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IMPROVING PSO BASED ALGORITHMS WITH THE
DOMAIN-SHRINKING TECHNIQUE FOR
ELECTROMAGNETIC DEVICES OPTIMIZATION

Laurentiu DUCA?, Cornel POPESCU?

In this paper, the authors present PSO based algorithms used to optimize the
electromagnetic device of an international test problem. Several variants of PSO
based algorithms are implemented. These are improved variants of Standard PSO
(SPSO), Discrete PSO (DPSO) and Quantum PSO (QPSO). A domain-shrinking
technique is used to improve the results of these algorithms when optimizing the
electromagnetic device of the TEAM22 benchmark problem.
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1. Introduction

Because of the real-life interest in solving many optimization problems, it
was developed a wide scientific literature on the subject. Google Scholar reports
for the term “optimization” about four million scientific papers, from which about
one million in the past ten years, which proves the importance and the topicality
of the subject. In present, the optimizations are considered part of Math,
Computer Science and Operational Research Science. No matter the field,
improvement of a solution supposes solving of an optimization problem. All high-
tech products are the result of an optimization action.

The optimization problems are classified in two major categories: without
restrictions [1] and with restrictions [2]. These may be convex (with a single
minimum [3]) or not (with multiple local minimum). In the convex case, the
objective function is smooth and differentiable, case that is exploited by the
solving methods. In the non-convex case, the function is not smooth which makes
the optimization problem far more difficult.

The solving methods for this kind of problems are classified in two major
categories: deterministic and stochastic. The deterministic methods may be with
or without gradient use [4] or use of another higher order derivatives of the
objective function. These methods cannot solve problems with multiple local
minima, because these incline to a local minimum. For determining global
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minimum are used different stochastic methods which apparently seem to chaotic
explore the search space, but these give the chance to the algorithm to find the
global minimum [5]. These methods are of metaheuristic type and do not
guarantee to find the optimal solution but find a pseudo optimal one [6]. Most
heuristics are inspired from nature and are classified in “single-solution” and
“population based”. The second class is suitable to parallelization.

In many cases, the optimization of electromagnetic devices is an
optimization of their geometric dimensions and of the position and the values of
the electromagnetic field sources such that some objectives are satisfied [7] [8].
The difficult part is made by the complexity of the objective function which has
many local minima and the fact that the evaluation of the objective function
implies numerical solving of an electromagnetic field problem which requires
important computing resources like processor and memory.

The main disadvantage of stochastic methods is a large number of
objective function evaluations, especially when the cost of the objective function
evaluation is significant. In this case, the running time of sequential
implementation is too high, hence the need for algorithm parallelization. The
technological evolution regarding transistor shrinking brought a limitation in the
processors working frequency as a cause of the difficulty to extract the generated
heat. The alternative is represented by parallel architectures grouped in multi-core
clusters or GP-GPU devices which contain hundreds of cores if these are
efficiently exploited by use of parallel algorithms [9] [10] [11].

The PSO (Particle Swarm Optimization) algorithms [12] are iterative
stochastic optimization methods, which use a population of candidate solutions
which evolves in time. These algorithms are independent of the problem to be
solved and are appropriate to difficult optimization problems when the derivative
of the objective function is unknown. The main goal of this paper is to propose
innovative variants that improve performances of the PSO algorithms because
these algorithms are well suited to parallelization.

2. The TEAM22 benchmark problem

SMES devices (Superconducting Magnetic Energy Storage) store the
energy in magnetic fields and are made by solenoids manufactured from
superconducting materials. The TEAM22 problem consists in optimization of
such a SMES device where the solenoids are powered by a power converter
switch. The switch is simultaneously opened with the shorting of the coils
terminals and the current will flow through the coils without decreasing in time,
cause of the superconducting resistance which is almost zero. These devices are
used in energy systems to stabilize the power fluctuations [7].
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In the TEAM22 problem, a SMES device (Fig. 1) must be optimized such
that the following objectives are achieved [13]:
- the stored energy in the device is about 180 MJ;
- in the interior of the coils it must be met the condition of critical magnetic
field which guarantees superconductivity;
- the stray field (measured at 10 meters distance from the device) should be
as small as possible.
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Fig. 1. SMES device with two solenoids [14]

The problem has 8 parameters (R1, R2, h1/2, h2/2, d1, d2, J1, J2) which
have restrictions that are presented in table 1. These parameters must be computed
by solving the optimization problem.

Table 1
Parameters restrictions for the TEAM22 problem
R1 R2 h1/2 h2/2 di d2 J1 J2
[m] [m] [m] [m] [m] [m] | [MA/M?] | [MA/mM?]
min 1.0 1.8 0.1 0.1 0.1 0.1 10.0 -30.0
max 4.0 5.0 1.8 1.8 0.8 0.8 30.0 -10.0

The coils should not overlap each other, so a new design constraint must

be met:

d. d,
R, + ?l <R, - 1)
The superconducting material must meet the quench condition which

consists in a relation between the current density and the maximum value of
magnetic flux density, condition shown in Fig. 2.
Equation (2) is an approximation of the curve in Fig. 2:

IJ| < (-6.4|B| + 54.0) A/mm? (2
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Fig. 2. Curve of the industrial superconductor [14]

The objective function of this problem must take into account the energy
condition (the stored energy in the device is about 180 MJ) and the condition that
the stray field should be as small as possible; thus, the problem is reduced to six
parameters instead of eight. The objective function that must be minimized by
solving the optimization problem is:

L 3
B:l_m:l'm E:l'af
In equation (3), E,.; = 180 M]and B,,,,,,, = 2.0 107*T.
The BZ,., value is computed by evaluating the field in 22 equidistant
points on line a and line b from Fig. 1 and has the expression:
B2,y = 2ot Dol @
22

For the objective function of the reference problem TEAM22, the
minimum reported in the definition of the problem is 1.8E-03 [14]. Results close
to this value were reported in [15], [16], [17]. In [15], the author uses a distributed
evolutionary strategy which runs on a ten node network, each node computing
6000 objective function evaluations. In [16], it is implemented a version of the
IPSO algorithm based on a tabu region (an interdicted region for the parameters)
after keeping constant four parameters in the already computed minimum point
obtained by [15] and varying two parameters. In [17], the author implements PSO
and QPSO algorithms for a population of 30 particles and 200 iterations, a total of
6000 evaluations of the objective function. In this paper, initially the search
domain it is considered unknown and all parameters vary conforming to the
implemented algorithms.
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3. PSO algorithms

Particle swarm optimization was invented by Kennedy and Eberhart and,
at the beginning, the scope was to simulate the social behavior as a representation
of the movement of a flock of birds or school of fish [8]. PSO is a stochastic
optimization algorithm and does not require the objective function of the test
problem to be differentiable. The algorithm consists of a population of individuals
(of size S) which are named particles. These particles fly (move) in the search
space (domain of definition of size D), of rectangular form or classified in a
cuboid with the limits xmin and Xmax Of the objective function. Each particle is
defined by its position in the search space, denoted by xi and speed, denoted by vi.
At each iteration of the algorithm, the particles modify their position and speed
based on two values: the personal best position (pi) and the global best position (g)
from the history of the swarm. The following equations describe the expression of
speed and position for a given particle at the next iteration time.

b+ 1) =W n () 6 () — X () F oo (g O — 2 ®) O
Xi i":t + 1] = X i"it] + v i":t] (6)

The three weights (inertial weight w, personal weight c, and social weight
Cg) used in the speed equation describe the behavior of the individuals and of the
hole swarm which aspire to go to the best solution. The parameters w, cp, Cy are
selected by the algorithm developer and controls the behavior and effectiveness of
the PSO method. An example of values for these parameters, for the function f = 3
+ Xo? + X% is w=0.73, ¢p=1.49, c;=1.49 [18]. The variables », and =, are randomly
distributed in the range (0,1).

The classic PSO algorithm for different types of problems has the tendency
to get stuck, by agglomerating whole swarm, in a local minimum zone. Different
variants of the PSO algorithm try to avoid premature convergence [19] [20] [21].

Until today, the PSC (Particle Swarm Central) authority has made public
three variants of SPSO algorithm: SPSO 2006, SPSO 2007 and SPSO 2011 [22].
Each standard is a better version of the previous one.

SPSO keeps the ideea of the particle swarm and the basis from PSO but
considers that particles are connected, each connection representing a link
between two different particles. A connection has an informed and an informing
particle, the first particle knowing the personal best and the position of the second
particle. Thus, each informed particle has a set of informing particles called
neighborhood.

SPSO uses a random topology which changes the connections graph at each
unsuccessful iteration (when the global best solution is not improved). The graph
of links between particles is created this way: each particle informs three
randomly chosen particles; so, a particle will be informed by a number from 1to S
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particles. The velocity formula introduces a new term, the center of gravity, for
obtaining “exploration” and “exploitation”. The center of gravity depends on three
terms: the current position, a term relative to the previous best pi, and a term
relative to the previous best in the neighborhood Ii.

Let Nij(t) be the set of neighbors of the particle i at the moment t.
Initialization in SPSO 2006 and SPSO 2007 is done like PSO with the addition
that initialization of I; is made:

I (0) =argminjenico (F(pi (0))) ()
In SPSO 2011, initialization is the same, except the speed initialization

and it is avoided that the particles leave the search space when the dimension D of
the definition domain is big [22]. The speed new formula is:

vij(0) = random (Xminj — Xi,j(0), Xmaxj — Xi(0)) 8

The equations which update the speed and positions from SPSO 2006 and

SPSO 2007 have problems in finding the minimum when this is placed on an axis,

on a diagonal or in the center of the coordinate system. In SPSO 2011, the speed

is modified in a way that does not depend by the coordinate system. Let Gi being
the center of gravity for the particle i. The equation of G; is:

Gi = x; + c(pi+li-2x;)/3 ©

Fig. 3. Computing new position in SPSO 2011 [22]

Let Hi(Gi, ||Gi-xi||) be the hypersphere of center G; and radius ||Gi-xi|, and
i’ a random point in this hypersphere. The update equations of speed and position
are:
vi(t+1) = w-vi(t) + Xi’(2) - xi(t) (10)
Xi(t+1) = w-vi(t) + xi (1) (11)
The scope of the SPSO algorithm authors was to keep the principles of the
classic PSO algorithm with minimum dependencies in the implementation.
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The SPSO equations cannot be used to generate binary/discrete values
because the positions are vectors of real values. In order to obtain discrete (binary)
values, the resulted values of each iteration must be rounded.

Pan et al. [23] has presented a discrete PSO optimization algorithm (DPSO)
which can be used for continuous problems if a finite precision for the
optimization variables is imposed. In this algorithm the positions of the particles
are given by the following equations:

Xi(t+1) = pes GCR(pre ACR(xim(t),pi(t)),9)

Xim(t)=pv AM(Xi(t))
M is a mutation operator applied with the probability py. It is generated a random
number r in (0,1) and if r > py then it will be applied the mutation operator on
xi(t): it is chosen a coordinate and it will be generated a random value for it. CR is
a crossover operator and it is applied twice. First time is applied with probability
pee: it is generated a random number r in (0,1) and if r > pps, for the variables
xim(t) and pi(t) it is chosen a coordinate j for which it will be interchanged the
values of the two variables. Second time, the operation is similar, but with
probability pes.

The algorithm developed by Pan et al. has an innovation degree by setting a
link between PSO and genetic algorithms.

The main disadvantage of PSO is that it cannot guarantee its global
convergence [24]. In order to face this problem, a method that increase the
probability to obtain global convergence named Quantum PSO (QPSO) has been
developed and published in [25].

Unlike PSO and SPSO algorithms, where the particle trajectories are
according to Newton's mechanic laws, QPSO is a quantum system. In QPSO, the
particle position does not depend on speed, like PSO. The particles move
conforming to the following equations:

xi(t+1) = pli(z) = -|m(t)-xi(t)|-In(1/u)
1 )
m®=2)  p(® (15)
=1 (16)
pli(t) = -pi(t)+(1-0)-g(®)

The parameter S is the contraction-expansion factor which adjusts the
convergence speed of the algorithm. The parameters u and ¢ are random numbers
uniformly distributed in (0,1). In the x; equation, there is a hidden parameter k
which is random in (0,1) and if k > 0.5 the operation is add, else the operation is

subtract.
While in the PSO algorithm the particles converge to the solution through

the global best position, in QPSO the particles exert a greater influence on each

(12)
(13)

(14)
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other through an average of the personal best positions, so the probability to get
stuck in a local minimum is smaller.

4. Results

We have chosen the SPSO, QPSO and DPSO algorithms for the TEAM22
problem which were implemented in [26] for different sizes of the swarm (32, 64
and 128). For a relevant statistical study, it were made 30 runs for each algorithm
and swarm size, at each time, the initialization being made with different values of
the populations randomly generated in the search space. The algorithms were
stopped when it was reached the maximum number of iterations, a number
equivalent to 2560 function evaluations.

Table 2
The objective function values and standard deviation
of the PSO algorithms applied to the TEAM?22 problem [26]
Algorithm Swarm size Min Max Mean Star)dgrd
deviation
32 2.98 E-3 15.99 E-3 5.82 E-3 2.58 E-3
SPSO 64 3.41E-3 7.95E-3 541 E-3 1.16 E-3
128 3.42 E-3 9.50 E-3 6.41 E-3 142 E-3
32 2.23 E-3 27.10 E-3 8.11 E-3 6.46 E-3
QPSO 64 2.49 E-3 26.50 E-3 5.95 E-3 4.80 E-3
128 2.92 E-3 14.30 E-3 7.07 E-3 3.05E-3
32 6.70 E-3 37.30E-3 17.32 E-3 9.27 E-3
DPSO 64 3.60 E-3 34.02 E-3 15.02 E-3 9.31E-3
128 4.80 E-3 52.07 E-3 17.62 E-3 13.19E-3

The results of the performance study from [26] are presented in table 2
which contain the mean of the minimum values obtained at each from the 30
program executions. Min and Max represent the minimum and maximum of the
minimum values obtained from the 30 program executions. The QPSO and SPSO
have better results than DPSO. The smallest values of the objective function were
obtained by the QPSO algorithm while the smallest mean and standard deviation
were obtained by SPSO. The optimum swarm size for QPSO and SPSO is
between 32 and 64 particles.

The solution improvements from our study consist in shrinking the domain
of the parameters after the algorithm has run a number of iterations and obtained
values considerably better than the initial moment. The algorithms selected for
this type of improvement are SPSO, QPSO and DPSO, and the variants where the
domain was shrank are 1, which means no shrinking, 1/4 — the variant to which it
was made domain shrinking only the variables Ry and Rz, and 1/64 — the variant to
which it was made domain shrinking for all the parameters (domain shrinking is
made for all the six variables after 30% of iterations).
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In Table 3 is shown the improvement applied to the SPSO algorithm for

populations of 32, 64 and 128 particles.

Table 3
Results of the improved SPSO algorithms
by domain-shrinking for the TEAM22 problem

Algorithm Swarm size Min Max Mean Standard

deviation
SPSO 1/4 32 2.54E-3 12.34E-3 4.32E-3 2.21E-3
SPSO 1/4 64 3.01E-3 6.53E-3 3.92E-3 0.95E-3
SPSO 1/4 128 3.12E-3 7.42E-3 4.28E-3 0.99E-3
SPSO 1/64 32 2.33E-3 9.19E-3 3.75E-3 1.24E-3
SPSO 1/64 64 2.82E-3 5.70E-3 3.69E-3 0.64E-3
SPSO 1/64 128 2.87E-3 5.90E-3 3.93E-3 0.68E-3

In Table 4 is shown the improvement applied to the QPSO algorithm for

populations of 32, 64 and 128 particles.

Table 4
Results of the improved QPSO algorithms
by domain-shrinking for the TEAM22 problem

Algorithm Swarm size Min Max Mean Standard

deviation
QPSO 1/4 32 2.13E-3 8.82E-3 4.54E-3 1.64E-3
QPSO 1/4 64 2.48E-3 14.67E-3 5.02E-3 2.55E-3
QPSO 1/4 128 2.67E-3 15.79E-3 6.03E-3 3.20E-3
QPSO 1/64 32 2.02E-3 3.27E-3 2.49E-3 0.30E-3
QPSO 1/64 64 2.09E-3 3.96E-3 2.77E-3 0.51E-3
QPSO 1/64 128 2.11E-3 4.08E-3 2.83E-3 0.52E-3

In Table 5 is shown the improvement applied to the DPSO algorithm for

populations of 32, 64 and 128 particles.

Table 5
Results of the improved DPSO algorithms
by domain-shrinking for the TEAMZ22 problem

Algorithm Swarm size Min Max Mean Standard

deviation
DPSO 1/4 32 2.98E-3 37.09E-3 11.49E-3 8.43E-3
DPSO 1/4 64 3.80E-3 30.32E-3 10.22E-3 7.11E-3
DPSO 1/4 128 3.24E-3 29.96E-3 9.11E-3 6.34E-3
DPSO 1/64 32 2.62E-3 26.10E-3 10.00E-3 5.75E-3
DPSO 1/64 64 3.31E-3 27.16E-3 6.51E-3 2.34E-3
DPSO 1/64 128 3.16E-3 11.71E-3 6.38E-3 2.38E-3

The domain-shrinking solutions improvements are proven to be satisfying

for all algorithms SPSO, QPSO and DPSO. Best results are obtained, in order, by
the variants QPSO 1/64 (minimum of 2.02E-3 in the point given by
R1=1.305600m, d:=0.520453m, h:=1.1410211-2m, R>=1.800000m,
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d>=0.203861m, h>=1.552848-2m), SPSO 1/64, QPSO 1/4, SPSO 1/4, DPSO 1/64,
DPSO 1/4. The DPSO algorithms give the weakest performances from the three
categories (SPSO, QPSO and DPSO).

For all algorithms, the variants 1/64 are proven to be better than 1/4. In
Fig. 4 it is shown the evolution of the mean obtained by the best configurations of
the SPSO, QPSO and DPSO algorithms with the domain-shrinking technique.
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Fig. 4. Evolution of the mean obtained by the best 1/64 configurations
of SPSO, QPSO and DPSO applied to the TEAM22 problem

5. Conclusion

In this paper were presented PSO based algorithms and domain-shrinking
technique used for electromagnetic devices optimization. This technique was
applied to the PSO based algorithms SPSO, DPSO and QPSO which were used to
optimize the electromagnetic device of an international test problem, namely
TEAM22,

The domain-shrinking technique significantly improves the performance
of all the three algorithms. SPSO 1/4, QPSO 1/4 and DPSO 1/4 have better results
than SPSO, QPSO and respectively DPSO. Going further, SPSO 1/64, QPSO 1/64
and DPSO 1/64 have better performances than SPSO 1/4, QPSO 1/4 and DPSO
1/4. The best result was obtained for QPSO 1/64 which is close to the minimum
point of the TEAM22 objective function.
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