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In this paper, the authors present PSO based algorithms used to optimize the 

electromagnetic device of an international test problem. Several variants of PSO 

based algorithms are implemented. These are improved variants of Standard PSO 

(SPSO), Discrete PSO (DPSO) and Quantum PSO (QPSO). A domain-shrinking 

technique is used to improve the results of these algorithms when optimizing the 

electromagnetic device of the TEAM22 benchmark problem. 
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1. Introduction 

Because of the real-life interest in solving many optimization problems, it 

was developed a wide scientific literature on the subject. Google Scholar reports 

for the term “optimization” about four million scientific papers, from which about 

one million in the past ten years, which proves the importance and the topicality 

of the subject. In present, the optimizations are considered part of Math, 

Computer Science and Operational Research Science. No matter the field, 

improvement of a solution supposes solving of an optimization problem. All high-

tech products are the result of an optimization action. 

The optimization problems are classified in two major categories: without 

restrictions [1] and with restrictions [2]. These may be convex (with a single 

minimum [3]) or not (with multiple local minimum). In the convex case, the 

objective function is smooth and differentiable, case that is exploited by the 

solving methods. In the non-convex case, the function is not smooth which makes 

the optimization problem far more difficult. 

The solving methods for this kind of problems are classified in two major 

categories: deterministic and stochastic. The deterministic methods may be with 

or without gradient use [4] or use of another higher order derivatives of the 

objective function. These methods cannot solve problems with multiple local 

minima, because these incline to a local minimum. For determining global 
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minimum are used different stochastic methods which apparently seem to chaotic 

explore the search space, but these give the chance to the algorithm to find the 

global minimum [5]. These methods are of metaheuristic type and do not 

guarantee to find the optimal solution but find a pseudo optimal one [6]. Most 

heuristics are inspired from nature and are classified in “single-solution” and 

“population based”. The second class is suitable to parallelization. 

In many cases, the optimization of electromagnetic devices is an 

optimization of their geometric dimensions and of the position and the values of 

the electromagnetic field sources such that some objectives are satisfied [7] [8]. 

The difficult part is made by the complexity of the objective function which has 

many local minima and the fact that the evaluation of the objective function 

implies numerical solving of an electromagnetic field problem which requires 

important computing resources like processor and memory. 

The main disadvantage of stochastic methods is a large number of 

objective function evaluations, especially when the cost of the objective function 

evaluation is significant. In this case, the running time of sequential 

implementation is too high, hence the need for algorithm parallelization. The 

technological evolution regarding transistor shrinking brought a limitation in the 

processors working frequency as a cause of the difficulty to extract the generated 

heat. The alternative is represented by parallel architectures grouped in multi-core 

clusters or GP-GPU devices which contain hundreds of cores if these are 

efficiently exploited by use of parallel algorithms [9] [10] [11]. 

The PSO (Particle Swarm Optimization) algorithms [12] are iterative 

stochastic optimization methods, which use a population of candidate solutions 

which evolves in time. These algorithms are independent of the problem to be 

solved and are appropriate to difficult optimization problems when the derivative 

of the objective function is unknown. The main goal of this paper is to propose 

innovative variants that improve performances of the PSO algorithms because 

these algorithms are well suited to parallelization.  

2. The TEAM22 benchmark problem 

SMES devices (Superconducting Magnetic Energy Storage) store the 

energy in magnetic fields and are made by solenoids manufactured from 

superconducting materials. The TEAM22 problem consists in optimization of 

such a SMES device where the solenoids are powered by a power converter 

switch. The switch is simultaneously opened with the shorting of the coils 

terminals and the current will flow through the coils without decreasing in time, 

cause of the superconducting resistance which is almost zero. These devices are 

used in energy systems to stabilize the power fluctuations [7]. 
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 In the TEAM22 problem, a SMES device (Fig. 1) must be optimized such 

that the following objectives are achieved [13]: 

- the stored energy in the device is about 180 MJ; 

- in the interior of the coils it must be met the condition of critical magnetic 

field which guarantees superconductivity; 

- the stray field (measured at 10 meters distance from the device) should be 

as small as possible. 

 
Fig. 1. SMES device with two solenoids [14] 

  

The problem has 8 parameters (R1, R2, h1/2, h2/2, d1, d2, J1, J2) which 

have restrictions that are presented in table 1. These parameters must be computed 

by solving the optimization problem. 
Table 1 

Parameters restrictions for the TEAM22 problem 

 R1 

[m] 

R2 

[m] 

h1/2 

[m] 

h2/2 

[m] 

d1 

[m] 

d2 

[m] 

J1 

[MA/m2] 

J2 

[MA/m2] 

min 1.0 1.8 0.1 0.1 0.1 0.1 10.0 -30.0 

max 4.0 5.0 1.8 1.8 0.8 0.8 30.0 -10.0 

 

The coils should not overlap each other, so a new design constraint must 

be met: 

 

 

(1) 

The superconducting material must meet the quench condition which 

consists in a relation between the current density and the maximum value of 

magnetic flux density, condition shown in Fig. 2. 

Equation (2) is an approximation of the curve in Fig. 2: 

 
|J| ≤ (−6.4|B| + 54.0)   A/mm2 

(2) 
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Fig. 2. Curve of the industrial superconductor [14] 

  

The objective function of this problem must take into account the energy 

condition (the stored energy in the device is about 180 MJ) and the condition that 

the stray field should be as small as possible; thus, the problem is reduced to six 

parameters instead of eight. The objective function that must be minimized by 

solving the optimization problem is: 

 

 

 

(3) 

  

In equation (3),  and . 

 The  value is computed by evaluating the field in 22 equidistant 

points on line a and line b from Fig. 1 and has the expression:  

 

 

 

(4) 

For the objective function of the reference problem TEAM22, the 

minimum reported in the definition of the problem is 1.8E-03 [14]. Results close 

to this value were reported in [15], [16], [17]. In [15], the author uses a distributed 

evolutionary strategy which runs on a ten node network, each node computing 

6000 objective function evaluations. In [16], it is implemented a version of the 

IPSO algorithm based on a tabu region (an interdicted region for the parameters) 

after keeping constant four parameters in the already computed minimum point 

obtained by [15] and varying two parameters. In [17], the author implements PSO 

and QPSO algorithms for a population of 30 particles and 200 iterations, a total of 

6000 evaluations of the objective function. In this paper, initially the search 

domain it is considered unknown and all parameters vary conforming to the 

implemented algorithms. 



Improving PSO based algorithms with the domain-shrinking technique for electromagnetic… 183 

3. PSO algorithms 

 Particle swarm optimization was invented by Kennedy and Eberhart and, 

at the beginning, the scope was to simulate the social behavior as a representation 

of the movement of a flock of birds or school of fish [8]. PSO is a stochastic 

optimization algorithm and does not require the objective function of the test 

problem to be differentiable. The algorithm consists of a population of individuals 

(of size S) which are named particles. These particles fly (move) in the search 

space (domain of definition of size D), of rectangular form or classified in a 

cuboid with the limits xmin and xmax of the objective function. Each particle is 

defined by its position in the search space, denoted by xi and speed, denoted by vi. 

At each iteration of the algorithm, the particles modify their position and speed 

based on two values: the personal best position (pi) and the global best position (g) 

from the history of the swarm. The following equations describe the expression of 

speed and position for a given particle at the next iteration time. 

 
 

(5) 

  (6) 

The three weights (inertial weight w, personal weight cp and social weight 

cg) used in the speed equation describe the behavior of the individuals and of the 

hole swarm which aspire to go to the best solution. The parameters w, cp, cg are 

selected by the algorithm developer and controls the behavior and effectiveness of 

the PSO method. An example of values for these parameters, for the function f = 3 

+ x0
2 + x1

2 is w=0.73, cp=1.49, cg=1.49 [18]. The variables  and  are randomly 

distributed in the range (0,1). 

The classic PSO algorithm for different types of problems has the tendency 

to get stuck, by agglomerating whole swarm, in a local minimum zone. Different 

variants of the PSO algorithm try to avoid premature convergence [19] [20] [21]. 

Until today, the PSC (Particle Swarm Central) authority has made public 

three variants of SPSO algorithm: SPSO 2006, SPSO 2007 and SPSO 2011 [22]. 

Each standard is a better version of the previous one. 

SPSO keeps the ideea of the particle swarm and the basis from PSO but 

considers that particles are connected, each connection representing a link 

between two different particles. A connection has an informed and an informing 

particle, the first particle knowing the personal best and the position of the second 

particle. Thus, each informed particle has a set of informing particles called 

neighborhood.  

SPSO uses a random topology which changes the connections graph at each 

unsuccessful iteration (when the global best solution is not improved). The graph 

of links between particles is created this way: each particle informs three 

randomly chosen particles; so, a particle will be informed by a number from 1 to S 
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particles. The velocity formula introduces a new term, the center of gravity, for 

obtaining “exploration” and “exploitation”. The center of gravity depends on three 

terms: the current position, a term relative to the previous best pi, and a term 

relative to the previous best in the neighborhood li.  

Let Ni(t) be the set of neighbors of the particle i at the moment t. 

Initialization in SPSO 2006 and SPSO 2007 is done like PSO with the addition 

that initialization of li is made: 

 li (0) =argminj∈Ni(0)(f(pj(0))) (7) 

In SPSO 2011, initialization is the same, except the speed initialization 

and it is avoided that the particles leave the search space when the dimension D of 

the definition domain is big [22]. The speed new formula is: 

 vi,j(0) = random (xmin,j – xi,j(0), xmax,j – xi,j(0)) (8) 

The equations which update the speed and positions from SPSO 2006 and 

SPSO 2007 have problems in finding the minimum when this is placed on an axis, 

on a diagonal or in the center of the coordinate system. In SPSO 2011, the speed 

is modified in a way that does not depend by the coordinate system. Let Gi being 

the center of gravity for the particle i. The equation of Gi is: 

 Gi = xi + c(pi+li-2xi)/3 (9) 

 
Fig. 3. Computing new position in SPSO 2011 [22] 

 

Let Hi(Gi, ||Gi-xi||) be the hypersphere of center Gi and radius ||Gi-xi||, and 

xi’ a random point in this hypersphere. The update equations of speed and position 

are: 

 vi(t+1) = w·vi(t) + xi’(t) - xi(t) 

xi(t+1) = w·vi(t) + xi’(t) 

(10) 

(11) 

The scope of the SPSO algorithm authors was to keep the principles of the 

classic PSO algorithm with minimum dependencies in the implementation. 
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The SPSO equations cannot be used to generate binary/discrete values 

because the positions are vectors of real values. In order to obtain discrete (binary) 

values, the resulted values of each iteration must be rounded.  

Pan et al. [23] has presented a discrete PSO optimization algorithm (DPSO) 

which can be used for continuous problems if a finite precision for the 

optimization variables is imposed. In this algorithm the positions of the particles 

are given by the following equations: 

 
xi(t+1) = pGB⊕CR(pPB ⊕CR(xiM(t),pi(t)),g) 

xiM(t)=pv ⊕M(xi(t)) 

(12) 

(13) 

M is a mutation operator applied with the probability pv. It is generated a random 

number r in (0,1) and if r > pv then it will be applied the mutation operator on 

xi(t): it is chosen a coordinate and it will be generated a random value for it. CR is 

a crossover operator and it is applied twice. First time is applied with probability 

pPB: it is generated a random number r in (0,1) and if r > pPB, for the variables 

xiM(t) and pi(t) it is chosen a coordinate j for which it will be interchanged the 

values of the two variables. Second time, the operation is similar, but with 

probability pGB. 

The algorithm developed by Pan et al. has an innovation degree by setting a 

link between PSO and genetic algorithms. 

The main disadvantage of PSO is that it cannot guarantee its global 

convergence [24]. In order to face this problem, a method that increase the 

probability to obtain global convergence named Quantum PSO (QPSO) has been 

developed and published in [25]. 

Unlike PSO and SPSO algorithms, where the particle trajectories are 

according to Newton's mechanic laws, QPSO is a quantum system. In QPSO, the 

particle position does not depend on speed, like PSO. The particles move 

conforming to the following equations: 

 
xi(t+1) = pli(t) ± β·|m(t)-xi(t)|·ln(1/u) 

 
pli(t) =φ·pi(t)+(1-φ)·g(t) 

(14) 

 

(15) 

(16) 

The parameter β is the contraction-expansion factor which adjusts the 

convergence speed of the algorithm. The parameters u and φ are random numbers 

uniformly distributed in (0,1). In the xi equation, there is a hidden parameter k 

which is random in (0,1) and if k > 0.5 the operation is add, else the operation is 

subtract.  

While in the PSO algorithm the particles converge to the solution through 

the global best position, in QPSO the particles exert a greater influence on each 
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other through an average of the personal best positions, so the probability to get 

stuck in a local minimum is smaller. 

4. Results 

We have chosen the SPSO, QPSO and DPSO algorithms for the TEAM22 

problem which were implemented in [26] for different sizes of the swarm (32, 64 

and 128). For a relevant statistical study, it were made 30 runs for each algorithm 

and swarm size, at each time, the initialization being made with different values of 

the populations randomly generated in the search space. The algorithms were 

stopped when it was reached the maximum number of iterations, a number 

equivalent to 2560 function evaluations.  
Table 2 

The objective function values and standard deviation  

of the PSO algorithms applied to the TEAM22 problem [26] 

Algorithm Swarm size Min  Max Mean  
Standard 

deviation  

SPSO 

32 2.98 E-3 15.99 E-3 5.82 E-3 2.58 E-3 

64 3.41 E-3 7.95 E-3 5.41 E-3 1.16 E-3 

128 3.42 E-3 9.50 E-3 6.41 E-3 1.42 E-3 

QPSO 

32 2.23 E-3 27.10 E-3 8.11 E-3 6.46 E-3 

64 2.49 E-3 26.50 E-3 5.95 E-3 4.80 E-3 

128 2.92 E-3 14.30 E-3 7.07 E-3 3.05 E-3 

DPSO 

32 6.70 E-3 37.30 E-3 17.32 E-3 9.27 E-3 

64 3.60 E-3 34.02 E-3 15.02 E-3 9.31 E-3 

128 4.80 E-3 52.07 E-3 17.62 E-3 13.19 E-3 
 

The results of the performance study from [26] are presented in table 2 

which contain the mean of the minimum values obtained at each from the 30 

program executions. Min and Max represent the minimum and maximum of the 

minimum values obtained from the 30 program executions. The QPSO and SPSO 

have better results than DPSO. The smallest values of the objective function were 

obtained by the QPSO algorithm while the smallest mean and standard deviation 

were obtained by SPSO. The optimum swarm size for QPSO and SPSO is 

between 32 and 64 particles. 

The solution improvements from our study consist in shrinking the domain 

of the parameters after the algorithm has run a number of iterations and obtained 

values considerably better than the initial moment. The algorithms selected for 

this type of improvement are SPSO, QPSO and DPSO, and the variants where the 

domain was shrank are 1, which means no shrinking, 1/4 – the variant to which it 

was made domain shrinking only the variables R1 and R2, and 1/64 – the variant to 

which it was made domain shrinking for all the parameters (domain shrinking is 

made for all the six variables after 30% of iterations). 
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In Table 3 is shown the improvement applied to the SPSO algorithm for 

populations of 32, 64 and 128 particles. 
Table 3 

Results of the improved SPSO algorithms 

by domain-shrinking for the TEAM22 problem 

Algorithm Swarm size Min Max Mean Standard 

deviation 

SPSO 1/4 32 2.54E-3 12.34E-3 4.32E-3 2.21E-3 

SPSO 1/4 64 3.01E-3 6.53E-3 3.92E-3 0.95E-3 

SPSO 1/4 128 3.12E-3 7.42E-3 4.28E-3 0.99E-3 

SPSO 1/64 32 2.33E-3 9.19E-3 3.75E-3 1.24E-3 

SPSO 1/64 64 2.82E-3 5.70E-3 3.69E-3 0.64E-3 

SPSO 1/64 128 2.87E-3 5.90E-3 3.93E-3 0.68E-3 

 

In Table 4 is shown the improvement applied to the QPSO algorithm for 

populations of 32, 64 and 128 particles. 
Table 4 

Results of the improved QPSO algorithms 

by domain-shrinking for the TEAM22 problem 

Algorithm Swarm size Min Max Mean Standard 

deviation 

QPSO 1/4 32 2.13E-3 8.82E-3 4.54E-3 1.64E-3 

QPSO 1/4 64 2.48E-3 14.67E-3 5.02E-3 2.55E-3 

QPSO 1/4 128 2.67E-3 15.79E-3 6.03E-3 3.20E-3 

QPSO 1/64 32 2.02E-3 3.27E-3 2.49E-3 0.30E-3 

QPSO 1/64 64 2.09E-3 3.96E-3 2.77E-3 0.51E-3 

QPSO 1/64 128 2.11E-3 4.08E-3 2.83E-3 0.52E-3 

 

In Table 5 is shown the improvement applied to the DPSO algorithm for 

populations of 32, 64 and 128 particles. 
Table 5 

Results of the improved DPSO algorithms 

by domain-shrinking for the TEAM22 problem 

Algorithm Swarm size Min Max Mean Standard 

deviation 

DPSO 1/4 32 2.98E-3 37.09E-3 11.49E-3 8.43E-3 

DPSO 1/4 64 3.80E-3 30.32E-3 10.22E-3 7.11E-3 

DPSO 1/4 128 3.24E-3 29.96E-3 9.11E-3 6.34E-3 

DPSO 1/64 32 2.62E-3 26.10E-3 10.00E-3 5.75E-3 

DPSO 1/64 64 3.31E-3 27.16E-3 6.51E-3 2.34E-3 

DPSO 1/64 128 3.16E-3 11.71E-3 6.38E-3 2.38E-3 

 

 The domain-shrinking solutions improvements are proven to be satisfying 

for all algorithms SPSO, QPSO and DPSO. Best results are obtained, in order, by 

the variants QPSO 1/64 (minimum of 2.02E-3 in the point given by 

R1=1.305600m, d1=0.520453m, h1=1.1410211·2m, R2=1.800000m, 
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d2=0.203861m, h2=1.552848·2m), SPSO 1/64, QPSO 1/4, SPSO 1/4, DPSO 1/64, 

DPSO 1/4. The DPSO algorithms give the weakest performances from the three 

categories (SPSO, QPSO and DPSO). 

 For all algorithms, the variants 1/64 are proven to be better than 1/4. In 

Fig. 4 it is shown the evolution of the mean obtained by the best configurations of 

the SPSO, QPSO and DPSO algorithms with the domain-shrinking technique. 
 

 

Fig. 4. Evolution of the mean obtained by the best 1/64 configurations 

of SPSO, QPSO and DPSO applied to the TEAM22 problem 

5. Conclusion 

 In this paper were presented PSO based algorithms and domain-shrinking 

technique used for electromagnetic devices optimization. This technique was 

applied to the PSO based algorithms SPSO, DPSO and QPSO which were used to 

optimize the electromagnetic device of an international test problem, namely 

TEAM22. 

 The domain-shrinking technique significantly improves the performance 

of all the three algorithms. SPSO 1/4, QPSO 1/4 and DPSO 1/4 have better results 

than SPSO, QPSO and respectively DPSO. Going further, SPSO 1/64, QPSO 1/64 

and DPSO 1/64 have better performances than SPSO 1/4, QPSO 1/4 and DPSO 

1/4. The best result was obtained for QPSO 1/64 which is close to the minimum 

point of the TEAM22 objective function. 
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