The Swedish Defence
Research Agency built this model to provide a full aircraft model with six
degrees of freedom to be utilized and widely disseminated by the scientific
community.

The system of differential equations that governs the motion of ADMIRE
[12], [5], [4] is:

α̇ = q − pβ +
g

V
cosθcosψ + zαα + yββ

2 + yp(α, β)pβ + yr(β)rβ+

+yδaβδa + zδeδe + yδrβδr,

β̇ = pα− r +
g

V
sinφ cos θ − zααβ + yβ − yp(α, β)p− yr(β)r

+yδaδa − zδe + yδrδr
ṗ = −i1qr + lβ(α)β + lpp+ lr(α)r + lδαδα + lδrδr
q̇ = i2pr +mαα +mqq −mα̇pβ + yppβ + yββ

2 + yr(β)rβ+

+
g

V
(mα̇ cos θ cosφ− c2

α
α2 sin θ) + yδαβδα +mδeδe + yδrβδr

ṙ = −i3pq + nββ + np(α, β)p+ nr(α, β)r + nδαδα + nδcα(α)δcα+
+nδrδr

φ̇ = p+ (q sinφ+ r cosφ) tan θ

θ̇ = q cosφ− r sinφ

ψ̇ =
q sinφ+ r cosφ

cos θ

(23)

The system (23) is obtained from the general equations of motion [7] of an
aircraft, replacing the general aerodynamic forces and moments with those
related to ADMIRE [5], considering α and β small and having the next ap-
proximations [5].

cos β ≈ 1; −p cosα tan β ≈ −pβ; −r sinα tan β ≈ 0; cosα ≈ 1; sinα ≈ 0

cos β ≈ 1

Ixz(Ix + Iz − Iy)
IxIz − I2xz

≈ 0;
(Iy − Iz)Iz − I2xz
IxIz − Ixz2

≈ −i1
Ixz
Iy
≈ 0;

I2xz + (Ix − Iy)Ix
IxIz − I2xz

≈ −i3;
Ixz(Iy − Iz − Ixz)

IxIz − I2xz
≈ 0
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Longitudinal flights are known as flights for which

β ≡ p ≡ r ≡ φ ≡ ψ ≡ 0, δa = δr = 0

From [4], we have the following result:

Proposition 3.1. ([4], Proposition 2.7) A longitudinal flight is possible if and
only if Y = L = N = 0 for β = p = r = φ = ψ = 0 and δa = δr = 0.

According to [4], [3] and [5], the simplified system of differential equations
that governs the motion around the center of mass in a longitudinal flight
with a constant forward velocity of ADMIRE is given by ordinary differential
equations:

α̇ = m11α +m12q + c cos θ + b1δe

q̇ = m21α +m22q + cm0 cos θ − cc1 sin θ + b2δe

θ̇ = q

(24)

Here, the state parameters are α - angle of attack, q - pitch rate, Euler
pitch angle - θ and the control parameter is the elevator deflection δe. Let
(α0, 0, θ0) be an equilibrium point of the uncontrolled system (24) (i.e. when
δe = 0). Then it verifies{

m11α + ccosθ = 0

m21α + cm0cosθ − cc1sinθ = 0

Perform a translation to zero introducing x1 = α− α0, x2 = q, x3 = θ− θ0. To
be able to study the effect of delays in this model, we will introduce two delays
in the control parameter (see also [2]), and δe becomes a feedback control with
delays:

δe = k1x1(t− τ1) + k2x2(t− τ2) + k3x3(t− τ2).
Now, the longitudinal flight of ADMIRE can be described by a system

of DDEs with a feedback control

ẋ1 = m11(x1 + α0) +m12x2 + c cos(x3 + θ0) + b1k1x1(t− τ1)+
+ b1k2x2(t− τ2) + b1k3x3(t− τ2)

ẋ2 = m21(x1 + α0) +m22x2 + cm0 cos(x3 + θ0)− cc1 sin(x3 + θ0)+

+ b2k1x1(t− τ1) + b2k2x2(t− τ2) + b2k3x3(t− τ2)
ẋ3 = x2.

(25)

We next linearize the system around the equilibrium point and analyze
its stability.

Define A0 = (aij)i,j=1,3 as the Jacobian matrix of the system with respect
to x1, x2, x3, A1 = (bij)i,j=1,3 the matrix of the derivatives with respect to
x1(t − τ1) and A2 = (cij)i,j=1,3 the matrix of the derivatives with respect to
x2(t− τ2) and x3(t− τ2).
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We impose the conditions that A0, A1, A2 are Metzler and the matrix
A = A0 + A1 + A2 is Hurwitz and apply then Proposition 2. Using also the
Theorem of Stability by the First Approximation (see, e.g., [14], Th. 1.7.), we
obtain the following stability result.

Proposition 3.2. Suppose that A0, A1, A2 are Metzler matrices and that the
matrix A = A0 + A1 + A2 is Hurwitz. Define τ = max(τ1, τ2). Suppose that
the following conditions are satisfied

τ(|m11|+ |b1k1|) <
1

e
, τ(|m22 + |b2k2|) <

1

e
. (26)

Then, for system (24), with

δe = k1(α(t− τ1)− α0) + k2q(t− τ2) + k3(θ(t− τ2)− θ0).

the equilibrium point (α0, 0, θ0) is asymptotically stable.

4. Conclusions

This paper presents a stability theorem for linear systems of delay differ-
ential equations with small delays, representing an important result for systems
where even the small delays are critical, such as the delays that can occur in
the control of an aircraft.

The proof of the stability theorem uses the fact that, if all the matrices
of partial derivatives with respect to undelayed state variables and to delayed
state variables are Metzler, their sum is Hurwitz and the delays verify the
condition (22), then the system is asymptotically stable.

The theory presented in this paper was applied to a model that describes
the longitudinal flight of an aircraft. Conditions for the design of a stabilizing
controller are deduced. The study underlines that we can get a stable longitu-
dinal flight when the delays are not too large, imposing certain conditions on
the parameters governing the motion of the aircraft.
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