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This paper aims to study some aspects of Hamilton-Jacobi theory based on
multi-time second order Lagrangians, namely: Hamilton-Jacobi divergence PDE,
Hamilton-Jacobi system of PDEs, generating function, change of variables in
Hamiltonian, gauge transformation.
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1. Introduction

The classical single-time Hamilton-Jacobi theory appeared in mechanics from
the desire to describe the motion of a particle by a wave. In this direction, the Euler-
Lagrange equations or the associated Hamilton equations are replaced by partial
differential equations that describe the generating function. This theory is related to
Legendre transformation, the change of variables in Hamiltonian and the generating
function.

In the sequel, we shall consider the multi-index notation introduced by D. J.
Saunders (see [10]). He defines a multi-index as an m-tuple I of natural numbers and
the components of I are denoted I(«), where « is an ordinary index, 1 < a < m. The
multi-index 1, (defined by 1,(a) := 1, 1,(5) := 0) will be frequently used in this
work. The addition and the substraction of multi-indexes are defined componentwise
(although the result of a substraction might not be a multi-index!). The length of

m

m

a multi-index is defined as | I |:= Zl(a) and its factorial is I! := H(I(a))!.
a=1 a=1

The number of distinct indices represented by {ai, 9, ...,ar}, a; € {1,2,...,m},

j=1k,is
1y Aoy A+ 1, !
(lag + Loy + .o+ 1)
For a better understanding of the previous notion, let consider the following
particular cases:
ek =1 involves: n(aj) =1
e k = 2 involves:

n(ag, ag, ..., ak)
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n(ag, ag) =1, for ag = ay

n(aq, ) =2, for oy # ag

e k = 3 involves:

n(ay, ag,as) =1, for a; = g = ag
n(aq, e, a3) = 3, for a1 = ay # ag
n(ay, ag,as) =6, for a1 # as # as.
Also, let assume the following notations:

X 21'
Ta(t) = %(t), vas(t) = =25 () a,Be{l,.m).

oteots
For other different ideas but connected to this subject, the reader is addressed
to [1]-]9] and [13]. In [11], higher order PDEs of Hamilton-Jacobi and parabolic type
are solved relying on the characteristic system method combined with a fundamental
system of solutions in the kernel of the corresponding linear operator. The analysis
encompasses those cases for which the iterated linear operator includes first and
second order derivations with respect to some given smooth vector fields.

2. Hamilton-Jacobi system of PDEs based on second order
Lagrangians

The single-time case (via second order Lagrangians) was already studied in
another research paper by C. Udrigte and A. Pitea. For consulting it, the reader is
addressed to [12].

The multi-time case. Let consider the function S : R" x R" x R™ — R and
the constant level sets ¥, : S (z,z,t) = ¢, v € {1,2,...,m}. We suppose that these

0SS 0§ 0S
Oxt’ Oxt’ aw)
is nowhere zero. Let I : (2" (1), a:f/(t), t), t € R™, be an m-sheet transversal to the
submanifolds .. Then, the real function ¢(t) = S (z(t), z(t), t) has nonzero partial
derivatives (the summation over the repeated indices is assumed!)

sets are submanifolds in R ™™™ that is the normal vector field (

oc 88 oz’ . 08 0z,
= (x(t), 2 (1), ) ﬁ(t) + a—x% (x(t), z4(t), 1) ﬁ(t)

+ §;°g (2(t), (1), 1) := Ag (2(t), 2 (1), ¢ (1), 1) # 0.

We admit that L¢ (x(t), 2y (1), 24¢(t), ) = A¢ (x(t), 24(t), 24¢(t), ), that is, the
Lagrange 1-form L. is the total derivative of the function c(-). Let suppose it has
independent variables (for instance, the variable z12(¢) is the same with the variable

x21(t) and, consequently, only one appears as variable of L¢). By computation, we
obtain the (generalized) canonical multi-momenta

o e 0 0s
Gi aw% 03}% ort ¢’
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or, explicitly, pz’i =0, for v # ¢ and pz,i = gf;, for v = ¢, and

06— 1 0L 1 0A; 1 08
() oat . n(v,¢) 9l n(v,¢) It
. ; ; - 0S . 08
So, the link H; = x;pzl + :U%qz,ci — L¢ becomes Hy = x’C% + xgc(‘?ixiy — Le.

Denote p = (pg ;), without summation relative to (. We accept that the
previous relations define a Legendre duality. In these conditions, the relations

RO CIONHONIMORY

zh () = whe (270,00, 625 (), )
become

08 1 08

$2(t) = :LJ( (xj(t)> Oxd (:U(t)al"}'(t)at) ) maﬁ ($(t)7$7(t)7t) at)
) Ty

‘ =t |2’ 95 x(t), x )
2o (t) = 2 ( (), 55 (@), 7(”’”%(%() o,

where i, j € {1,2,...,n} and (, v € {1,2,...,m}.
Also, the relation

((t), 2+(2), 1) ﬂf) ,

0S8

L¢ (xi(t)7 x?y(t)v xf/{(t)a t) = B (z (), x’Y(t)7 t)
oz’ , oS 1 08
: atC (xj(t), @ (Jj(t%I’Y(t)’t) ’ n(,}/’ C) 8756% (x(t)’xv(t)ﬂf) ’t>
g (20,01
ozt , oS 1 95
: GtZ (xj(t)v @ (l'(t), x’Y(t)’ t) ) n(% C) 871‘% (I‘(t), xv(t)v t) ’t>
+ 5 a0) (0,0
can be rewritten as
o (alt),2(0), 1) = o (a(0), (0, )
oz’ , oS 1 08
’ ot <xj(t)’ @ ($(t), $7(t)’ t) ’ n(,}/, C) 8756% (I(t), x’Y(t)7 t) ’t>
oS
gt (10 (0.0)
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or as Hamilton-Jacobi system of PDEs based on second order Lagrangians

a8 oS 08
% ¢ <x7a$78$77t> - 07 C S {1,2,...,m},

Usually, the Hamilton-Jacobi system of PDEs based on second order La-
grangians is accompanied by the initial condition S(x,x,,0) = So(z,z,) and by
completely integrability conditions. The solution S(x,z.,t) is called the generating
function of the canonical multi-momenta.

Remark 2.1 Conversely, let S(x,x.,t) be a solution of the Hamilton-Jacobi
system of PDEs based on second order Lagrangians. We define

(H — )

Pa1) = o (alt), s (1), 1) pL,(0) =0, (3 )
50 = P (o). 0).1).

n(y,¢) ol
Then, the following link appears (see I'y;;, as being the curve joining the points
to,t1 € Rm)

JRRACURRCESORLE

to,t1

= [ L @000 + 5 w03, (0.0 2k (0)

%
to,tq 8567

oS oS
- H — — ¢
¢ (10, G (0.0, 5 ()20, )t
os . 08 . 0S8
= g ? R C =
g axidx + axiydx7+ 8t<dt /FdS.

The last formula shows that the action integral can be written as a path independent
curvilinear integral.

Theorem 2.2 The generating function of the canonical multi-momenta is
solution of the Cauchy problem

oS oS 0S8
% +HC <.’L’, a, (%.,t> = 0, S(.I',.TA/,O) = S()(l’,.fry), C S {1,2, ,’I?’L}
Y

3. Gauge transformation and moments for second order
Lagrangians

The single-time case. Let us suppose that two second order Lagrangians,
LY (x(t),@(t), (t),t) and L2 (x(t), 2(t),i(t),t), t € [to,t1] C R, z(-) € R", are
joined by a transformation of gauge type, i.e.,

of ., of ., Of .
&Cixl + 8:1':ixz + 50 0T 1,n.
The summation over the repeated indices is assumed. Then, the corresponding
moments p%, p?, qz»l, q2-2 satisfy the following relations
9 8L2_8L1 dof ~of 4 dof  of

L= T om T ator o P T gan o

d
LQ:L1+&f(x,5c,t):L1+
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of
oz’

o OL? B oL'  of
“= 9x T oit | 0@
By a direct computation, we get
OL? B oL' d of OL? B oL' d of Of
0ri ozt | dtox’ 0F 0 | dtor | o
oL? B oL of
0 oF | 0
The previous reasonings and computations lead us to the following result.
Proposition 3.1 Two single-time second order Lagrangians satisfying L? =
L'+ %f(:c,:t,t), where L?, L' and f are considered C3-class functions, produce the
same Fuler-Lagrange ODFEs, i.e.,
0L?> doL?> d? OL? B OL'  doL' 4 oL!
0ri  dt 0F | i 0F  0x  dt 0F | di? 0

=q +

1 =1,n.

1 =1,n.

1=1,n.

The multi-time case. Consider two multi-time second order Lagrangians,
LY (x(t), 24(t), 2ap(t), t) and L? (x(t), 2~ (t), 2ap(t), t), where t € Q 4, C R™, o, B, €
0 0?
{1,2,....,m}, x(+) G R"™. Denot?e x (1) : aitgi(t), xaﬁ(t)':: Wgtﬁ(t). Like any
function, the previous Lagrangians have independent variables. Suppose they are
joined by a transformation of gauge type, i.e.,
ofc  of<ox’ of dz
L*=L'"+Dcf¢ t)y=L'"+ 2~ : -—1
TS ) = L B p o T ot o
C=1,m, i=1n.

The summation over the repeated indices is assumed. The associated moments

ol vl @27 ¢ satisfy the following relations
oL? oL afe  of af< af"
Pii= Gor = ae T Dear T awr Pt Piger + g
oL _ oL 9 9 /3
¢y = = P s = g2 + O
’ Oz Oy, 8&6@ s oz,

and a direct calculation gives us
oL?> oL! af¢  oL?> oL! af¢  ofY
ox' ozt ox* oz, Ox, Ozt~ Oz
oL? B oL n off
8:1:;3 B 81:25 ozt
Proposition 3.2 Two multi-time second order Lagrangians, satisfying L =
L'+ DCfC(x,xW,t), where L2, L' and f are considered C®-class functions, produce
the same PDEs, i.e.,
OL? oL? , OL* oLl oLt 5 OL!

Y _p¢v % _p % i p2, %Y T
grt orh ' U%oai,  ox oal | oPga; T




134 Savin Treanta

Proof. Direct computation.
Remark 3.3 The PDEs in Proposition 3.2 are similar to the multi-time Euler-
Lagrange PDEs,

oL oL | oL
— —D,— D? ,—
R AT P L T

=0, i=1,n,

where n(a, 5) =1 for a = 8, and n(a, §) = 2, for a # .

ofb
Corollary 3.4 If aiz =0 for a # 3, then the PDEs which appear in Propo-
47

sition 8.2 can be rewritten as multi-time FEuler-Lagrange PDFEs

or? 8L2+ L oL* _ oL D8L1+ L 8L1
gxt 70zl n(aB) P0al,  Oxi " 0xi " n(a,f) *Poal

Remark 3.5 The above multi-time case takes into account the total diver-
gence of f. As well, we can consider multi-time second order Lagrangian 1-forms,
L]C (2(t), 2 (t), Tap(t),t) dt°, j = 1,2. In this situation, the transformation of gauge

type becomes L? = L{ + D¢ f and the corresponding moments Pic1» Picas qu 1 qf‘f 5
satisfy the following relations

oL oL of  of of of
q
¥ + 5500 = Z<1+D<az+axz

X
P2 = axz T oal T ol T oad ’

2 1
op _ OLC _ OLe | Of pyse  an , OF g5

qz(2. 81,;516 axgﬁ O:ﬂ a®p Z<1+8’L

Knowing that
8L2 _ 8Lé <8f n 8f‘ ~ 81’% _ aLé N 8f 3
Ozt Ozl ozt~ Oz ¢ Oxpg Ozl Oxy, ¢

OL? B OL; D of
oxt  Oxt <Oz
we establish the following result.
Proposition 3.6 Two multi-time second order Lagrangian 1-forms, satisfying
Lg = Lé + D¢ f(x,xy,t), where Lg, Lé and f are considered C®-class functions,
produce the same PDEs, i.e.,

OL? 5 OL? 2 oLy  OLg 5 IL¢ 2 oLf -
oxi 78:6% +Pas axgﬂ T ort 78:1:% + aﬁ@:ﬂgﬁ’ e
3f

Corollary 3.7 If D? = 0 for v # (, then the PDEs in Proposition 3.6

Y$ i 3
can be rewritten as multi-time Euler—Lagmnge PDEs
OL? OL? 1 oL? 0L} OLt 1 OL}

> — D : .
o’ Yot n(o, B) aﬁ@m’aﬁ ozt Yozt n(a, B) aﬂ@xgﬁ
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4. The change of variables in Hamiltonian and the generating
function for second order Lagrangians

The single-time case. Let H = &'p; + #'q; — L be the Hamiltonian and
dp; d?q; oH
—(t) — = ——(x(t t t),t
Phe) - (1) = —5 2 a(0),p(0), a(0),1)

i 2.0
) = (0,900, () = S @000, a(0).0)
the associated ODEs. Let suppose that we want to pass from our coordinates
(2°,pi, qi,t) to the coordinates (X*, P;, Q;,t) with the following change of variables
(difeomorphism)

Xk = Xk(xiapiaQiat)a Pk = Pk(a"iapi?qiat)a

Qk = Qk(xlvpia Qiat)v ke {17 2, 7n}
Then, the Hamiltonian H(x,p,q,t) changes in K (X, P,Q,t). The above change of
variables is called canonical transformation if there is a Hamiltonian, K (X, P, Q,t),
such that the associated ODEs,

dp; d’>Q; 0K

dt (t) - dt2 (t) = _aXi (X(t),P(t),Q(t),t)
dX' oK A’ Xt 0K
0= 5 (XOPOLQO.0. 5 () = 5y (X0, P0.QM).0).
and the ODEs )
Wiy~ Ty = O ) p(0), a0 1
da’ _ 0H d*z _OH

(0= 500000, Gr ) = 56000900
take place simultaneously. This thing is possible if the functions
' (O)pi(t) + & (8)qi(t) — H(2(t), p(t), q(t), 1)

and

X Pi(t) + X' (1)Qi(t) — K(X (1), P(1), Q(t), 1)
differ by a total derivative % (x(t),2(t),t).

Lemma 4.1 If the Lagrangians
Ly :=#'pi+i'q— H
Ly:=X'P+ X'Q;, — K

produce the same Euler-Lagrange ODEs, then the change of variables
(z",pi, qirt) = (X', P, Qi,t), i=1,n

s a canonical transformation.

Proof. Using Proposition 3.1 the result is obvious.

The function W is called the generating function of the canonical transforma-
tion.
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The multi-time case. Let H = x’p) + a:iaﬁqf‘ﬁ — L be the Hamiltonian and

5
oOH
Dyp} (t) = Digai” (1) = = (x(t), p(1), a(t). 1)
Oz’ OH 0%zt OH
Y (t) - aip;y(x(t)vp(t)a q(t)7 t)v ot otB (t) o 8qg6 <$(t),p(t), Q(t)7 t)
the associated PDEs (see p; = 8L ¢ = L 87[/) The summation over
E oxt’ ™ n(a, B) 0z},

the repeated indices is assumed. Let suppose that we want to pass from our co-
ordinates (z',p;, i, t) to the coordinates (X*, P;, Q;,t) with the following change of
variables (difeomorphism)

Xk:Xk(xiapiaqivt)a Pk‘:Pk‘(xzapl?ant)a
Qk) = Qk(xivpivq%t)v k€ {1727 771}
Then, the Hamiltonian H(x,p,q,t) changes in K(X, P,Q,t). The above change of

variables is called canonical transformation if there is a Hamiltonian, K (X, P, Q,t),
such that the associated PDEs,

DLP(8) = D2@2"(6) = ~ 3 (X (8, P(0). Q). 1)
28 oK
o (1) = gpm (X (1) P(0).Q(0).1)
0*X’ 0K

diaoi ) = e (X0 PD.Q0LD.

and the PDEs
D (1) — D2 (1) = ~ o (a(), ). (). 1)
:Ei 2$i
a1 ()= gr OPOA0D, s = 00,000

take place simultaneously. But, according to Corollary 3.4, this thing is possible if
the functions

@l (t)p] () + 2ls (g7 (1) — H (x(t), p(t), q(t), 1)

and
X3P (1) + Xas(Q" (1) — K (X (1), P(1),Q(1), 1)
B
differ by a total divergence D:W* (x(t), 2+ (t),t) and %I/VZ =0 for a # 5.
xa

Lemma 4.2 If the Lagrangians
Ly alp] 4 abgal” —H. Lot XIP) + X0Q) — K

B
W =0 for o # B, where
oxt

«

produce the same multi-time Euler-Lagrange PDEs (see
Lo=1L1+ DCWC), then the change of variables
(xiapi7Qi7t)<_> (Xiathi)t)a 2:1777‘
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s a canonical transformation.

Proof. Using Corollary 3.4 the result is obvious.

The function W is called the multi-time generating function of the canonical
transformation.

5. Hamilton-Jacobi divergence PDE based on second order
Lagrangians

Further, following the same algorithm as in the second section, let consider
the function S : R™ x R™ x R™ — R™ to whom we attach the constant level sets
Ye:8(x,24,t) =c,or X : S¢ (T, 2y,t) = &, for v, € € {1,2,...,m}. Assuming that

2S¢ 98¢ 0S¢
are nowhere zero. Let I': (avZ (1), xfy (1), t) , t € R™, be an m-sheet transversal to the
submanifolds .. Then, the vectorial function ¢(t) = S (z(t),z(t),t) has nonzero
total divergence

CC ¢ 7t ¢ E)‘W
Dive) = 221 = 25 w0y, 220 + 05 (@), (0. 0) S 1)

these sets are submanifolds in R"T™ "™ the normal vector fields (

¢
* %th (@(8), 29(8),8) == A (@(t), 24(8), 2y¢ (1), 1) # 0.

Now, let us introduce the Lagrangian
L (@(t), 2 (1), 20 (1), 1) 1= A (@(t), 2 (8), 20 (2), 1)

By computation, we obtain the generalized (canonical) multi-momenta p = (p]), ¢ =
(qzc), i€{l,2,..,n}, as

oL 9A OS¢

p’y = - = - = T 217
Ozt 0Oz, Oz
o . 05¢
or, explicitly, p/ = 0, for v # ( and p; = IR for v = ¢, and
. 1 oL 1 9A 1 9s¢

T nG,0 00, n(1.Q) 0, n(y.C) dak

We accept that these relations define a Legendre duality. In these conditions, the
relations

wt(t) = af (x(t), p(t), q(t), 1)

xig(t) = x'C (x(t),p(t),q(t),t)
become

£ () = 2t (x(t), gi (2(8), 2 (8), 1), n(i 5 gai ot
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where i € {1,2,...,n} and ¢, v € {1,2,...,m}. On the other hand, the relation

¢
L (1), (1), 56(6),1) = O (1), (1), 1)
da’ oS 1 as
o (:c(t), B (0.5 (0.0) s S (@(0).21(0). ,t>
98¢
8737% (a:(t),a:y(t),t)
Oa: oS 1 as
G (5052 0 0,0) 5 25 00000
¢
+ % (x(t), zy(1),1)
can be rewritten as
¢ ¢
O wt), 2 (0),1) = D2 (1), (1), 1)
oz’ oS 1 98
e (0,55 @02 0,002 5 (o), 0,0) )
¢
O (1), (1) 1)
O, as 1 89S
o5 <x<t>, G 0072000, s 5 ((0), (1), ,t>

- L (x(t)vx“/@)vx’yC(t)vt) )
or as Hamilton-Jacobi divergence PDE based on second order Lagrangians
0S¢ oS 08
As a rule, the Hamilton-Jacobi divergence PDE based on second order La-
grangians is accompanied by the initial conditions S¢(z, x,0) = Sg (x, ). The solu-

tion (SC (x, 2, t)) is called the generating function of the canonical multi-momenta.

(H — J — div.) t> =0, (¢, ve{l,2,...m}.

Remark 5.1 Conversely, let (Sc(a:,xv,t)> be a solution of the Hamilton-

Jacobi divergence PDE based on second order Lagrangians. We define

¢
() = O (a(t), (1), 1)
oo 1 08¢ (8. 2

It appears the following link

/Q L (2(t), (), e (t), t) dt' - - dt™

¢ ; ‘
- [ 01080+

v

(@(t), zy(t), t) &l (t) — H | dt-- - dt™



On multi-time Hamilton-Jacobi theory via second order Lagrangians 139

¢ | ¢ -
_ /ﬂ [f)ii (@(t), 24(1), 1) 2¢(t) + Zi (@(2), 2y(£), £) 25 (2)
¢ ¢
+ % (x(t), (), )] dt" - - - dt™ = A %(t)dt1 cedt™ = /8Q Fenc® (t)n"(t)do.

The last formula shows that the action multiple integral depends only on the
boundary values of ¢(t).

Theorem 5.2 The generating function of the canonical multi-momenta is
solution of the Cauchy problem

955 (08 05
ots "0z Oxy
for ¢,v € {1,2,...,m}.

t> =0, Sc(x,a:%O) = Sg(x,:cw)

6. Conclusion and further development

We managed to obtain Hamilton-Jacobi system of PDEs based on multi-time
second order Lagrangians (see H —.J) and, as well, Hamilton-Jacobi divergence PDE
via multi-time second order Lagrangians (see H — J — div.). Also, there are investi-
gated the relations between two Lagrangians which are joined by a transformation
of gauge type.

We shall direct our future research to the development of (single-time and
multi-time) Hamilton-Jacobi theory via higher order Lagrangians.
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I would like to thank Professor Constantin Udriste for valuable suggestions and
discussions during the preparation of this work.
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