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This paper presents an innovative Power-to-X system that integrates IoT 

devices and a novel caching mechanism to improve real-time data collection and 

distribution for industrial applications. The system enables concurrent and secure 

access to data across multiple installations, enhancing platform scalability and 

responsiveness. Compared to traditional SCADA systems, the proposed caching 

model reduces latency and ensures greater adaptability for managing large volumes 

of data. This design supports efficient monitoring, reliable operation, and energy 

optimization, addressing the challenges of modern industrial environments while 

providing a flexible and robust solution for diverse applications. 
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 1. Introduction 

The acquisition of data from IoT (Internet of Things) devices in industry 

represents a dynamic and evolving field, reflecting advances in technology, 

standards, and practical applications. To reduce network latency, various temporary 

data storage (cache) technologies are used. The literature reveals a multitude of 

such techniques and approaches. In traditional cloud computing, communication 

delays between IoT devices and the cloud make it unsuitable for latency-sensitive 

applications. A solution could be a cooperative cache system at the application level 

[1]. Thus, the most accessed data is either stored in a cloudlet5 or distributed as 

replicas across multiple cloudlets. IIoT6 generates a large volume of traffic, leading 

to issues such as high energy consumption and longer access times. A solution is 
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storing IIoT content in network nodes called trusted cache nodes (TCN7), which 

can help mitigate these issues [2]. Unlike approaches that only focus on content 

placement, there are proposals that optimize both content placement and the node 

distribution model at different levels, considering cache size limits and energy 

consumption costs [3]. Fog computing can address these technical problems and 

could be one of the promising solutions for managing the big data produced by IoT, 

which are often critical for security and time-sensitive [4]. Security in IIoT 

applications must be analyzed at each layer of the typical IoT architecture: 

hardware, network, and application. The measures proposed in the literature include 

the use of firewalls, secure communication channels (IPSec, SSL/TLS), user-based 

authentication, and encryption. However, current solutions mainly address 

industrial systems as a whole, without specifically responding to the variability of 

IIoT applications, where each layer requires dedicated security measures [5]. For 

compensating communication delays in automatic control systems, a solution 

would be to use predictive control, which estimates the process response and adjusts 

commands in advance. This method helps maintain system stability and 

performance even in the presence of significant network delays [6]. TCP can 

introduce additional delays and performance bottlenecks due to its inherent 

congestion control mechanisms. To address these challenges, several performance 

measurement techniques have been proposed to assess and optimize 

communication channels. One such approach is ImTCP (TCP with Inline 

Measurement), which enhances TCP by embedding measurement capabilities 

directly into the protocol, allowing real-time estimation of available bandwidth 

without requiring additional hardware [7]. Geographically distributed systems, such 

as power plants, can successfully use IoT devices to achieve goals like real-time 

parameter monitoring, remote measurements, reducing labor costs, and increasing 

economic viability [8]. A large-scale adoption of IoT devices in a geographically 

dispersed structure must consider the potential vulnerabilities specific to these 

devices. Such a large-scale vulnerability can create serious security issues, as 

malicious actors can exploit vulnerabilities of low-resource devices in traditional 

networks [9]. To prevent malicious activities, some research introduces the concept 

of a trusted cache node (TCN) for IIoT [10]. TCNs cache frequently used content 

and ensure the security of connected links. Edge computing has been considered a 

primary paradigm to meet the low-latency demand for some computing- or data-

intensive applications, particularly for IIoT applications. Considering this, some 

research proposes a deep learning-based cache memory optimization method called 

DLECO, to reduce costs during the cache memory planning process [11]. 

Information-Centric Networking (ICN) [12] is recognized as an important 

technology for rapid content retrieval in content-based IoT applications. Proactive 

caching in cooperative cache systems [13], in heterogeneous IoT systems, is an 
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interoperable and flexible solution for meeting latency constraints in these 

environments, allowing efficient data processing and storage while reducing 

redundant computing and costs. As systems become increasingly complex and 

traditional maintenance and repair methods (such as preventive maintenance based 

on historical data) are no longer sufficient, the concept of antifragility is introduced 

into smart manufacturing systems, utilizing emerging technologies such as Digital 

Twin (DT), Artificial Intelligence (AI), Big Data, and Cloud Computing. This 

solution enables the creation of a digital model of the factory, which monitors and 

analyzes the state of equipment and processes in real time. By applying the Failure 

Mode and Effects Analysis (FMEA) method, the system can anticipate and prevent 

failures, thereby optimizing production and transforming problems into 

opportunities for improvement [14]. 

 

 2. The proposed solution 

 

The proposed solution is based on a cache system that collects data from 

various devices and exposes it to stakeholders in a unique and consistent manner, 

while maintaining traceability of the time each event occurred. 

 

 
Fig. 1: General software architecture 

 

This architecture integrates essential components for monitoring, data 

security, and process optimization in the hydrogen industry, utilizing IoT 

technologies, blockchain, distributed databases, and artificial intelligence. Unlike 

traditional systems where information is queried at various levels, here it propagates 

and, through successive aggregations, reaches its destination in real-time so that, on 
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a large scale, the network is not overloaded with large amounts of simultaneous 

data requests.  As illustrated in Fig. 1, the input level consists of connectors for 

primary data acquisition, structured according to equipment, devices, and 

installations. This establishes a direct connection with the hardware level and acts 

as a device driver. The input level plays an essential role in abstracting the existing 

hardware. The system monitors environmental parameters through weather stations 

and specialized sensors, data on solar energy production, inverter output, and 

energy consumption in the electrolysis process. Additionally, it tracks, in real-time, 

compression levels, stored hydrogen volume, and tank safety. Related data that can 

be correlated at higher decision-making levels to optimize production flows are also 

collected, such as utility prices, hydrogen, or energy costs. The intermediate cache 

storage level collects primary data and synchronizes it at time intervals. This level 

serves as a transit point for data, without maintaining a history, processing, or 

modifying the information in any way, acting as a buffer for building data flows 

destined for subsequent levels.  At the output level of the cache, connectors perform 

data processing and aggregation. These connect to databases, forward data to other 

cache-type systems and beyond, or aggregate data using customized algorithms as 

is shown în Fig. 2.  

 

Fig. 2: Ways to use the cache engine 

 

From a security perspective, vulnerable IoT devices are isolated in sub-

networks that communicate exclusively with the cache system, thereby eliminating 

direct access to these devices. Additionally, a blockchain-based subsystem is used 

to ensure the integrity and protection of sensitive information. Elasticsearch is used 

for storing and analyzing large volumes of data, while SQLite serves as a testing 

infrastructure. Access to these data is facilitated through an API layer, allowing the 

system to interconnect with other applications and cloud services.  Artificial 

intelligence agents use these data to optimize decisions related to energy and 

hydrogen production, storage, and sales, anticipating production fluctuations or 

suggesting business decisions based on input conditions from the process as well 
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as market trends. The software architecture is agnostic, distributed, and 

microservices-oriented. This architectural choice was made to ensure the highest 

degree of horizontal scalability for the infrastructure. A key aspect of this data 

acquisition mechanism, with a cache-based system at its core, is its flexibility, as it 

can be developed at any scale. Regardless of the size or complexity of the 

application, this system can maintain optimal performance and efficiently manage 

resources. Its performance remains constant even in the face of large volumes of 

data or large-scale applications. 

 

The mathematical model 

 

To mathematically model a system that acquires data from IoT devices in a 

cache-based system, several aspects are considered, such as data flow, acquisition 

frequency, and cache capacity. The basic data storage unit in the cache system is 

the cell. 

 

Notations and definitions: 

• Di IoT device i; 

• C(t) cache capacity at time t; 

• Δt the time interval for data acquisition; 

• λi(t) data rate generated by device i at time t (for example, bytes/second); 

• μ(t) the rate at which the cache processes and flushes data (eg bytes/second); 

• Q(t) the amount of data stored in the cache at time t; 

• tsample the sampling interval of the application that collects data from the 

cache; 

• tavail the moment when the data becomes available in the final application; 

• tgen the original moment of event generation by the IoT device; 

• tsend the time when the device sends the data to the cache; 

• tcache the time when the data is written in the cache (the timestamp added by 

the cache); 

• Δtnet network and processing latency between IoT device and cache; 

• Δtproc the processing time in the IoT device before sending the data to the 

cache; 

• Δttotal the total time after which the value collected by the IoT becomes 

available in the final application; 
 

Each device Di sends data to the cache at a rate λi(t). The total amount of data 

received by the cache at time t is: 
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(1) 

𝛬(𝑡) =∑𝜆𝑖

𝑛

1

(𝑡) 

where n is the total number of IoT devices. The cache stores the data received at 

time t according to the following relation: 

(2) 

𝑄(𝑡 + 𝛥𝑡) = 𝑄(𝑡) + 𝛬(𝑡)𝛥𝑡 − 𝜇(𝑡)𝛥𝑡 
 

This equation shows that the data in the cache at time t+Δt is the existing data Q(t), 

plus the new data received Λ(t)Δt, minus the data processed μ(t)Δt. The cache has a 

limited capacity C(t). If at any moment t, Q(t) exceeds C(t), the additional data is 

lost. 

(3) 

𝑄(𝑡) ≤ 𝐶(𝑡) 
 

Assuming that tgen is the moment when the event is generated by the IoT device. If 

the IoT device has a certain processing time Δtproc before sending the data, then: 

(4) 

𝑡𝑠𝑒𝑛𝑑 = 𝑡𝑔𝑒𝑛 + 𝛥𝑡𝑝𝑟𝑜𝑐 

Therefore, tcache becomes: 

(5) 

𝑡𝑐𝑎𝑐ℎ𝑒 = 𝑡𝑔𝑒𝑛 + 𝛥𝑡𝑝𝑟𝑜𝑐 + 𝛥𝑡𝑛𝑒𝑡 
 

To calculate the original time tgen of the event, this equation becomes: 

(6) 

𝑡𝑔𝑒𝑛 = 𝑡𝑐𝑎𝑐ℎ𝑒 − (𝛥𝑡𝑝𝑟𝑜𝑐 + 𝛥𝑡𝑛𝑒𝑡) 
 

To obtain the original event time  tgen , we need to know or estimate the latencies 

Δtproc and Δtnet. These can be determined through experimental measurements or by 

monitoring the system in real-time. For Δtnet , either the network latency between 

the IoT device and the cache can be measured using test packets or timestamps of 

known events, or it can be estimated based on network conditions and 

communication infrastructure. In the application, a fixed-capacity cache C(t)=1 

was used. In this case, the cache can store only one event at a time, meaning that 

any new incoming event will overwrite the previous event. 

(7) 

𝑄(𝑡 + 𝛥𝑡) = 𝑚𝑖𝑛(1, 𝛬(𝑡)𝛥𝑡) 
 

Applications collect data from the cache at regular intervals of tsample. The moment  

tavail at which the data becomes available in the application can be calculated as the  

first sampling moment after  tcache: 
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(8) 

𝑡𝑎𝑣𝑎𝑖𝑙 = 𝑡𝑐𝑎𝑐ℎ𝑒 + 𝑡𝑠𝑎𝑚𝑝𝑙𝑒 − (𝑡𝑐𝑎𝑐ℎ𝑒𝑚𝑜𝑑𝑡𝑠𝑎𝑚𝑝𝑙𝑒) 

The total time after which the value collected by the IoT device becomes available 

in the final application is given by the following relation: 

(9) 

𝜟𝒕𝒕𝒐𝒕𝒂𝒍 = 𝒕𝒂𝒗𝒂𝒊𝒍 − 𝒕𝒈𝒆𝒏 
 

To optimize the sampling period tsample for the application that collects data from 

the cache, several factors must be considered, including network latencies, data 

processing time, and cache capacity. The goal of the optimization is to minimize 

the total data availability time Δttotal and to maximize the efficiency of the data 

collection process. The objective is to optimize the sampling period tsample to 

minimize Δttotal while ensuring that data is collected efficiently without exceeding 

the cache capacity. In this regard, we can consider the following formulas and 

criteria: 
 

1. Minimizing total data availability time. Since Δttotal depends on tsample, one 

approach would be to minimize Δttotal as a function of tsample : 

(10) 

𝑚𝑖𝑛
𝑡𝑠𝑎𝑚𝑝𝑙𝑒

𝛥𝑡𝑡𝑜𝑡𝑎𝑙 = (𝑡𝑐𝑎𝑐ℎ𝑒 + 𝑡𝑠𝑎𝑚𝑝𝑙𝑒 − (𝑡𝑐𝑎𝑐ℎ𝑒𝑚𝑜𝑑𝑡𝑠𝑎𝑚𝑝𝑙𝑒) − 𝑡𝑔𝑒𝑛) 

 

This can be solved by searching for an optimal value for tsample that minimizes the 

wait time for data collection after it has been stored in the cache. 
 

2. Maximizing the sampling frequency. If tsample is too large, the application may 

miss important data or collect older data than would be ideal. Therefore, we want 

to maximize the sampling frequency. 

(11) 

𝑚𝑎𝑥
𝑡𝑠𝑎𝑚𝑝𝑙𝑒

1

𝑡𝑠𝑎𝑚𝑝𝑙𝑒
 

 

under the constraint that Δttotal remains acceptable. 
 

3. Breaking down the optimization into intervals. We can optimize  tsample based on 

network and processing latencies. If Δtnet and Δtproc are constant or estimated, we 

can determine tsample so that it aligns well with these latencies. 

(12) 

𝑡𝑠𝑎𝑚𝑝𝑙𝑒 ≈ 𝛥𝑡𝑛𝑒𝑡 + 𝛥𝑡𝑝𝑟𝑜𝑐 
 

4. Discrete optimization. If tsample needs to be a multiple of a discrete time (for 

example, one second), we can perform a discrete optimization. 

(13) 
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𝑡𝑠𝑎𝑚𝑝𝑙𝑒 = 𝑘 × 𝑡𝑢𝑛𝑖𝑡 

where k is a positive integer, and tunit is the time unit. 
 

The optimal value for k can be chosen by evaluating different values and selecting 

the one that minimizes Δttotal. 
 

5. Cache capacity. It is important to ensure that the sampling period tsample is not too 

large, so that the cache can be cleared before new data becomes available. 

(14) 
𝑄(𝑡)

𝑡𝑠𝑎𝑚𝑝𝑙𝑒
≤ 𝐶 

where Q(t) is the amount of data in the cache at time t, and C is the capacity of the 

cache. 

 

 3. Case Study: Data acquisition from a group of photovoltaic parks 
 

The overall objective of the study was to develop an integrated Power-to-X 

system for the supply of hydrogen, electricity, and thermal energy whose 

architecture is shown in Fig. 3. 
 

 
Fig. 3: The Power-to-X System of ICSI [15] 
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The aim is to facilitate the complete integration and interconnectivity of all 

components of the integrated HET (Hydrogen-Electricity-Thermal) unit with a 

synergistic hardware configuration of energy use/conversion/storage technologies 

(fuel cells, hydrogen storage tanks, battery energy storage systems, H2-CH4 mixing 

unit, electrochemical cell for hydrogen separation from a gas stream), using 

artificial intelligence algorithms and multivariate analyses to achieve intelligent 

energy management [15]. In the Power-to-X system, renewable energy production 

is ensured by a group of three photovoltaic parks, as shown in Table 1. Inverter 

manufacturers offer their own cloud solution application for monitoring energy 

production, but also offer an API for integration that was used to connect to the 

cache system. The aim of this case study is to acquire, in real-time, the production 

values from the photovoltaic parks, as well as additional elements useful for 

machine learning predictions, such as solar radiation and environmental 

parameters. 
Table 1 

Solar park Installed power Inverter type 

A 50Kw 2 x FRONIUS Eco 25.0-3-S 

B 10kw 2 x SMA Sunny Tripower STP 5000TL-20 

C 10kw 2 x ABB TRIO-5.8-TL-OUTD-S-400 

 

A limitation we had from the beginning was that the software solutions 

proposed by inverter manufacturers are not interconnectable. Thus, the chosen 

solution is based on collecting data in a cache (Fig. 4), aggregating it, and saving a 

snapshot with a sampling period of one minute in a database. This granularity was 

chosen based on the consideration that reports are generated for time intervals such 

as date, hour, and minute. The input connector for Fronius inverters present in the 

photovoltaic panel park uses an API/JSON mechanism provided by the Fronius 

inverter and acquires electricity production information with a sampling period of 

1 second. The input connector for inverters controlled by Solar-Log datalogger 

devices uses a similar API mechanism to acquire data corresponding to the attached 

inverters, with a reading sampling period of 15 seconds, limited by the equipment. 

The aggregation connector is a particular connector that retrieves data about green 

energy production from the cells allocated to each solar park and calculates the total 

energy produced in the destination cell in real-time, with a sampling period of 1 

second. An output connector retrieves data from the cache system and stores it in 

the databases for historical purposes, following an agreed schema. The retrieval of 

this information is done with a sampling period of 1 minute. As a result of data 

aggregation, the output cell provides the amount of green energy produced at the 

institute level in real-time (Fig. 5). It is observed that, at the software level, the cell 

also serves as an endpoint8 for applications that can directly consume this 
 

8 Specific URL used to access a resource or functionality 
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information. Also, this approach is efficient, integrates various inverter 

manufacturers and can be implemented at very low costs. 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4: Data acquisition from non-

homogeneous photovoltaic parks. 

 

 

Fig. 5: Total green energy production 

 

A summary of the analyzed metrics is presented in Table 2 below: 
Table 2 

KPI Definition Measured value Impact 

Data 

latency 

Time delay between 

data generation at 

inverters and its 

availability in cache 

or database. 

Fronius Inverters: 1.2 seconds on 

average (1-second sampling + processing 

overhead).  

Solar-Log Devices: 15.5 seconds (15-

second sampling + processing overhead).  

Aggregation Connector: <0.3 seconds 

additional delay. 

Low latency ensures 

accurate real-time 

monitoring and 

timely decision-

making. 

System 

uptime 

Percentage of time 

the system is fully 

operational. 

Average Uptime: 99.8%.  

Downtime Causes: API unavailability and 

scheduled maintenance.  

Target: Maintain >99.9% with API 

redundancy and enhanced monitoring. 

High uptime ensures 

continuous energy 

monitoring and 

uninterrupted AI-

driven optimization. 

Data 

aggregatio

n 

efficiency 

Ability to process 

and aggregate data 

from heterogeneous 

sources within 

sampling intervals. 

Success Rate: >99.5%.  

Failures: 0.5%, mainly due to network 

issues or API timeouts. 

Reliable aggregation 

ensures a holistic 

and real-time view 

of energy 

production. 

 

4. Conclusions 

 

The use of a cache system in the IoT context offers multiple essential 

advantages for improving system performance and efficiency. Although the most 

common use of cache systems is to reduce latency by locally storing frequently 

accessed data, this study has explored their potential in managing real-time 

concurrent access to information. The proposed technique enables ultra-fast data 

access in large-scale IoT infrastructures, making it highly suitable for distributed 
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real-time applications, where caching saves bandwidth, reduces network load, 

minimizes operational costs, and enhances communication stability. Unlike 

conventional caching solutions, which are primarily used to reduce latency, the 

proposed approach optimizes the scalability of communications in IoT 

infrastructures, allowing efficient management of a large number of devices 

without overloading the network. This is a key difference from traditional methods, 

which become inefficient in large-scale distributed environments. The proposed 

system reduces network congestion and improves concurrent data access, making 

it ideal for distributed real-time applications. In this context, caching is not only 

used to accelerate data access but also as an essential mechanism for balancing and 

optimizing communication flows in an extensive IoT network. To validate the 

efficiency of the proposed system, its behavior was analyzed in scenarios involving 

a large number of IoT devices, demonstrating more efficient management of 

concurrent access and a significant reduction in network overload compared to 

traditional methods. Future directions for this research could include integrating 

predictive analytics and machine learning to optimize real-time data management. 

These advancements could improve the system’s adaptability, enabling it to 

anticipate data access patterns and dynamically enhance its performance. Beyond 

renewable energy, the industrial relevance of caching could extend to applications 

such as industrial production, supply chain optimization, and healthcare monitoring 

systems, where fast data access and reliability are equally critical. Integrating a 

cache system in this configuration represents a strategic solution for optimizing 

performance, reliability, and cost efficiency, paving the way for more robust and 

scalable IoT solutions in industrial and commercial domains. 
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