U.P.B. Sci. Bull., Series A, Vol. 75, Iss. 1, 2013 ISSN 1223-7027

ON THE POSSIBILITY OF DISTRIBUTED PARALLEL
PROCESSING FOR ADVANCED GAMMA-RAY TRACKING

Adrian DUMITRESCU!

A fost analizata posibilitatea implementarii unui sistem software distribuit
pentru procesarea paraleld a datelor de pozitie a interactiunilor fotonilor gama.
Studiul a constat in analiza avantajelor si compararea lor cu inconvenientele
asociate utilizarii unei astfel de solutii software in cadrul proiectului AGATA. Cu
toate ca o implementare distribuitd a procesarii paralele de date aduce un spor de
viteza considerabil, arhitectura curenta a sistemului de procesare induce limitari in
privinta posibilitatii dezvoltarii si integrarii unei astfel de solutii.

An analysis on the possibility of implementing a distributed parallel
processing software system for advanced gamma-ray tracking data processing was
performed. This study weighed the benefits and the disadvantages of using this
approach to solve bottleneck problems in the data processing system of the AGATA
project. Although the use of a distributed parallel processing software solution has
been shown to bring considerable improvements in processing speed, the
architecture of the current software processing module confines the development
and integration of this solution.

Key words: parallel processing, AGATA, OpenCL, gamma-ray tracking.
1. Introduction

The use of hyper pure germanium detectors (HPGe) in array
configurations in high resolution gamma-ray spectroscopy has led over the past
twenty years to considerable progresses in the investigation of the nuclear
structure. The first generations of tracking detector arrays were the EUROBALL
and GAMMASHPERE [1]. In these projects, detection accuracy was improved by
using Compton suppression shields or limiting Doppler broadening effects. Both
of these problems lead to inefficiency in detecting gamma-ray interactions.

In the last decade, an innovative approach towards gamma-ray
spectroscopy was developed. This method, in essence, implies the use of HPGe
detectors to determine the energy and, most importantly, the position of each and
every interaction. Digital spectrometry systems compare input signal shapes with
stored reference signal shapes, which are actually system responses to specific
types of interactions, in specific places, in the active detection medium. This
method, known as pulse shape analysis (PSA), decomposes the signal from each

' PhD student, Faculty of Applied Sciences, University POLITEHNICA of Bucharest, Romania, e-
mail: adrian_m_dumitrescu@yahoo.com

216 Adrian Dumitrescu

detector and compares it to reference signals, in order to produce the closest
match and consequently locate the point of interaction. This allows for automatic
Doppler or Compton corrections, which improve the quality of the output energy
spectra. The largest and most ambitious project for gamma-ray tracking is the
AGATA [2] project, an European HPGe detector array composed of 180
segmented crystals, which will offer 4n gamma-ray tracking in its full
configuration.

One of the problems concerning gamma-ray tracking through pulse shape
analysis is processing the huge data flow produced by the detectors. Data needs to
be analyzed in real time, as storing large amounts of information would be very
expensive. Thus, any factor in the system introducing speed limitations should be
addressed. The PSA processes each individual event and its execution speed is
proportional to the available computing power. The current paper investigates the
possibility of solving the bottleneck problem associated with the current
implementation of this algorithm, through a software solution relying on the
computing power of multiple graphical processing units (GPUs).

2. Gamma-ray tracking in AGATA and the “bottleneck” problem

The AGATA (Advanced GAmma Tracking Array) experimental
installation will consist of 180 highly segmented HPGe detectors in its final form.
These detectors contain 36-fold electrically segmented germanium crystals, six
fold azimuthally and six fold longitudinally. The way these detectors work and
how they produce signals is beyond the scope of this paper and is described in
reference [2]. Further details on the structure, operation and mechanics of the
AGATA Demonstrator can also be found in reference [3].

Detector segmentation is not the only method of gamma-ray interaction
positioning. Because charge carriers with different mobility (electrons and holes),
formed at the point of interaction, drift towards collection electrodes at different
speeds, the pulses outputted by detectors have characteristic shapes. These shapes
consequently contain information about the radius at which the gamma photon
interacted with the detection medium. This helps in creating a virtual “map” of
possible interactions according to output pulse shape. Furthermore, in a
segmented detector, adjacent segments also absorb part of the energy of the
interacting photon, creating pulses with proportional amplitudes and shapes [4].
The shapes of the pulses, together with the segment in which the interaction took
place, contain sufficient information to determine the type, energy and other
properties regarding the event. Pulse shape analysis helps track gamma ray
photons’ interactions through the detector by effectively creating a virtual
positioning grid. By digitizing the signals from each segment of the detector and
comparing them with sets of reference signals in a database, it has been shown

On the possibility of distributed parallel processing for advanced gamma-ray tracking 217

that a tracking grid with a resolution of 1-2mm can be obtained [2]. As pulse
shape analysis relies on comparing input samples to database entries in order to
determine the position of the gamma photon, the tracking precision is given, in
part, by the quality of these reference signals [5]. This comparison is done through
the PSA algorithm that is named GridSearch and has the role of analyzing
interaction events and determining their resemblance to stored reference signals.

36 segment 36 segment |, CK
pream pllﬁers digitizers

1 core 2 core "
preamplifier digitizers - CK

CLOCK CK
B GENERATOR g
w
Ancillary - vaL | Preprocessing
detectors o CENTRAL >
TRIGGER
DATA FROM ANCILLARY

DETECTORS PSA PSA PSA

| EVENT BUILDER |

-

MERGER

.-

TRACKING

- -

DATA ANALYSIS / STORAGE

Fig. 1. AGATA DAQ. Analog electronics are represented in dark grey, digital electronics are
represented in light gray and software processing in white boxes [7]. See text for discussion.

218 Adrian Dumitrescu

The data acquisition system (DAQ) built around AGATA is composed of
analog electronics, digital electronics and software processing modules as shown
in figure 1. Signals digitized from all the 36 segments of the detector plus the
detector core add up to 7.6 GB/s of data that needs to be analyzed for a single
detector. This means that the whole AGATA detector array of 180 detectors
would produce an impressive 1.3 TB/s of digitized data that needs processing.
This signal is inputted to the preprocessing part of the DAQ, which discards
useless information contained in the digitized signal, and produces a stream of
samples consisting of detected events. The data stream outputted by the
preprocessor still has a bandwidth as high as 500 MB/s per detector. This data is
further processed through software complied inside a computer farm. It was
estimated [7] that 100 CPUs (Intel Xeon E5420 running at 2.5GHz) would be
needed to run the current implementation of the PSA algorithm at a 50 kHz event
rate to analyze the data from one detector crystal in real time. For now, in order to
analyze events in real time, the event rate has been reduced to about 1 kHz. This
means that the PSA farm needs only a few CPUs per detector crystal for real time
analysis. As can be seen in figure 1, data analysis could encounter a bottleneck, as
the processing hardware needed in the PSA farm increases both with the number
of crystals and with the rate of input events’ signals. The key to solving the
bottleneck problem in the PSA is either finding a faster and more efficient way to
process data with the given hardware infrastructure or using parallel processing
techniques together with hardware that can provide parallel computing. Both
approaches have been researched and improved versions of the grid search
algorithm, through which peak shape analysis is done, have been developed [6, 7].

3. NARVAL, GPGPU and the GridSearch implementations

The software environment that facilitates data processing and dataflow
management is named NARVAL (Nouvelle Acquisition temps-Réel Version 1.6
Avec Linux) and is a distributed data acquisition system that manages dataflow
from and towards different processing modules. Its architecture is based on the
concept of actors (processing or data management modules), which communicate
data with each other. Details regarding this modular distributed system are
described in reference [8]. Of interest to this paper is the fact that at execution
time, every actor (unaware of the topology of the whole system) has assigned a
single process that can run on one core of the machines in the computing system.
Also individual actors can be developed separately as long as they interface with
NARVAL for loading, control and communications. PSA is implemented through
C++ based classes as processing code inside a NARVAL actor. For development
and testing purposes, a NARVAL emulator has been developed since debugging
inside the real system is very hard and, in some cases, impossible. The difference

On the possibility of distributed parallel processing for advanced gamma-ray tracking 219

with respect to NARVAL is that data processors run on the same machine and are
executed sequentially, until the last processing module in the dataflow path is
reached. Using this emulator, several PSA actors were developed by the AGATA
team, including the ones presented in references [6] and [7]. Of interest to this
paper is E. Calore’s implementation [7] that proposes the development of the grid
search algorithm, which lies at the heart of the PSA, using GPGPU (General-
Purpose computing on Graphics Processing Units) techniques. This means using
the GPU to perform computations that have traditionally been done using CPUs.
The main reason for using these methods is that GPUs offer a lot more power for
highly data parallel computations [7]. In the aforementioned implementation of
the GridSearch algorithm for AGATA, the GPGPU OpenCL standard
specification was used. A full description of the OpenCL specifications is
available in reference [9]. Of interest to this paper is the fact that this framework
makes available multiple platforms through which data processing can be done.
Calore’s work showed that OpenCL implementations of the GridSearch
algorithm are possible, as the problem which they solve is parallelizable to a
certain degree [7]. The problem addressed by the GridSearch algorithm, as
mentioned above, is comparing the acquired signal to a basis and evaluating the
figure of merit expressed through equation 1. The algorithm needs to find the
basis record which minimizes the figure of merit for each segment j iterated
through available segments, each sample i iterated trough the signal, and, of
course, from the available base points. The figure of merit is actually the metric
used for the search, being the difference, to a certain power p (for example p=2
corresponds to Euclidean metric), between acquired points and basis points.
T

end

FoM = Y >|S' -S| (1)

jeSegm i=T,

As the problem was parallelizable under the SIMD (single instruction
multiple data [10]) paradigm, several implementations in OpenCL for the
GridSearch algorithm were developed. The CPU based algorithm had three loops:
one over base points, one over the segments and one over the samples. All these
three loops had to be iterated, so that a local figure of merit, named chi2, could be
calculated. This figure of merit was then evaluated and the signal basis with the
smallest metric was chosen as the closest approximation for the real signal. The
OpenCL implementations were aimed at reducing the number of iterations
required to compute chi2, by parallelizing calculations through multiple running
kernels. The first implementation parallelized calculations by running just two
loops, one over segments and one over acquired samples, for each thread
representing base points. An optimized version of this implementation used

220 Adrian Dumitrescu

explicit calculation and other memory related optimization to improve execution
speed. The third and final implementation attempt further parallelized calculation
by looping only over segments and running different threads for base points and
samples. Test results for these implementations showed that massive speed
increases could be obtained compared to the CPU implementation. The increase in
event processing speed is even more prominent when using float input data [7].
This allows the PSA to obtain a better position resolution. The results obtained in
the tests ran by Calore are reproduced in this paper in order to showcase the
evident speed increases obtained through these OpenCL implementations.

Table 1

Grid search implementations comparison as presented by E. Calore in [7]. See text
for discussion.

Device CPU GPU Comparison
Type of data - Speed increase
input Original 1D opt 2D opt CPU vs GPU
short 275 ev/s 650 ev/s 1250 ev/s X 4.54
float 65 ev/s 650 ev/s 1100 ev/s X 16.92

4. The possibility of distributed parallel processing for AGATA

Tests showed considerable improvements were obtained in event
processing speed for OpenCL implementations of the GridSearch algorithm.
Furthermore, major speed improvements were obtained while using the above
described implementations to process float data [7].

Further speed increases are theoretically possible through the usage of
multiple OpenCL environments to process data in a distributed manner. Aside
from the benefits of the above mentioned parallel processing implementations, a
multiple environment calculation system would make possible distributed parallel
computing. In other words, this system would be able to run OpenCL parallel
processing kernels on any compatible OpenCL device. As the OpenCL
specification is widely adopted by hardware manufacturers, virtually all
processing components inside a modern computer are supported as OpenCL
devices, either natively or via a software compatibility layer. The AMD APP SDK
[12], enables CPUs and compatible GPUs to be used as OpenCL devices. For
example, this means that a processing machine with one CPU and 2 GPUs, a
common configuration amongst high end personal computers, can process data
using three separate OpenCL devices. In this example, one could run the same
OpenCL code (kernel) on all three devices, as compatibility would be assured by
the software platform. Other studies have shown the possibility of utilization of
OpenCL devices, by connecting them over the network through Hybrid OpenCL

On the possibility of distributed parallel processing for advanced gamma-ray tracking 221

[13]. The level of abstraction brought by the usage of OpenCL devices allows the
possibility of writing OpenCL applications capable of exploiting any compatible
hardware found on the system.

The first step in making the GridSearch algorithm run on multiple
OpenCL devices was a software routine that would analyze the configuration of
the available hardware. For this purpose, a routine that scans the available
hardware for OpenCL devices was developed based on a template from the AMD
APP SDK. An important fact to point out is that this function did not rely on or
load the aforementioned SDK (software development kit). In other words, it was
developed with the objective to be as lightweight as possible in order to avoid
adding code overhead. The routine consisted of five components which ran
sequentially. First, the initializeHost function was run in order to initialize host
computer memory. Then, the initializeCL function queried if there was an
available OpenCL platform and if so, it created an OpenCL context through which
it could detect available OpenCL devices. At this stage, OpenCL devices were
discovered and listed to the user. This function was followed by the runCLKernels
function that loaded kernels to devices according to their capabilities. The last two
functions handled the cleanup of OpenCL environment and the host memory.
CleanupCL freed the GPU memory and released the kernel, the program, the
command queue and the OpenCL context. CleanupHost freed the host memory,
the host buffers and ended the method. The workflow of this method is presented
in figure 2.

. initializeHost initializeCL \\} runClKernels cleanupCL P cleanupHost
p y y
Wi £ V.

Fig. 2. Algorithm of the multiple OpenCL device scanning routine. See text for discussion.

This routine was developed outside the NARVAL emulator, in order to
simplify testing and debugging. Still, the OpenCL kernel computed the figure of
merit presented in equation 1 with random sets of numbers, in order to test
compatibility and speed of execution. The multiple device routine was run on
CPU and on GPU and found to be compatible with both, as they were recognized
as OpenCL devices. Restraints in code manipulation and development had to be
considered before moving to the integration with the NARVAL emulator. This
came as a consequence of the need to minimize the changes brought by this
development to the NARVAL software environment. Because stability is a key
requirement for the PSA library, only the inner loop of the GridSearch algorithm
was available to be modified. Aside from reliability, other developers should be
able to add functionality and develop new software applications without having to
deal with the complexity of OpenCL development.

222 Adrian Dumitrescu

At this point, it was found that the inner loop of the GridSearch algorithm
cannot be separated to a degree that would make possible running this function on
multiple OpenCL devices. This is because, without substantial modifications, the
current architecture of the GridSearch algorithm does not allow the calculation of
the figure of merit in a separated code module. A key concern for future
development was that adjacent software libraries changes should be minimal and
should not affect other components. Because the routines necessary to recognize,
map, load and use OpenCL devices need to be inserted into the startup routines of
NARVAL actors using distributed parallel processing, major changes to the
architecture of the system had to be made. Keeping in perspective that this type of
approach would solve only a certain bottleneck problem and would most certainly
impede future development in other areas, it was decided that the disadvantages of
added overhead and complexity far outweigh the advantages brought by the event
processing speed. Furthermore, the lack of flexibility brought by choosing this
approach would require future developments to take into account the lack of
support for non-parallelizable algorithms. Other limitations regarding the OpenCL
implementation of the GridSearch algorithm are noted in [7].

5. Conclusions

Research on the possibility of improving the OpenCL implementation of
the grid search algorithm by making it scalable on multiple machines/GPUs was
done. The first step was creating a software method that recognizes available
OpenCL devices. This was done by building code on top of an OpenCL code
template (code derivation). The second thing to do was integrating the OpenCL
device scan method in NARVAL. At this step, it was discovered that because of
the current architecture of the GridSearch algorithm, substantial changes would
have to be made in order process data using multiple OpenCL devices. At this
point, it was decided that this implementation would lack the flexibility for further
development and would not be suitable to the ever changing computational needs
of the project. As minimizing code modifications was one of the most important
objectives, the development of this implementation was abandoned because the
benefits would be outweighed by the overhead and inflexibility to future
development. These disadvantages also overcome the advantages brought by the
event processing speed, even if this speed would allow real time data processing.
Furthermore, reliability would also be an issue. The result of this research
uncovered that without substantial modifications, the current architecture of the
GridSearch algorithm does not allow data processing in a separated code module,
as adjacent software libraries would also have to be rewritten. This would add
more overhead for future developments and complicate the environment. At this

On the possibility of distributed parallel processing for advanced gamma-ray tracking 223

point, it was concluded that the proposed implementation would not be overall
beneficial to the project.

It was also noted that NARVAL is an ever changing software environment
and the code in this implementation cannot be used in all use cases. The code is
very particular to a certain bottleneck problem and it has certain limitations
related to up scaling. These limitations arise from data transit and memory
management issues related to using multiple machines to process the data flow.

However, in the future there may come a time when parallel processing of
data for the AGATA software platform will become a viable option. This
opportunity will arise provided the AGATA project would create a department or
group to handle development, implementation, testing, support and track changes
for the OpenCL processing environment. This group would have the role of
providing stability and support regarding the OpenCL multiplatform environment
based on the specific needs of AGATA.

Acknowledgements

The author acknowledges the financial support within the project
POSDRU, PRODOC, financed through the contract POSDRU/88/1.5/S/61178.
The author would like to thank the people who took part in the AGATA project,
especially Dino Bazzaco, Calin Ur and Enrico Calore for their support and
guidance through this analysis project.

REFERENCES

[1] J. Eberth and J. Simpson, Prog. Part. Nucl. Phys. 60, 283, 2008.

[2] S. Akkoyun et al., Nucl. Instr. and Meth. A668, 26-58, 2012.

[3] A. Gadea et al., Nucl. Instr. and Meth. A654, 88, 2011.

[4] N. Warr, J. Eberth, G. Pascovici, H. G. Thomas, and D. WeiShaar, European Physical
Journal A, 20(1):65-66, 2003.

[5] M. C. Schlarb, PhD thesis, Fakultit fiir Physik der Technischen Universitdt Miinchen
Physik- Department E12, 2009

[6] R.Venturelli, D.Bazzacco, LNL Ann. Rep. 2004, p.220, INFN-LNL, 2005.

[7] E. Calore, Tesi di laurea specialistica, Universita degli Studi di Padova, Facolta di
Ingegneria,Dipartimento di Ingegneria, dell’Informazione, 2010.

[8] X. Grave, R. Canedo, J.-F. Clavelin, S. Du, and E. Legay, IEEE-NPSS Real Time
Conference, 0:65, 2005.

[91 Kronos Group, OpenCL Specification, 1.0, rev. 48, 2009.

224 Adrian Dumitrescu

[10]1W. D. Hillis and G. L. Steele Jr., Data Parallel Algorithms, Communications of the ACM,
Vol. 29, No. 12, pp. 1170-1183, Dec. 1986.

[11]Advanced Micro Devices, Inc, AMD APP SDK v2.6, 2011.

[12]1R. Aoki, S. Oikawa, T. Nakamura, S. Miki, 2011 IEEE 9th Int. Symp., Parallel and
Distributed Processing with Applications (ISPA), Japan, 2011.

