
U.P.B. Sci. Bull., Series C, Vol. 76, Iss. 2, 2014 ISSN 2286-3540

NEW SOLUTIONS FOR FAST DATA TRANSFERS IN HBDP

NETWORKS

Dan SCHRAGER1

A broad selection of methods and techniques for data transfers is pre-

sented, starting with the TCP/IP protocol, its main enhancements, new non TCP

protocols, and the class of applications and libraries able to sustain massive bulk

transfers in HBDP networks. Distinctive features and comparison based on per-

formance, effectiveness, efficiency and fairness are emphasized in each case. As

a result, a new research direction has been identified, regarding generalization

of the pipeline inter-process communication mechanism at networking level, by

making fast interconnections between pairs of data producer/consumer processes

distributed over the Internet. Preliminary experimental results are included as a

proof of concept.

Keywords: pipeline, parallel data streaming

MSC2000: 53C 05.

1. Introduction

In the context of grid and cloud computing, the ability to transfer large

amounts of data over wide area networks is a requirement for many actual research

fields interested in HPC over geographically distributed data. For example, the At-

las experiment [2] is transferring 10 PB of data per year. The VIRGO collaboration

[31] has storage needs in the order of many hundreds of TB, and very low latency

requirements. In other scientific areas, like real-time data visualization of remote

instrumentation or very-high-definition video streaming/conferencing, research op-

tical networks (e.g. GLIF [12] or OptIPuter [26] ) are used for data streaming at

high velocity.

TCP is the protocol most widely used in the Internet as it provides an im-

portant service, namely reliable data transfers as continous byte streams. TCP’s

implementation is not restricted, so that it works both in normal Ethernet networks

as well as in high bandwidth delay product networks having also a high bit error rate.

Optimizing transfers of large data volumes in order to achieve an increased efficiency

has led to new variations of TCP which address some of its initial limitations.

Another research direction is the design of new transport protocols. Such

approaches usually involve changes in network routers, and therefore are mainly

1PhD Student, University Politehnica of Bucharest, Romania, e-mail: danschrager@gmail.com

43



44 Dan Schrager

used in dedicated scientific networks that justify the high costs associated with

implementation and dissemination.

There are numerous application-level performance improvement solutions. Among

these, some use UDP to transfer actual data and TCP for the control channel. Oth-

ers rely on network parallelism implementation, by using multiple TCP connections

simultaneously.

A comparative analysis of the advantages and disadvantages of the above

mentioned techniques and methods, without being exhaustive because of the exist-

ing huge volume, has served for the identification of new research directions. In

essence it is about creating a pipeline mechanism of high capacity and speed which

interconnects pairs of data producer/consumer processes, running on different ma-

chines in the network. Disentanglement between the new data transfer algorithms

from data access details will lead to an architecture able to handle both regular file

transfers and data streaming of size a priori unknown. This kind of interconnection

will also make good use of existing storage and data access systems (e.g. Castor [5]

at Cern [6]) and/or local system commands (e.g. cat, dd, tar, pmr [28]).

The next section presents a related work analysis of the networking transfers

research domain, with accent on different variations of TCP, non-TCP protocols,

and the large class of transfer applications and libraries. In Section 3 are presented

preliminary experimental results using the new model of parallel data streaming and

its main advantages over conventional solutions. Finally, conclusions are included

in Section 4.

2. Related Work

This section presents a comparative analysis of existing research in the field of

network transfers. Given the huge volume of existing information, only a selection

of representative work has been included. Note also that distributed systems, P2P

and overlay, have been deliberately omitted, as having little relevance to my current

research interests.

2.1. Transmission Control Protocol

TCP [17], [21] is the protocol that standardizes how reliable transmission of

data streams in the Internet are performed, as a constituent part of the TCP/IP

model. TCP provides a bidirectional connection, allowing efficient exchange of data

regardless of the characteristics of individual transport networks. Because TCP is

typically implemented at the operating system level, it can be used by any applica-

tion with a uniform access interface.

2.1.1. TCP Performance. Although able to adapt to a wide range of network types,

TCP reaches a maximum transfer rate determined by its congestion avoidance algo-

rithms. According to study in [24], the TCP bandwidth (BW) is approximated by

equation:



New Solutions for Fast Data Transfers in HBDP Networks 45

BW =
MSS

RTT

C
√
p

(1)

where p is the packet loss ratio, equal to the number of retransmitted packets divided

by the total number of packets transmitted, and C is a constant depending on TCP

characteristics.

In an HBDP network, with BW = 1 Gbps, MSS = 1500 bytes, RTT = 100

ms, C = 1.2 (standard TCP), substituting in equation (1) produces a p of a 2∗10−8

order of magnitude, which corresponds to a BER of a 10−12 order of magnitude,

challenging even for fiber optics. In addition, the AIMD algorithm proves to be too

slow in its slow-start phase which affects its ability to probe and utilize fully the

path’s available bandwidth.

A solution to the performance issues TCP has in HBDP networks is the use of

multiple simultaneous TCP connections, approach used by many transfer applica-

tions described in subsection 2.4 below. Collectively, N concurrent TCP connections

behave similarly to a single connection with an MSS N times larger than that of one

connection, at least in the additive increase (slow-start) phase. Also, noncongestive

packet losses, misinterpreted as a signal for halving the congestion window, do not

happen to all N connections simultaneously, so less bandwidth is released and the

global transmission rate is less affected.

The following sections will present other solutions to improve TCP perfor-

mance and other effective transfer techniques.

2.2. Various TCP implementations

Research in this area has focused on improving mechanisms for retransmission

and congestion control in classical TCP. Usually changes are concerning the data

sender in order to maintain compatibility with TCP. Implementations are performed

in the operating system and therefore have some difficulty to disseminate.

2.2.1. TCP SACK. It is described in its final form in RFC 2018 [23] in 1996, but it

was proposed for the first time since 1988 in RFC 1072 [33]. The system of cumu-

lative packet confirmations characterictic to TCP (Reno) causes desynchronizations

and reduction in the transmission rate in the case of multiple packet errors in the

same data window. SACK’s mechanism of selective acknowledgments is a strategy

which corrects TCP’s behavior when multiple data segment losses occur. Thus, the

data receiver can inform the sender about each correctly received data segment, so

that the transmitter will resend only the lost segments.

From a technical standpoint, TCP SACK uses two new TCP options, namely

Sack-Permitted, which negotiates the SACK use when connection is established, and

the Sack option itself, which may be used throughout the connection lifetime. TCP

SACK does neither strengthen nor weaken TCP’s security properties. In terms of

eliminating unnecessary retransmissions, TCP SACK efficiency mechanism is strictly

superior to TCP Reno conventional implementation.



46 Dan Schrager

TCP SACK behavior in response to congestion is discussed in [30], where it

is shown that indeed significantly increases data transfer performance, especially

for highly loaded networks or even in the absence of congestion, in case of multiple

clustered errors.

2.2.2. Multipath TCP. It is an extension of TCP able to simultaneously use dif-

ferent paths in the network for interconnecting computers with multiple network

interfaces and different IP network addresses. Currently (2012) is presented in an

IETF advanced document [1], being developed since 2010.

The Multipath TCP technique is transparent to applications as the system is

implemented in a new sockets library at the operating system level. Multipath TCP

is compatible with TCP Reno at the network system function calls, hence there is

no need to rewrite existing applications. When connecting to hosts where it is not

yet implemented, it is able to use standard TCP by default. As it uses several TCP

connections for each main interconnection, congestion management is amended to

avoid aggressivity against normal TCP connections and it also sends data over paths

with the highest available bandwidth. The Multipath protocol is implemented using

new TCP options (e.g. MP CAPABLE, MP JOIN, MP PRIO, MP FASTCLOSE,

MP FAIL, DSS, ADD ADDR, REMOVE ADDR) to ensure unhampered crossing

of diverse intermediate middleboxes like NAT, PEP, firewalls, IDS, etc. Protocol

security is ensured using cryptographic keys of type SHA-1. Implementation mini-

mizes memory requirements and processing by applying opportunistic retransmission

strategies, penalizing slower paths and autoconfiguring network buffer sizes.

Multipath TCP performance has been studied in the laboratory in wireless en-

vironments with applications using the HTTP protocol, good results being obtained

comparatively to TCP Reno in [8].

2.3. Non-TCP protocols

Such protocols control congestion using feedback from intermediate routers.

Implementations, although efficient, require changes in routers, sender and receiver

and therefore dissemination is difficult in terms of the high prices involved.

2.3.1. XCP [9]. It is a new protocol that controls better than TCP the congestion

and ensures efficiency, fairness and stability of transmission in HBDP networks.

The protocol generalizes the ECN [19] protocol extension and introduces a new

concept of decoupling utilization control from fairness control. This increases its

flexibility in implementing policies for the allocation of available bandwidth, allows

to distinguish between losses due to congestion and those caused by transmission

errors, and increases security by quickly detecting deviations from the protocol.

ECN is extended at router level by including a congestion header in each trans-

mitted packet. Field H feedback is initialized by sender, modified by each router

along the path, and the whole header is copied back by receiver in acknowledgement

packets returned to sender, so that it can adapt properly its congestion window,

cwnd, according to constrains imposed by the most loaded router. Routers compute



New Solutions for Fast Data Transfers in HBDP Networks 47

efficiency based on a MIMD formula with (two) parameters invariant to number

of participating flows, delays or bottleneck bandwidth, determined on the basis of

ensuring stability, and with the purpose to increase the traffic rate proportional to

the spare bandwidth. Fairness control is based on an AIMD algorithm which splits

equally the excess of available throughput between sources, while the throughput de-

crease of a flow is proportional to its current throughput. Additionally, a bandwidth

shuffling technique is used to ensure rapid convergence when efficiency is around op-

timal. Therefore, at least 10% of the traffic is redistributed among individual flows.

Compared to TCP, XCP is stable and efficient regardless of the relative through-

put of individual flows. Simulation results show that XCP is performing as well as

TCP in normal networks but outperforms it largely in HBDP networks. XCP ensure

fairness, efficiency, smaller size of router queues and packet loss almost zero (less

than one per million), both in steady traffic as well as variable. Although it can be

implemented in routers requiring negligible computational power (several additions

and three multiplications), XCP is likely to disseminate only in networks dedicated

to scientific research and less on the Internet in general.

2.4. Fast transfer applications and libraries

At network application level there are many available implementations, some

included in libraries, based on different techniques such as using multiple parallel

TCP connections, or UDP for data transfers and TCP only for control. Dissem-

ination of applications is easy because we deal with software located outside the

operating system.

2.4.1. XFTP [20]. It is a client/server application which extends the FTP protocol

described in RFC 959 [16] with a multi-socket implementation.

The protocol extension applies only to the active mode of an FTP connection

(commands MULT and MPRT) and is implemented by using n simultaneous TCP

connections, with buffers to avoid deadlocks and multiplexed asynchronously in a

single process. Transferred files are divided into m equal parts (of size 8K, with

m>>n), each sent via one of the available sockets, together with an identification

field that tells the receiver its position relative to the beginning of file, and then

reordered upon arrival.

XFTP managed to achieve a throughput as high as 90% across a satellite T1

link, compared to only 24% in the case of regular FTP.

2.4.2. PSockets [13]. It is a library of functions written in C++ that make applica-

tions obtain optimum use of the network without having to adjust the transmission

window described in RFC 1323 [32].

The technique used, called network striping, is based on dividing data equally

in a number of parts determined by the number of parallel connections created,

and sending them asynchronously over the open sockets. In this way the inconve-

nience of reordering data upon arrival is eliminated, and thus very little overhead is

encountered at reception, as compared to the method used by XFTP.



48 Dan Schrager

PSockets is a library easy to include in applications interested in moving ef-

ficiently bulk data without extra manual network tuning, because it uses functions

with same interface as that provided by regular sockets.

2.4.3. Globus GridFTP [35]. It is a client/server file transfer application designed

specifically for Grid environments, being part of GT4 [15].

The GridFTP protocol [34] is based on FTP and its extensions standardized

by IETF, on RFC 2228 [22] (security) and on RFC 2389 [27] (negotiation), plus a

number of new commands (e.g. SPAS, SPOR, ERET, ESTO, SBUF) and related

options. Thus the protocol is capable of simultaneous transfers between multiple

servers, use of parallel connections, partial file transfers (regions), automatic nego-

tiation of transfer parameters (window, buffer) and restart and recovery of transfers

disrupted by errors.

Implementation is modularized based on criteria of efficiency. The main com-

ponents are the protocol interpreter (PI) at both server and client level and the data

transfer process (DTP). In turn, DTP consists of three modules, data access, data

processing and data channel protocol module - with direct access to the network.

Security operations are based on GSI [14] and Kerberos [4], on both the control

channel and optionally on the data channel.

Compared with other FTP servers, GridFTP gets better performances both in

terms of achieved transfer speed as well as scalability by supporting many concurrent

clients without excessive load.

2.4.4. RBUDP [11]. It is a data transfer application for high bandwidth networks,

dedicated or capable of QoS (e.g. optical networks). Actual data transfers are done

via UDP while the control traffic is signaled with TCP.

The RBUDP algorithm does not use congestion control or the slow-start mech-

anism of TCP and so is able to send data at user specified rates. Each UDP trans-

mission phase is followed by retransmission of lost packets only, as signaled via TCP,

until all errors, caused by UDP unreliability, are eliminated.

Experimental results demonstrate that RBUDP can perform large bulk data

transfers at rates close to the full bandwidth of a link.

3. The New Data Streaming Model

It has become apparent from the above analysis that a new approach could

generalize the task of high throughput data transfers in HBDP networks. The novel

idea is based on combining pipelines existing at the operating system level with

multiple concurrent TCP connections. In this way the pipe programming paradigm

which interconnects data producing and consuming processes locally is extended

between hosts distributed in the Internet, while transfer rates are in the same time

maximized.

It is worth emphasizing the generality and elegance of the envisioned approach

which although using a client/server networking application, strictly specialized in

high velocity data streaming, manages to exploit, through encapsulation, the pipe



New Solutions for Fast Data Transfers in HBDP Networks 49

programming paradigm - specific to modern operating systems (Unix) - based on

reuse of existing system components, as opposed to building new monolithic appli-

cations. Needless to say, the advantage of easy dissemination of applications will be

preserved too.

Disentanglement between fast data transfer algorithms from data access details

leads to an architecture able to handle both regular file transfers and data streaming

of size a priori unknown. This kind of interconnection will also make good use

of existing storage and data access systems, local system commands and of local

applications at times uniquely specialized in storage access and retrieval (e.g. rftar

[29]). Furthermore, multi-path implementation at application level will also become

possible.

3.1. Preliminary experimental results

I was encouraged in the research and development of the new algorithms be-

cause my technology had early adopters. For example, the particle physics depart-

ment of the Weizmann Institute of Science [36], the VIRGO experiment, the MWT2

grid center [25], all attracted by its flexibility and/or performance. Figure 1 illus-

trates the performance obtained by the latter, achieved during a disk-to-disk inter-

cluster transfer between University of Chicago and Indiana University (members of

MWT2) over a Starlight 10 Gbps link.

To evaluate the performance of the new transfer algorithms I created an appli-

cation (bbftpPRO [3]) that implements the fast data streaming model (using pipes

forked/joined over parallel TCP connections), alongside the simple file striping ap-

proach (where a file is divided in equal parts sent concurrently over existing sockets),

used as a term of comparison. Integrating both algorithms in the same application

has allowed accurate configuration of networking parameters of the TCP protocol, in

Fig. 1. Disk-to-disk streaming over a 10 Gbps Starlight link



50 Dan Schrager

the same way for each of the experimented transfer models. In addition, instrumen-

tation was also common, which gave confidence in the results obtained measuring

the transfer rate for each of the cases considered.

3.1.1. File Striping vs. File Streaming Performance Evaluation. In a first series of

experiments I was interested to determine whether the use of pipes has an impact

on transfer performance. For this purpose I performed transfers between pair of

hosts linked by an ISP with a bottleneck bandwidth of 100 Mbps. Every time I

transferred a disk file large enough to attain TCP equilibrium (∼ 300 MB), in the

file striping mode and via two cat processes interconnected by remote pipes in the

fast parallel streaming mode. I varied the number of parallel connections and I

recorded the transfer rate in both styles, as reported by bbftpPRO. The average

speed measurements are presented in Fig. 2.

I have extended same type of experiments in the 1 Gbps domain too. This

time, to avoid drag on performance caused by disk access delays, I transferred re-

peatedly a 400 MB in memory file, both striped and streamed with pipes. The

average throughput as a function of the number of connections is presented in Fig.

3.

I also measured the performance of the two models over an IPoIB Infiniband

network, capable of rates up to 10 Gbps, in a grid cluster, with nodes having each:

12 cores with hyper-threading enabled (total 24 processors), running at 3 GHz, and

having 32 GB of installed RAM. To level the comparison field, a 10 GB in memory

file was used during the striped and streamed transfers. The average throughput

measurements are shown in Fig. 4, where the number of simultaneous connections

varies between 1 and 24.

Fig. 2. File striping vs. file streaming, 100 Mbps network



New Solutions for Fast Data Transfers in HBDP Networks 51

3.1.2. Analysis of Experimental Results. From a quantitative point of view, the fast

streaming algorithms are as rapid as those based on parallel file striping. This results

from data shown in Fig. 2, 3 and 4, where the average total throughput increases

approximately linearly with the number of parallel connections until reaching a

saturation value of about 70 to 90% of the available bandwidth, for both methods

as well.

Fig. 3. File striping vs. file streaming, 1 Gbps network

Fig. 4. File striping vs. file streaming, 10 Gbps network



52 Dan Schrager

While the parallel streaming rate is slightly superior to the regular striping rate

in the 100 Mbps domain, in the 1 and 10 Gbps networks, where every microsecond

counts, striping appears to have an early advantage. This happens because of the

synchronization requirements of streaming which add a small overhead, absent in

the case of (independent) striping. However, when transmission parameters are well

tuned (e.g. increased buffer sizes) and for a larger number of parallel connections,

the average throughput becomes mostly equal, as pictured in the same figures.

In any case, piped streaming holds an overall qualitative edge over file ori-

ented striping, and as analyzed in a related paper, [10], is able of notably improved

performance in cases of application level multi-path.

3.2. Design advantages of the pipe/streamed model

The related work section has emphasized both strengths and weaknesses of

the existing network transfer solutions. Thus, changes to the TCP protocol have

a long duration of standardization (e.g. Sack, Multipath) and a difficult dissemi-

nation - involving kernel upgrades. Non-TCP transport level protocols (e.g. XCP)

require changes regarding congestion handling in routers as well as modifications

of both data senders and receivers. Such requirements are difficult to accomplish

and expensive and are therefore an obstacle to dissemination, except for dedicated

scientific networks. Although they have the best chance to dissemination, libraries

of network functions need to be included in new applications, while existing network

applications are sometimes too specialized and mainly oriented toward file transfers.

My design has none of these drawbacks and instead has a few remarkable

advantages such as:

• ease of dissemination, since it is implemented as an ordinary client/server

application.

• generality, it transfers at high rate standard output/input of data processes

spread over HBDP networks.

• reuse of existing storage system applications or local commands, through en-

capsulation of the pipe programming paradigm.

• supports both arbitrary data streaming and regular file transfers, by separating

its fast transfer algorithms from the data access details.

• multi-path support, at application level.

4. Conclusions

This paper presented a comparative analysis of research in the field of network

data transfers. Representative works in the area of TCP enhancements, non-TCP

protocols, and applications or libraries dedicated to networking transfers have been

included. The advantages and limitations of existing solutions have been set out.

This led to a new research direction in the field of bulk transfers in HBDP networks,

based on generalization of the pipe programming paradigm from its local (Unix)



New Solutions for Fast Data Transfers in HBDP Networks 53

meaning toward the Internet at large, while ensuring in the same time high transfer

rates at parallel speed.

Preliminary experiments and results described in the previous section demon-

strate the effectiveness of the new solutions envisaged. Thus the performance of

the streamed transfers, in terms af achieved throughput is not worse than in the

case of simple striping of files, under synchronization requirements, specific to data

streaming. In a related paper [10] as well and planned ones, I will demonstrate

in detail that the proposed model and the new fast transfer algorithms meet the

modern requirements of todays research domains interested in transmitting massive

bulk data elegantly, efficiently, effectively and at parallel speeds.

R E F E R E N C E S

[1] A. Ford, C. Raiciu, M. Handley and O. Bonaventure, TCP Extensions for Multipath Operation

with Multiple Addresses draft-ietf-mptcp-multiaddressed-09, IETF draft, Jun. 2012.

[2] ATLAS Experiment, URL: http://www.atlas.ch/

[3] bbftpPRO, URL: http://bbftppro.myftp.org/

[4] B. Neuman and T. Ts’o, Kerberos: An Authentication Service for Computer Networks, IEEE

Communications Magazine, 32 (9). 33-88. 1994.

[5] CASTOR, URL: http://castor.web.cern.ch/

[6] CERN, URL: http://public.web.cern.ch/public/

[7] C. Jin, D. Wei and S. Low, FAST TCP: Motivation, Architecture, Algorithms, Performance,

Proceedings of IEEE Infocom, Hong Kong, Mar. 2004.

[8] C. Raiciu, Ch. Paasch, S. Barre, A. Ford, M. Honda, F. Duchene, O. Bonaventure and M.

Handley, How Hard Can It Be? Designing and Implementing a Deployable Multipath TCP,

USENIX Symposium of Networked Systems Design and Implementation (NSDI’12), Apr. 2012.

[9] D. Katabi, Decoupling Congestion Control and Bandwidth Allocation Policy with Application

to High Bandwidth-Delay Product Networks, PhD thesis, Massachusetts Institute of Technol-

ogy, Mar. 2003.

[10] D. Schrager and F. Radulescu, Efficient Algorithms for Fast Data Transfers Using Long and

Large Pipes in WAN Networks, 19th International Conference on Control Systems and Com-

puter Science (CSCS-19), May 2013

[11] E. He, J. Leigh, O. Yu and T. DeFanti, Reliable Blast UDP : Predictable High Performance

Bulk Data Transfer, Proceedings of IEEE International Conference on Cluster Computing,

2002.

[12] GLIF Facility, URL: http://www.glif.is/

[13] H. Sivakumar, S. Bailey and R. L. Grossman, PSockets: The case for application-level network

striping for data intensive applications using high speed wide area networks, Proceedings of

the IEEE/ACM SC2000 Conference, 2000.

[14] I. Foster, C. Kesselman, G. Tsudik and S. Tuecke, A Security Architecture for Computational

Grids, 5th ACM Conference on Computer and Communications Security, 1998.

[15] I. Foster, Globus Toolkit version 4: Software for service-oriented systems, IFIP International

Conference on Network and Parallel Computing, pp. 213, 2005.

[16] J. Postel and J. Reynolds, FILE TRANSFER PROTOCOL (FTP), RFC 959, Oct. 1985.

[17] J. Postel, Transmission Control Protocol, RFC 793, Sep. 1981.



54 Dan Schrager

[18] J. Schopf, M. DArcy, N. Miller, L. Pearlman and I. Kesselman, Monitoring and discovery in

a webservices framework: Functionality and performance of the globus toolkits mds4, Globus,

Tech. Rep. ANL/MCS-P1248-04-5, 2005.

[19] K. Ramakrishnan, S. Floyd and D. Black, The Addition of Explicit Congestion Notification

(ECN) to IP, RFC 3168, Sep. 2001.

[20] M. Allman, S. Ostermann and H. Kruse, Data Transfer Efficiency over Satellite Circuits Using

A Multi-Socket Extension to the File Transfer Protocol (FTP), Proceedings of the ACTS

Results Conference, NASA Lewis Research, 1995.

[21] M. Allman, V. Paxon and W. Stevens, TCP Congestion Control, RFC 2581, Apr. 1999.

[22] M. Horowitz and S. Lunt, FTP Security Extensions, RFC 2228, Oct. 1997.

[23] M. Mathis, J. Mahdavi, S. Floyd and A. Romanow, TCP Selective Acknowledgment Options,

RFC 2018, Oct. 1996.

[24] M. Mathis, J. Semke and J. Mahdavi, The macroscopic behavior of the TCP congestion avoid-

ance algorithm, Computer Communications Review, July 1997.

[25] MWT2, URL: http://mwt2.usatlasfacility.org/

[26] OptIPuter, URL: http://www.optiputer.net/

[27] P. Hethmon and R. Elz, Feature negotiation mechanism for the File Transfer Protocol, RFC

2389, Aug. 1998.

[28] pmr, URL: http://zakalwe.fi/~shd/foss/pmr/

[29] rftar, URL: http://castorold.web.cern.ch/castorold/DIST/CERN/savannah/CONTRIB.pkg/

Dan.Schrager@weizmann.ac.il/

[30] S. Floyd, Issues of TCP with SACK, URL: ftp://ftp.ee.lbl.gov/papers/issues sa.ps.Z, Jan. 1996.

[31] VIRGO Detector, URL: https://wwwcascina.virgo.infn.it/

[32] V. Jacobson, R. Braden and D. Borman, TCP Extensions for High Performance, RFC 1323,

May 1992.

[33] V. Jacobson and R. Braden, TCP Extensions for Long-Delay Paths, RFC 1072, Oct. 1988.

[34] W. Allcock, J Bester, J Bresnahan, A Chervenak, L Liming and S Tuecke, GridFTP: Protocol

Extensions to FTP for the Grid, Global Grid Forum Recommendation Document GFD.20,

2005.

[35] W. Allcock, J. Bresnahan, R. Kettimuthu, M. Link, C. Dumitrescu, I. Raicu and I. Foster, The

Globus Striped GridFTP Framework and Server, SC 05: Proceedings of the 2005 ACM/IEEE

conference on Supercomputing, Nov. 2005.

[36] WIS, URL: http://www.weizmann.ac.il/particle/


