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LINEAR SYSTEMS’ STABILIZATION BY USING DYNAMIC 
COMPENSATION 

Florin STRATULAT1 

Sistemele automate sunt proiectate asfel încât să asigure satisfacerea unor 
indici de performanţă ai regimului dinamic şi staţionar. In acest articol este 
prezentată o procedură de stabilizare a unui sistem liniar multivariabil prin  
compensare dinamică. Proiectarea compensatorului dinamic stabilizator (CDS) este 
realizată în două variante: CDS cu estimator de stare de tip Kalman (unitar) şi  
CDS cu estimator de stare de tip Luenberger (minimal). Validarea soluţiilor 
obţinute este realizată prin simulare în Matlab-Simulink, prezentând atât programul 
Matlab cât şi rezultatul simulării. 

The automatic systems are projected so that they should ensure the fulfillment 
of some performance indexes of the stationary and dynamical regime. In this article 
is presented a stabilization procedure of a multivariable linear system by using 
dynamical compensation. The projection of the stabilizer dynamic compensatory 
(SDC) is realized in two ways: SDC with Kalman (unitary) state estimator and SDC 
with state estimator of Luenberger (minimal) type. The validation of the solutions 
obtained is realized by Matlab-Simulink simulation, by presenting both the Matlab 
program and the simulation’s result. 

Keywords: controllability, observability, control law, allocability, state  
                   estimators, stabilizability, detectability, stabilizer dynamic  
                   compensatory. 

1. Introduction 

In this work are presented ways of designing some dynamic compensatory 
in the purpose of the multivariable linear systems’ stabilization. The stabilization 
problem by dynamic compensation (the elementary synthesis) embraces two 
distinct problems namely: the determination of a control law by feedback after 
state and implementation of this one by using a state estimator [1]. 

Problem formulation. We consider the multivariable linear system 
(continuous or discreet) 

      
⎪⎩

⎪
⎨
⎧

=

=∈+=′

Cxy
x)o(x,Rx,BuAxx o

n                                   (1) 

                                                            
1 Reader, Dept. of Automatics and Industrial Informatics, University POLITEHNICA of 
Bucharest, Romania, stratulat@gmail.com  



Florin Stratulat 38

Determine a compensatory system 
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which, by processing of the measured dimension y of the system (A,B,C), a 
command u provides so that, the resulted system (in closed-loop) from the 
connection of the two systems (Fig.1) should be intern asymptotic stable. 

                              

Fig. 1. Block diagram of connection of the two systems 
 

The resulted system (in closed circuit) is characterized by the relation  
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By reformulating the stabilization problem by dynamic compensation, we 
have: “being given the system (1) (continuous or discrete-time), design a 
compensatory system (2) that, by processing the measured dimension y, provides 
a command u so that the system (in free regime) (3), resulted from the connection 
of the two systems, should be intern asymptotic stable [2], viz. 
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The compensatory is called stabilizer dynamic compensatory (SDC). 
Solution of the problem. The necessary conditions so that the problem of 

stabilization by dynamic compensation should have solution are: 
  1) the pair (A,B)  can be stabilized 
  2) the pair  (C,A)  is detectable 
In the first stage we design a control law u = Fx so that 
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In the second stage we build a stable state estimator. The assembly formed by the 
control law and the state estimator necessary for the implementation of this one 
constitute a linear compensatory. 
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Separation principle. If the pair (C,A) is detectable then the synthesis 
general problem  of a governing algorithm  for the system (A,B,C) may be 
separated in two independent problems namely: 
1) the determination of a control law by feedback after state, u = Fx and 
2) the construction of a stable state estimator for the implementation of the 

control law u = Fx. 
If one wish that:                              oR )A( Λ≡σ                                                     (7) 
then the necessary conditions for solving the allocation problem by dynamic 
compensation become: 
1) the pair (A,B) is controllable and 
2) the pair (C,A) is observable 
We present now the fundamental result given by the Theorem 1. 
   Theorem 1. The problem of the eigenvalues (poles) allocation by dynamic 
compensation has a solution if and only if the system (A,B,C) is controllable and 
observable. In this case an efficient solution has the dimension υ=n in case of the 
Kalman estimator or  υ=n-p in case of the Luenberger estimator [1]. 

We consider the continuous linear system: 
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Design a stabilizer dynamic compensatory knowing that: 
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2. Verifying the necessary conditions 

2.1. The controllability matrix of the pair (A,B) is 
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and we notice that n4Rrank ==  and so (A,B) is controllable (and, obviously, the 
system (A,B,C) is controllable). 
2.2. The observability matrix of the pair (C,A) : 
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As n4Qrank == , the pair (C,A) is observable ( (A, B, C) is observable). 

3. Projection of the control law  

u=Fx  (computing the stabilizing reaction F). 
3.1. We notice that : n = 4, m = 2 and p = 2. We choose the pair 4,2o 0F =  and 

T]10[g =  and we calculate the new pair : 
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3.2. We calculate the controllability matrix : 
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3.3. We calculate 
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3.5.     TT qf −=  X n )A( oF  

in which : X n 1s3s4s3s)1ss()1s()s( 23422 ++++=+++= . It results :                   
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viz. :                                    [ ]3432f T −−−−=  
Observation. We notice that the pair )b,A( oF  is a controllable realization and 

we may apply the fast procedure in order to design the reaction Tf : 
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3.6. We calculate the reaction F :       
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The validation of the design: The characteristic polynomial of the resulting 
system is :  X r F)]B(A[sIdet(s) +−=  
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But:    
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So, the designing of the F reaction is correct. 

4. The state estimator projection 

4.1. The first solution: Kalman (unitary) estimator. Due to the fact that the pair 
(C,A) is controllable, we have: 
4.1.1. By dualling the pair (C,A) we obtain : 
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4.1.2. We choose the pair 4,2o 0F = and T]10[g = and we compute the new pair 
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4.1.3. We calculate the controllability matrix corresponding to the pair )b,A(
oF  : 
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4.1.4. We calculate the inverse 1
A oF

R − by using the MATLAB instruction: 
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4.1.5. We calculate :     [ ] [ ]0100R1000Req 1
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4.1.6. We calculate the reaction Tf :                                   TT qf −=  X n )A( oF  
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It results :              [ ] ]I2A6A7A4A[0100f 4F
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viz.:                                          [ ]4367f T −−−−= . 
4.1.7. We calculate the reaction *F :       
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The validation of *F  projection : the characteristic polynomial of the resulted 
pair is :                                X r )]FB(A[sIdet(s) ** +−=  

viz.:                                  X r ≡++++= 2s6s7s4s)s( 234  X est1(s) 
the designing being correctly. 

4.1.8. It is noted :                        
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4.1.8. We calculate the parameters of the full estimator dimension : 
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         4.2. The second solution: minimal estimator. 
4.2.1. The matrix C being epic we produce the nonsingular transform: 
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4.2.2. By applying the transform of coordinates xTx̂ =  we obtain the equivalent 
system on state : 
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 4.2.3. The pair )A,A( 12  is observable and by dualling we obtain the pair 
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5. Projection of the stabilizer dynamic compensatory 

We distinguish two solutions (depending on the state estimator’s type used for the 
implementation of the control law by reaction after state xFu = ) : 

5.1. SDC with Kalman estimator 

We calculate the parameters of the compensatory: 
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5.2. SDC with Luenberger estimator. 

The parameters of the compensatory are obtained like this : 
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6. Projection validation by MATLAB simulation. 

6.1. SDC with Kalman estimator. In order to be able to verify by 
MATLAB simulation the designed system it is necessary the computing of the 
matrix RA  (of the closed circuit system): 



Linear systems’ stabilization by using dynamic compensation  45

⎥
⎦

⎤
⎢
⎣

⎡ +
=

cc

cc
R ACB

FBCGBA
A   ,    

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−
−
−
−
−−−−

=

74314000
20003000
61006000
70107000
34320001

00001000
00000100
00000010

AR

 

By usig the MATLAB instruction: 
}j1,1,1,866.0j5.0,1,1{)A(eig)A( RR ±−−−±−−−==σ=ν  

which means that 
1estR ΛΛ)(Aσ ∪=  and so the designing of SDC is correct. 

The simulation of the designed system, in free regime, 

o
c RR

nn
RRRR x)o(x,Rx,xAx =∈⋅= +  

with [ ]T
R 11111111x o =  is presented (and the program MATLAB) in 

fig. 1a,b. We notice that the designed system is stable. 

6.2. CDS with Luenberger estimator. In this case the size of the 
designed system is reduced, 6nR = , obtaining: 
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Fig. 1b 
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viz. 

2estR ΛΛ)(Aσ ∪= , fact that confirms the correctness of the SDC designing. 
In fig.2a,b are presented the MATLAB program and the graphic representation of 
the response in free regime of the system obtained by designing, for the initial 
condition [ ]T

R 111111x o = . So, the designed system is stable. 
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                                                         Fig. 2a 

                                                    
Fig. 2b 

7. Conclusions 

The stabilization problem by dynamic compensation (the elementary 
synthesis) embraces two distinct problems namely: the determination of a control 
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law by feedback after state and implementation of this one by using a state 
estimator (Kalman or Luenberger estimator). 

As one may notice from the simulations for the validation of the 
stabilizing dynamic compensatory’s  projection the free  response of the resulting 
system is stable and therefore the projection is efficient. 

The original contributions of the autor are: the computer aided designing 
of the SDC and the computer aided analysis of the system behaviour by using 
Matlab program. 
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