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THE NUMERICAL SOLVING OF A NON LINEAR INTEGRAL
EQUATION OF HAMMERSTEIN TYPE

Marina [IUGA”

Acest articol isi propune sd realizeze o trecere sumard in revistd a unora
dintre cele mai des intdlnite metode numerice de rezolvare a ecuatiilor integrale.

Apoi de asemenea se vor aminti unele dintre elementele de baza ale teoriei
siajului.

Partea originala a articolului o reprezinta abordarea unei integrale de tip
Hammerstein, ce poate fi intdlnita in cadrul teoriei siajului si despre care se va ardta
cd se poate rezolva prin metode numerice.

This article tries to achieve a summary of one of the most well known
numerical methods for solving integral equations.

In the same time some elements about dead water-theory will be remind.

The original part of this article is represented by the solving of a Hammerstein
equation, which can be found in the dead-water theory, and it will be demonstrated
that it can be solved using numerical methods.
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Introduction

Among the founders of the linear integral equation’s theory, we will
mention,beside Volterra and Fredholm, also David Hilbert (1862-1943) and
Erhart Schmidt (1876-1958). It is also important to remember the Romanian
mathematician Traian Lalescu , who, in his doctorate thesis, entitled ,,Sur
I’équation de Volterra” and sustained in Paris in 1908, used for the first time the
successive approximation method for the integration of a Volterra equation. He
also wrote the first book from the entire world about integral equations, published
in Bucharest in Romanian language in 1911 and after that, also published in Paris,
using French language, one year later, respectively in 1912.

Nonlinear integral equations are a kind of equations in which the unknown
function y can be found under the sign of the integral in some complicated way.

For example:

o5)- [l DT dt = ()
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1. Hammerstein-type integrals

A. Hammerstein studied nonlinear integral equations looking like:

() [ Ko ) Loy () =0 (L

They can also be extended to on n-dimensional spaces, but this does not
involve fundamental differences.
We will use the following important hypothesis
- Fredholm theorem is true for the linear integral equation having
the kernel K
- the kernel K is symmetrical :
K(x,y)=K(y.x)
- the kernel K is positive, which means that all its eigen
values are of the positive kind
If these conditions are fulfilled we can say that the integral equation really
is of the Hammerstein type. Hammerstein used the fact that, according to relation

(1.1):

1

w(x)= [ K(x. »)g(v)dy with g(v)=~f[v.w (V)]

0
if it exist also g(y)e L’ theny/(x) can be represented like an uniform convergent
series having the form:

w(x)=2 8, (x) (12)
m=1
using ¢, (x).4,(x),... like the ortonormalised eigen values for the kernel

K (x, y)corresponding to the eigen values 4,,4,,... and ¢,,c,,... being unknown

constants.
Then, because:

e = [l (e = [, (b K (o) T () =

0

_ _j fb;,l//(y)]dyj. K(x,y), (x)dx =— %jf .y (V) (v)ay

the problem of solving the given equation is equivalent with the one of solving an
infinite system of equations having an infinite number of unknowns:

e D X0 AUV EES 13)
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It is normal now to consider the approximate solution:

v, (1) =Y e, (x) (1.4)

m=1

with the constants c, ,c,,,c,,... having to verify the system with n equations

n,l?

and n unknowns:

o= f{y,icnm (y)}zﬁm Wy m=123,... (1.5)

We will ask about the existence of the solution for this system, if it exists
or not. Hammerstein showed very nicely that the systems of the kind (1.5) have at
least one solution, by demonstrating that the function f (x,u)is a continuous one
and verifies a condition of the following type:

|f (e u) < CJu|+ C, (1.6)
with C, and C,are two positive constants and C, is less the the first eigen value
A, of the positive kernel K (x, y). Evan if the relation (1.6) can be relaxed,
Hammerstein demonstrated that the condition C, <A, can not be generally

enlarged.
For showing this Hammerstein used the continuous function:
n 1 n
H('xl 9x2 LA '9xn ) = Zﬂ’m‘xi + 2J.F|:yﬂth¢h (y):|dy (17)
m=1 0 h=1
with

F(y,u)= Tf(w)dv

H (xl,xQ,...,xn) is a function having partial derivations closely related with the
solutions for the system (1.5) because:
LA, +ijf{y,ixh¢, (y)}» (y)dv (1.8)
22, 0x,, " A, P "
It is easy to observe that the function A has a lower limit.
Using the relations (1.6) and (1.7) we will get that:
|F(x,u) < %quz +C, Ju| (1.9)

and if C|is smaller than an arbitrary constant %, and also using the inequality:
2

ax—bxzﬁj—b h>0 (1.10)
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identifying x with |u

, awith C,and b with %(k —C,) we get:

lClu2 + C2|u| < lku2 +C,
2 2

with
CZ
C,=—2 .
o2(k-C))
Because:
C, <k<4
we get:
F(x,u)z—(%kuerCJ. (1.11)
Then:
n 1 n 2
H(xl,xz,...,xn)z Zﬂmxi —J.{k[thqﬁh(y)j + 2C3}dy
m=1 0 h=1
because:

n

szn:/lmxi—kix,f—ZQ = (4, —kk. -2C, (1.12)
m=1 h=l1 m

=

Using that k£ < 4, <4, <...the right side sum is not negative. So / has a
lower limit in—2C;.

Therefore it will exist at least one set of Valuesxl(o),xgo),...,x,go) for the
initial x,,Xx,,...,x, so that the continuous function H reach it’s absolute minimum

value d,. We can be sure by choosing, for example

C, = x m=12,...,n.
Multiplying with the positive number4b , the relation (1.10) is equivalent

with the statement that:
a’ —4abx +4b*x* = (a —2bx)’ >0.
The system (1.5) will be verified because, for:
X,, zxfno):cn»m m=12,...,n (1.13)
we will obtain:
OH ©oH OH _

= e 0.
ox, Ox, Ox

n
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Now it is important to justify that, with this way of choosing the
quantities ¢, , the sum

n,m

S, =>.4.co, (1.14)
m=1

has an upper limit independent by n.
In fact, with x, having the values from (1.13), and using the relation

(1.12) we get that:

n

Z(ﬂ’m _k)cf,m S dn + 2C3

m=1

and then

k n ) n /’Lm ) n )

1-— Zﬂ’mcn,m = ﬂ’m —k— Chm SZ(ﬂ“m _k)cn,m Sdn +2C3

/11 m=1 m=1 /11 | m=1

meaning that
< d,+2C,
n _ k
1 2,

On the other hand, as far as
Hn (xl’XZ""’xn): Hn+l(xl’x2""’xn’0)

we getthat d,,, <d n=12,...

n

With d, < d, we obtain:

2
s <p=4t2C (1.15)
1- k
7!
This means that we are able to write:

1 n n

J‘l//f(x)dx=Zcim SLZ/lmcim SB. (1.16)

0 m=1 /11 m=1 ﬂ']

Now we have to justify that, for n— oo, the family of functions
v, (x)realize an approximation for the given equation.

For the beginning we will demonstrate that the function

2,(0) =y, (x)+ [K(e,p) D, (v)lay (1.17)

© t—

goes uniformly to 0 for n — .



40 Marina Tuga

In fact using Hilbert-Schmidt theorem we get:

1 1

8, ()] 8, ()& [ K (& »)fy.w, (v)dy =

=1 0 0

[ 1w, ), )y

Using the relation (1.5) we have that:

iif v, ), (v)dy =,

NgE

2,(0)= e (0)+
XA R

m=1 'm

3

=

and

1= 3 42,0 T, 0 ()

m=n+1

Finally, we can say that:

202 200 ﬁfu,m)]my)dy} | (1.19)

m=n+1 m=n+1

{j S, ), (y)dy} < j¢i (y)dyjf v, )y = jf [y, (v

£ (xu) < Chu +2C,Clu + C2 = 2C,C, ju| - (k= C2 W + k> + C2.
So, if C] <k and using (1.10) withx =u|,a =2C,C,,b=k—C}, we get

u
that:
ru)<ku® +C,.
Together with (1.16) now we have:

1 1

k .
jfzb,y/n(y)]dysj[ky/j(y)+c4]dy370+c4 -D". (1.19)
0 0 1
Then the inequality (1.18) becomes:

202D S A2 ().

m=n+1
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It is well known that the infinite series Zl:fﬁ (x) goes uniformly to
K,(x,x). Then g, (x) goes uniformly to zero for n — .
So we demonstrated that, if the sequence ,(x),y,(x),... goes to a limit

function y(x) and if the Lebesgue fundamental theorem can be applied for the
evaluation of the limit in the situation that n — oo for the integral:

K 3)1 Do, ()

then the limit function 1//(x)is a solution for the initial equation (1.1). We have
now to study if the sequence y,(x),w,(x),...converge. We can easily justify that
we can choose a subsequence (x),l,//n2 (x),... which is uniformly going to a limit

function w/(x), and that will be even continuous .
For demonstration we will use:

0,()= 2,y ()= [ Ko )T, Oy m=10

The sequence {a)n}is equally bounded because, as a consequence of the
relation(1.19), we get that:

w:<x>sjz<2<x,y>dyjf2[y,w,,(y)]dysD*jm(x,y)dy.

0

IA

)05 F =TG50 K, >1dy}2

<

© — —

[K (3, v)= K ()] dyff v, (V)lay <

D .i.[Kz xl’y)_ZK(xlay)K(xz,y)+K2(x2,y)]dy =

fz<2<xl,x1> 2K (550 Ko )
[KZ(xl’xl) Kz(xlaxz)]"'D*[Kz(xzaxz)_Kz(xl’xz)]

IA

As far as lim y, (x)=0 we can pass from {w, }to{y, }.
So we justified the following:
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Existence Theorem: If the kernel K satisfies (i), (ii) si (iii), and the
continuous function f (y,u)is verifying the condition(1.6) then the nonlinear
integral equation(1.1) has at least one solution (continuous one).

2. Dead water theory

The end of the XIX-th century and the beginning of the XX-th century
represented for the flows mechanics periods of extreme intense investigations.
These generated important works in this field of activity.

Among them is also the cavity theory, whom origin is in H. Helmholtz
(1868) and G. Kirchhoff (1869) works, a theory elaborated with the purpose to
explain the
D’ Alembert paradox.

D’ Alembert paradox represents the contradiction between the theoretical
result saying that during a straight and uniform moving of a body through an ideal
fluid will be no resistance coming from the fluid and the experimental observation
that this resistance exist.

Helmholtz created a mathematic model and so he started a theory which
became an important one, usually referred as dead water theory.

In this theory there are some nonlinear integral equations. One of those, of
Hammerstein type is solved in this paper using some numerical methods.

3. Numerical results
Our purpose is to solve the following equation:

. t+o
Ir: sin
T(t) = ;je‘T(") In P (l + sin O')r(a)sin odo
0 sin

The function which must be integrated has a logarithmic singularity and
this one is a week singularity.
We will rewrite the integral equation as:

][.e )n
0

(t—a)sintJrG

é\l@

P (1+sin o )r(o)sin odo —

2

sin

- —He Tl 1 (1+sino)r(o)sine — e’T(’)(l +sin)r(t)sin t]ln|t - G|d6 -

- ie'T(’)(l +sin¢)r(t)sin tj1n|t —oldo
7



The numerical solving of a nonlinear integral equation of hammerstein type 43

The first and the second integral can be calculated using trapezia method
and the third one will be analytically calculated.

. . . . I :
We will consider in [0,7[] the nods {zo,tl,...,zn}wuhzi =—m,i=0,...,n.
n

Using trapezia method

frlobio = 202510+ 10)

i=1

and, becausesint, =sint, =0:

(t —t. )sin i ;tj

n-1

7()-2] 45

-(1+sin¢, r(z, )sin, +e’ & ln(2s1nt )(1+smt )( )sintj

n_l[ Tl )(1+smt) smt —-e ( I+sint; )r(tj sint; ]ln|tl. —tj|—
e )(1+s1nt )( )sintj[(ﬁ—tj)ln(ﬁ—tj)ﬂj Inz, —7r]

Therefore, for j=1,...,n—1

sin Lt
= e'T(t')ln—2(1+sinti)r(ti)sinti+
T(t’)ZZ,lﬁj sin =
ie ( l+sin¢, )r( )Slnt
n
%ln(Zsint ) ljz;ln|t —t. |— ln(ﬁ—tj)—t;jlntj+l

So finally we have to solve the algebric system:

n—1

T, = /12 W.ﬁein *)
i=1
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; (1+sint, )r(z, )sinz, > 0 i#j

Respectively

n-1

w, =(1+sintj)r(tj)sint { 11’1(251111‘ )+f ¢t —t, ‘— b ln( tj)—t;jlntj +1(=0

i=Li#j

We intend to estimate the differences:

n-1

ﬂZw e f—/inzllw e s

</12w| f efs"|S/1§wﬁ|Ti—Si|
i=1

Because of the definition of w, we say that:

1, +0
1 1= |sin
Z E—.[ —2(l+sin0')r(0')sin0'd0'S
= Ty . tj—G
sin
2
_t,+0
4% |sin
S—jln—2(1+sin0')sin0d0'=
T . fj—O'
sin
2

= —J.Z—smmt sinmo(2sino +1-cos20 fo =
Ty m

A
=-—sint. J.2s1ncrda+ IZ—smmt sinmodo =
T ﬂ0m>1m
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7Z'm>1m

= Asint; + = Z—smmt (l (—1)'")S

T m>1 m

- (e S

T >0 (2}’1 + L) n>1
1 A3+ 7)
=1+—|2 =
" (+nz>:‘(2n—l 2n+1D V4

So we can say that the system (*) has only one solution for

0<A<

3 , and this solution can be found using the successive approximation
+7

method.
Conclusions

Some fields of activities, for example the one regarding the flows studies
can create, after being modeled in a mathematical way, some nonlinear integrals
and their solving is of equal interest for mathematicians and also for the ones
working in more practical aspects.
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