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FINITE ELEMENT METHOD IN HIGH INTENSITY PLASMA 
DISCHARGE MODELING 

Mihail CRISTEA1 

Se arată cum poate fi modelată plasma descărcărilor electrice la presiune 
ridicată aflată aproape de echilibrul termodinamic local. Rezolvarea ecuaţiilor 
diferenţiale cu coeficienţi variabili şi termeni sursă neliniari se face prin metoda 
elementului finit.  

It shows how the high pressure electric gas discharge plasma near to the 
local thermodynamic equilibrium point can be modeled. Partial differential 
equations with variable coefficients and non-linear source terms are solved using 
the finite element method. 
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1. Introduction 

The industrial construction of plasma devices, like high-pressure sodium or 
mercury lamps, was due to intuition and several successive attempts, and not to a 
detailed functional analysis. From this point of view, the mathematical and 
physical modeling is essential. 

The early stages of mathematical modeling of electric discharge plasma at 
high intensity current were based on simplified models that were generally one-
dimensional. The models for electrodes created by Tieleman-Oostvoegels [1], 
Cram [2], and others, were 1D models based on severe approximations. Even the 
study of the positive column plasma was developed under the assumption of 
infinite dimensions ignoring boundaries effect. Consequently, the Elenbaas-Heller 
equation is a second degree ordinary differential equation. Taking into 
consideration the temperature material coefficients dependencies, the 
mathematical difficulty of the problem increase, but the problem could not be 
transferred into a higher-dimensional mathematical topology. 

Introduction of the electrode geometry effects and the occurrence of 
asymmetrical phenomena led to partial differential equations, which requires 
numerical algorithm based on a finite element method in order to be solved. 
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Nowadays, most of the studies are based on 2D models for high symmetries 
[3-6] or on 3D models [7, 8], as a result of the increased processor power and the 
development of specialized codes. 

2. Theoretical Model 

This paper concerns the mathematical modeling of stable lamps that work in 
dry mercury vapors, in order to obtain the physical parameters that ensure a longer 
lifetime. The lamp we are talking about (Fig. 1) is considered at the local 
thermodynamical equilibrium, therefore a number of laws hold true: Planck, 
Boltzmann, Saha and Guldberg-Waage. The second moment of the Boltzmann 
equation is the most important. Knowledge of the temperature distribution in 
every point allows the calculation of all the local parameters. 

Thus, for the electrode we must solve the heat transport equation: 
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with appropriate Dirichlet or Neumann border conditions.  
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Fig.1. Lamp geometry. Main characteristics are mmd 81 = , mmd 42 = , mmd 63 = , 
mmd 14 = , mmr 5.01 = , mmr 12 = , mmr 5.13 = , mmR 10= , mml 66=  and mmg 1= . 

 
In the above equations, Wρ  is the electrical resistivity, 3/19300 mkg=ρ  is 

the mass density, ( )TkW  is the thermal conductivity, KkgJc p //132=  is the 

specific heat for tungsten, ( )zrS ,  and jQ  are the source terms for the equations.  

In general we take for the electrode 0=jQ  and: 
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( ) ( )zrjzrS W ,, 2ρ=        (3) 
The self-consistency closing condition for a cathode operating in "hot-spot" 

mode at I  discharge current intensity is: 

∫ ⋅=
hsr

drjrI
0

2π    (4) 

where hsr  is the spot radius and j  is the current density distribution.  
For the positive column plasma we must solve the equation 

( ) ( ){ } ( )zrSzrTTk plpl ,, =∇−∇    (5) 

where plk  and plS  are the thermal conductivity and the source term for the 
plasma. 

The plasma thermal conductivity is given by the formula: 
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where Hgm  is the atom mercury mass, 
o
Arm 898.2= , Bk  is the Boltzmann 

constant, ( )2,2Ω  is the plasma collisions integral at the reduced temperature 
ε/*

BTkT =  with Bk851=ε . 
The source term is ( ) radJI UUzrS −=, , where JU  is the Joule power 

contribution and radU , the radiant term. The last term, related to the plasma net 
emission, raises many problems, in terms of correct estimation, but also of 
mathematical convergence after multiple iterations. This is the term most affected 
by the numerical diffusion. We prefer to use the approximation given by Elenbaas 
which use the average excited potential VV 8.7* =  and mercury atom distribution 
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The term describing the heating through Joule effect is: 
2

EU plJ
r

σ=    (8) 

where E
r

 is the electric field intensity inside the plasma and plσ  is the plasma 
electrical conductivity. 
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The intensity of the electrical field E
r

 is calculated from the local Ohm's 

law for a given discharge current intensity:  
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where R and g have the meaning from fig. 1. This is the self-consistency 
relationship. 

3. Results 

The spot radius was calculated according to the model presented in [7]. 
For solving the equations (1) and (2) the following boundary conditions 

were used: 
The hot-spot domain and the end part of the electrode were described by the 

Dirichlet conditions: KThs 3683=  (based on pictures taken with a large focal 
distance microscope or with CCD cameras [9] which have shown the local 
melting of tungsten) and KTend 600=  (imposed by the designer).  

A Neumann condition similar to [10 - 12] was imposed for the rest of the 
border: 
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where bT  is the border temperature, ζ  is the convection transport coefficient and 
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∂  is the normal direction ( nr ) derivative to the surface.  

The ambient temperature was considered KTamb 300= , and we took 
1225 −−= KWmζ  for the convection transport coefficient. The thermal 

conductivity and heat emissivity temperature dependencies were taken from the 
literature. 

We used the Multiphysics module of the FEMLAB software in order to 
solve the equation (1) coupled with equation (2) under given boundary conditions.  

FEMLAB is a powerful, interactive environment for modeling and solving 
scientific and engineering problems based on partial differential equations 
(PDEs).  

To reduce the runtime, we started with a given temperature distribution and 
run the equation (2). The result counted as initial data to run equation (1). The 
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new result counted as new initial data for equation (2) and so on. After several 
separate run sessions, the equations were coupled and run together, thus reducing 
the total runtime. 

Figure 2 shows several results on the distribution of the temperature in 
logarithmic scale and also longitudinal cross-section details trough the "hot-spot". 

 
Fig. 2. Temperature distribution inside an electrode during the "hot-spot" mode. Logarithm of the 

temperature (a), and longitudinal slice detail trough hot-spot (b) 
 
The equation (5) coupled with equation (9), with the boundary conditions 

were solved using Macsyma Font End (PDE's - Partial Differential Equations). 
The electrodes-plasma interface borders were taken from the results of the 
preceding electrode model.  

Figure 3 show the grid used at a given time and final temperature 
distribution.  
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4. Conclusions 

Using specialized algorithms for solving coupled equations of plasma 
physics is proved to be an efficient and performing tool. Instead of using Fortran 
language or an algorithm developed in MatLab or Mathematica software, 
specialized languages developed by IT research groups can be used. So, the 
FemLab (Finite Element Laboratory) software developed by Comsol - Sweden, 
Macsyma Font End - PDE's (Partial Differential Equations) - US or very 
specialized languages created by plasma physics research people, like the 
PlaSiMo (Plasma Simulation Model) from the Eindhoven University - The 
Netherlands, represent several powerful instruments to solve complicated 
problems. 

All these software are based on the finite element method (FEM) in order to 
solve partial differential equations (PDEs) of mathematical physics. 

Also, the use of this specialized software, with some self-consistency 
restrictions, eliminates the errors due to the numerical diffusion and allows us to 
get results which are subsequently confirmed by experiments. 
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