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CREATING AN ADAPTIVE DATA COLLECTING SYSTEM
BASED ON loT DEVICES

George CALIANU?, Elena CARCADEA? Ciprian LUPU?, Alina PETRESCU-
NITA*

This paper presents an innovative Power-to-X system that integrates loT
devices and a novel caching mechanism to improve real-time data collection and
distribution for industrial applications. The system enables concurrent and secure
access to data across multiple installations, enhancing platform scalability and
responsiveness. Compared to traditional SCADA systems, the proposed caching
model reduces latency and ensures greater adaptability for managing large volumes
of data. This design supports efficient monitoring, reliable operation, and energy
optimization, addressing the challenges of modern industrial environments while
providing a flexible and robust solution for diverse applications.
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1. Introduction

The acquisition of data from 0T (Internet of Things) devices in industry
represents a dynamic and evolving field, reflecting advances in technology,
standards, and practical applications. To reduce network latency, various temporary
data storage (cache) technologies are used. The literature reveals a multitude of
such techniques and approaches. In traditional cloud computing, communication
delays between 10T devices and the cloud make it unsuitable for latency-sensitive
applications. A solution could be a cooperative cache system at the application level
[1]. Thus, the most accessed data is either stored in a cloudlet® or distributed as
replicas across multiple cloudlets. 110T® generates a large volume of traffic, leading
to issues such as high energy consumption and longer access times. A solution is
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110T (Industrial Internet of Things) represents the industrial application of the 10T concept.
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storing 110T content in network nodes called trusted cache nodes (TCN’), which
can help mitigate these issues [2]. Unlike approaches that only focus on content
placement, there are proposals that optimize both content placement and the node
distribution model at different levels, considering cache size limits and energy
consumption costs [3]. Fog computing can address these technical problems and
could be one of the promising solutions for managing the big data produced by IoT,
which are often critical for security and time-sensitive [4]. Security in lloT
applications must be analyzed at each layer of the typical 10T architecture:
hardware, network, and application. The measures proposed in the literature include
the use of firewalls, secure communication channels (IPSec, SSL/TLS), user-based
authentication, and encryption. However, current solutions mainly address
industrial systems as a whole, without specifically responding to the variability of
IloT applications, where each layer requires dedicated security measures [5]. For
compensating communication delays in automatic control systems, a solution
would be to use predictive control, which estimates the process response and adjusts
commands in advance. This method helps maintain system stability and
performance even in the presence of significant network delays [6]. TCP can
introduce additional delays and performance bottlenecks due to its inherent
congestion control mechanisms. To address these challenges, several performance
measurement techniques have been proposed to assess and optimize
communication channels. One such approach is ImTCP (TCP with Inline
Measurement), which enhances TCP by embedding measurement capabilities
directly into the protocol, allowing real-time estimation of available bandwidth
without requiring additional hardware [7]. Geographically distributed systems, such
as power plants, can successfully use 10T devices to achieve goals like real-time
parameter monitoring, remote measurements, reducing labor costs, and increasing
economic viability [8]. A large-scale adoption of 10T devices in a geographically
dispersed structure must consider the potential vulnerabilities specific to these
devices. Such a large-scale vulnerability can create serious security issues, as
malicious actors can exploit vulnerabilities of low-resource devices in traditional
networks [9]. To prevent malicious activities, some research introduces the concept
of a trusted cache node (TCN) for 1loT [10]. TCNs cache frequently used content
and ensure the security of connected links. Edge computing has been considered a
primary paradigm to meet the low-latency demand for some computing- or data-
intensive applications, particularly for IloT applications. Considering this, some
research proposes a deep learning-based cache memory optimization method called
DLECO, to reduce costs during the cache memory planning process [11].
Information-Centric Networking (ICN) [12] is recognized as an important
technology for rapid content retrieval in content-based IoT applications. Proactive
caching in cooperative cache systems [13], in heterogeneous 10T systems, is an

"TCN — Trusted Caching Node
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interoperable and flexible solution for meeting latency constraints in these
environments, allowing efficient data processing and storage while reducing
redundant computing and costs. As systems become increasingly complex and
traditional maintenance and repair methods (such as preventive maintenance based
on historical data) are no longer sufficient, the concept of antifragility is introduced
into smart manufacturing systems, utilizing emerging technologies such as Digital
Twin (DT), Artificial Intelligence (Al), Big Data, and Cloud Computing. This
solution enables the creation of a digital model of the factory, which monitors and
analyzes the state of equipment and processes in real time. By applying the Failure
Mode and Effects Analysis (FMEA) method, the system can anticipate and prevent
failures, thereby optimizing production and transforming problems into
opportunities for improvement [14].

2. The proposed solution
The proposed solution is based on a cache system that collects data from

various devices and exposes it to stakeholders in a unique and consistent manner,
while maintaining traceability of the time each event occurred.
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Fig. 1: General software architecture

This architecture integrates essential components for monitoring, data
security, and process optimization in the hydrogen industry, utilizing loT
technologies, blockchain, distributed databases, and artificial intelligence. Unlike
traditional systems where information is queried at various levels, here it propagates
and, through successive aggregations, reaches its destination in real-time so that, on
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a large scale, the network is not overloaded with large amounts of simultaneous
data requests. As illustrated in Fig. 1, the input level consists of connectors for
primary data acquisition, structured according to equipment, devices, and
installations. This establishes a direct connection with the hardware level and acts
as a device driver. The input level plays an essential role in abstracting the existing
hardware. The system monitors environmental parameters through weather stations
and specialized sensors, data on solar energy production, inverter output, and
energy consumption in the electrolysis process. Additionally, it tracks, in real-time,
compression levels, stored hydrogen volume, and tank safety. Related data that can
be correlated at higher decision-making levels to optimize production flows are also
collected, such as utility prices, hydrogen, or energy costs. The intermediate cache
storage level collects primary data and synchronizes it at time intervals. This level
serves as a transit point for data, without maintaining a history, processing, or
modifying the information in any way, acting as a buffer for building data flows
destined for subsequent levels. At the output level of the cache, connectors perform
data processing and aggregation. These connect to databases, forward data to other
cache-type systems and beyond, or aggregate data using customized algorithms as
is shown in Fig. 2.
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Fig. 2: Ways to use the cache engine

From a security perspective, vulnerable 10T devices are isolated in sub-
networks that communicate exclusively with the cache system, thereby eliminating
direct access to these devices. Additionally, a blockchain-based subsystem is used
to ensure the integrity and protection of sensitive information. Elasticsearch is used
for storing and analyzing large volumes of data, while SQL.ite serves as a testing
infrastructure. Access to these data is facilitated through an API layer, allowing the
system to interconnect with other applications and cloud services. Atrtificial
intelligence agents use these data to optimize decisions related to energy and
hydrogen production, storage, and sales, anticipating production fluctuations or
suggesting business decisions based on input conditions from the process as well
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as market trends. The software architecture is agnostic, distributed, and
microservices-oriented. This architectural choice was made to ensure the highest
degree of horizontal scalability for the infrastructure. A key aspect of this data
acquisition mechanism, with a cache-based system at its core, is its flexibility, as it
can be developed at any scale. Regardless of the size or complexity of the
application, this system can maintain optimal performance and efficiently manage
resources. Its performance remains constant even in the face of large volumes of
data or large-scale applications.

The mathematical model

To mathematically model a system that acquires data from IoT devices in a
cache-based system, several aspects are considered, such as data flow, acquisition
frequency, and cache capacity. The basic data storage unit in the cache system is
the cell.

Notations and definitions:
e DiloT device i;

C(t) cache capacity at time t;

At the time interval for data acquisition;

Ai(t) data rate generated by device i at time t (for example, bytes/second);

1(t) the rate at which the cache processes and flushes data (eg bytes/second);

Q(t) the amount of data stored in the cache at time t;

tsample the sampling interval of the application that collects data from the

cache;

tavail the moment when the data becomes available in the final application;

tgen the original moment of event generation by the 10T device;

tsend the time when the device sends the data to the cache;

tcache the time when the data is written in the cache (the timestamp added by

the cache);

Atnet Network and processing latency between 10T device and cache;

e toroc the processing time in the 10T device before sending the data to the
cache;

e total the total time after which the value collected by the 10T becomes
available in the final application;

Each device Di sends data to the cache at a rate Ai(z). The total amount of data
received by the cache at time t is:
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) (1)
A© =) 4 ®

where n is the total number of 10T devices. The cache stores the data received at
time t according to the following relation:
2
Q(t+ 4t) = Q(t) + A(t)At — u(t)At

This equation shows that the data in the cache at time 7+4¢ is the existing data Q(t),
plus the new data received A(z)A4t, minus the data processed u(?)4t. The cache has a
limited capacity C(t). If at any moment t, Q(t) exceeds C(t), the additional data is

lost.
3)
Q) = C(b)

Assuming that tgen is the moment when the event is generated by the 10T device. If
the 10T device has a certain processing time Atyroc before sending the data, then:

(4)
tsena = tgen T Atproc
Therefore, tcache becomes:
()
tcache = tgen + Atproc + Atnet
To calculate the original time tgen Of the event, this equation becomes:
(6)

tgen = teache — (Atproc + Atnet)

To obtain the original event time tgen , we need to know or estimate the latencies
Atproc and Atnet. These can be determined through experimental measurements or by
monitoring the system in real-time. For Atnet , either the network latency between
the 10T device and the cache can be measured using test packets or timestamps of
known events, or it can be estimated based on network conditions and
communication infrastructure. In the application, a fixed-capacity cache C(t)=1
was used. In this case, the cache can store only one event at a time, meaning that
any new incoming event will overwrite the previous event.

()

Q(t + At) = min(1, A(t)At)

Applications collect data from the cache at regular intervals of tsampie. The moment
tavail at which the data becomes available in the application can be calculated as the
first sampling moment after tcache:
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(8)

tavail = tcache + tsample - (tcachemOdtsample)

The total time after which the value collected by the 10T device becomes available
in the final application is given by the following relation:
9)

Attotal = tapail — tgen

To optimize the sampling period tsampie for the application that collects data from
the cache, several factors must be considered, including network latencies, data
processing time, and cache capacity. The goal of the optimization is to minimize
the total data availability time A#ota and to maximize the efficiency of the data
collection process. The objective is to optimize the sampling period tsampie tO
minimize Atotal While ensuring that data is collected efficiently without exceeding
the cache capacity. In this regard, we can consider the following formulas and
criteria:

1. Minimizing total data availability time. Since Atwot depends on tsample, ONe
approach would be to minimize Attotal @S @ function of tsample :
(10)
tminl Attotal = (tcache + tsample - (tcachemOdtsample) - tgen)
sample
This can be solved by searching for an optimal value for tsample that minimizes the
wait time for data collection after it has been stored in the cache.

2. Maximizing the sampling frequency. If tsampie is too large, the application may
miss important data or collect older data than would be ideal. Therefore, we want
to maximize the sampling frequency.
(11)
1

max
tsample tsample

under the constraint that Azotal remains acceptable.

3. Breaking down the optimization into intervals. We can optimize tsample based on
network and processing latencies. If Amet and Atproc are constant or estimated, we
can determine tsample SO that it aligns well with these latencies.
(12)
tsample ~ Atnet + Atproc

4. Discrete optimization. If tsample Needs to be a multiple of a discrete time (for

example, one second), we can perform a discrete optimization.
(13)
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tsample = ke X tynit
where K is a positive integer, and tunit is the time unit.

The optimal value for k can be chosen by evaluating different values and selecting
the one that minimizes Atotal.

5. Cache capacity. It is important to ensure that the sampling period tsample IS N0t to0
large, so that the cache can be cleared before new data becomes available.
(14)
LGP
tsample
where Q(t) is the amount of data in the cache at time t, and C is the capacity of the
cache.

3. Case Study: Data acquisition from a group of photovoltaic parks

The overall objective of the study was to develop an integrated Power-to-X
system for the supply of hydrogen, electricity, and thermal energy whose
architecture is shown in Fig. 3.
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The aim is to facilitate the complete integration and interconnectivity of all
components of the integrated HET (Hydrogen-Electricity-Thermal) unit with a
synergistic hardware configuration of energy use/conversion/storage technologies
(fuel cells, hydrogen storage tanks, battery energy storage systems, H2-CH4 mixing
unit, electrochemical cell for hydrogen separation from a gas stream), using
artificial intelligence algorithms and multivariate analyses to achieve intelligent
energy management [15]. In the Power-to-X system, renewable energy production
is ensured by a group of three photovoltaic parks, as shown in Table 1. Inverter
manufacturers offer their own cloud solution application for monitoring energy
production, but also offer an API for integration that was used to connect to the
cache system. The aim of this case study is to acquire, in real-time, the production
values from the photovoltaic parks, as well as additional elements useful for
machine learning predictions, such as solar radiation and environmental
parameters.

Table 1
Solar park Installed power Inverter type
A 50Kw 2 x FRONIUS Eco 25.0-3-S
B 10kw 2 X SMA Sunny Tripower STP 5000TL-20
C 10kw 2 X ABB TRIO-5.8-TL-OUTD-S-400

A limitation we had from the beginning was that the software solutions
proposed by inverter manufacturers are not interconnectable. Thus, the chosen
solution is based on collecting data in a cache (Fig. 4), aggregating it, and saving a
snapshot with a sampling period of one minute in a database. This granularity was
chosen based on the consideration that reports are generated for time intervals such
as date, hour, and minute. The input connector for Fronius inverters present in the
photovoltaic panel park uses an API/JSON mechanism provided by the Fronius
inverter and acquires electricity production information with a sampling period of
1 second. The input connector for inverters controlled by Solar-Log datalogger
devices uses a similar APl mechanism to acquire data corresponding to the attached
inverters, with a reading sampling period of 15 seconds, limited by the equipment.
The aggregation connector is a particular connector that retrieves data about green
energy production from the cells allocated to each solar park and calculates the total
energy produced in the destination cell in real-time, with a sampling period of 1
second. An output connector retrieves data from the cache system and stores it in
the databases for historical purposes, following an agreed schema. The retrieval of
this information is done with a sampling period of 1 minute. As a result of data
aggregation, the output cell provides the amount of green energy produced at the
institute level in real-time (Fig. 5). It is observed that, at the software level, the cell
also serves as an endpoint® for applications that can directly consume this

8 Specific URL used to access a resource or functionality
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information. Also, this approach is efficient, integrates various inverter
manufacturers and can be implemented at very low costs.
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A summary of the analyzed metrics is presented in Table 2 below:

Table 2
KPI Definition Measured value Impact
Data Time delay between|Fronius Inverters: 1.2 seconds on Low latency ensures
latency data generation at|average (1-second sampling + processing |accurate  real-time
inverters and its|overhead). monitoring and
availability in cache|Solar-Log Devices: 15.5 seconds (15- timely decision-
or database. second sampling + processing overhead). |making.
Aggregation Connector: <0.3 seconds
additional delay.
System Percentage of time|Average Uptime: 99.8%. High uptime ensures
uptime the system is fully|Downtime Causes: API unavailability and|continuous  energy
operational. scheduled maintenance. monitoring and
Target: Maintain >99.9% with API uninterrupted  Al-
redundancy and enhanced monitoring. driven optimization.
Data Ability to process|Success Rate: >99.5%. Reliable aggregation
aggregatio |and aggregate data|Failures: 0.5%, mainly due to network ensures a holistic
n from heterogeneous|issues or API timeouts. and real-time view
efficiency |sources within of energy
sampling intervals. production.

4. Conclusions

The use of a cache system in the 10T context offers multiple essential
advantages for improving system performance and efficiency. Although the most
common use of cache systems is to reduce latency by locally storing frequently
accessed data, this study has explored their potential in managing real-time
concurrent access to information. The proposed technique enables ultra-fast data
access in large-scale 10T infrastructures, making it highly suitable for distributed
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real-time applications, where caching saves bandwidth, reduces network load,
minimizes operational costs, and enhances communication stability. Unlike
conventional caching solutions, which are primarily used to reduce latency, the
proposed approach optimizes the scalability of communications in 10T
infrastructures, allowing efficient management of a large number of devices
without overloading the network. This is a key difference from traditional methods,
which become inefficient in large-scale distributed environments. The proposed
system reduces network congestion and improves concurrent data access, making
it ideal for distributed real-time applications. In this context, caching is not only
used to accelerate data access but also as an essential mechanism for balancing and
optimizing communication flows in an extensive 10T network. To validate the
efficiency of the proposed system, its behavior was analyzed in scenarios involving
a large number of loT devices, demonstrating more efficient management of
concurrent access and a significant reduction in network overload compared to
traditional methods. Future directions for this research could include integrating
predictive analytics and machine learning to optimize real-time data management.
These advancements could improve the system’s adaptability, enabling it to
anticipate data access patterns and dynamically enhance its performance. Beyond
renewable energy, the industrial relevance of caching could extend to applications
such as industrial production, supply chain optimization, and healthcare monitoring
systems, where fast data access and reliability are equally critical. Integrating a
cache system in this configuration represents a strategic solution for optimizing
performance, reliability, and cost efficiency, paving the way for more robust and
scalable 10T solutions in industrial and commercial domains.
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