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WEIBULL STATISTICS APPLICATION TO THE LOW
CYCLE FATIGUE TEST
OF ZIRCALOY-4

Vladimir-Alexandru PAUN', Viorel-Puiu PAUN?

The two parameters Weibull law for the analysis of the cycle fatigue tests
has been adapted. Also it has been realized the Weibull probabilistic network. Using
this method, the results of the low cycle fatigue tests on Zircaloy-4 specimens were
interpreted.

Keywords: Weibull distribution, cycle fatigue, failure rate, reliability, Zircaloy-4.
1. Introduction

In the physics of materials, or generally in materials science, the fatigue
terminology represents the material debilitation into continuous process produced
by action of repeatedly applied loads. More precisely, if a material is subjected to
cyclic loading procedure, in its structure the progressive and localized structural
damage will be produced. In other words, fatigue occurs when a material is
subject to repeated loading/unloading succession.

Experimental study of special alloys behavior in the low-cycle fatigue test
was traditionally performed for certain amongst them, which were used in
manufacturing of pressure vessels, thin-walled tubes loaded and subject to high
hydrostatic pressure, that are exposed in their lifetime service to a heat source/sink
which induces thermal expansion or thermal stress to the structure.

The associated characteristics of “Low Cycle Fatigue” are the moderate
time event per test, samples moderate deformation and fracture dependence on
time/temperature. It can also be said that, for this mechanical model, the stress
level usually remains into plastic range.

From the initial utilizations offered by W. Weibull himself regarding
problems and tests concerning the resistance of materials, later time behavior of
electronic tubes, in the last period the Weibull statistics method has found
countless applications in other fields. Amongst them we can enumerate the
protection of environment against pollution, the control of products reception
found in a quality assurance system, as well as chemistry and medicine
applications. The advantages of this procedure reside in its relatively simple
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analytical form, in its elastic structure, offered by the existence of two or three
parameters and in the ease of getting the conclusions. Differing from the classical
exponential model, in this method we cannot impose anymore the hypothesis of
constancy in time and the superior number of parameters raises the fidelity degree
in describing complex processes.

As known from literature, the Weibull model has several forms, which are
equivalent to each other [1-3]. We have chosen one of them, which is more
suitable for our requirements.

We shall present, briefly enough, the Weibull model, which will be used to
the results interpretation of the “Low Cycle Fatigue” test for samples of Zircaloy-
4 sheets at 300 °C. In particular, we remind the reader that this material has been
tested extensively by one of the authors, and the results have already been
published [4, 5].

2. The Weibull statistics — normal form

In this paper, we will take a closer look at a specific distribution that is
widely used in life data analysis, the well-known Weibull distribution. So called
for its inventor, Waloddi Weibull, this distribution is widely used primarily in
reliability engineering and in other important fields due to its polyvalent nature,
multiple purpose and relative straightforwardness [2, 3].

The general expression of the frequency function of the “two parameters
Weibull law”, for x > 0 is

f(z, ﬂjzg(z]ﬂ"e—(;f 0

o0 o\6
or
f(x)=0£ﬂxﬁ"le[9x] , )

where the Greek lowercase @, respectively f are two parameters requested by
definition [1, 2]. In particular, if S > 0, it is named the shape parameter and if
6 > 0, it is named the scale parameter.
In mathematical language, f(x)is the probability density function.
According to common perception, the Weibull shape parameter is
assimilated as the Weibull slope. This is based on the fact that the value of £ is

equal to the slope of the line in a probability plot.
The banal graphic representations - see Figures 1 and 2 - demonstrate the
separate effect of the scale parameter @ (teta) or the shape parameter £ (beta), on

the Weibull distribution.
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Fig. 1. Effect of the scale parameter
The distribution function for this model is
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A simple calculation leads to the expression

. 0,x<0
F ) = x
X(Q ﬂj l—e_[‘gjﬂ,x>

In continuation, the form

©)
0

Rx(%, ﬂ’j —1- F(f , ﬂj - ef[g) (6)

%

represents the probability that the event will take place in the time interval (0,x)
or, as it is often said in the theory of reliability, the probability of functioning
without losses/failure in a given time. Another denomination of the function
provided above is the cumulative distribution function

X

F(x)zl—e_[gj ,x>0.

(7

The inverse cumulative distribution function is
I(F(x)) = 0(=In(1- F(x))"” . (®)
The principal statistical properties of the Weibull distribution such as the
“mean”, the “median”, the “mode” and the “standard deviation” o, are given by

the next formulae:
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. Mean:¢9~l“(1+l)
B
»  Median=6(In2)"”

»  Mode (when > 1)=6(1- %)uﬁ
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L] =0 - |T'l+—)—-|T'd+—
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The gamma function, present in the above expressions, is defined as

I'(n)= Te"‘x""ldx 9)

3. The Zircaloy-4 samples rupture by “Low Cycle Fatigue” test

There are three commonly recognized forms of fatigue. They were given
the names "high cycle fatigue (HCF)", "low cycle fatigue (LCF)" and "thermal
mechanical fatigue (TMF)". The essential distinction between HCF and LCF is
the region of the stress-strain curve where the repetitive application of load (and
resultant deformation or strain) is occurring.

Finite or Infinite Fatigue Life, that is the question! In the case of HCF
experiment, either infinite fatigue or finite fatigue life is possible and can be
analyzed. Conversely, for LCF experiment, only finite fatigue life is possible and
should be analyzed using LCF-criteria.

As terminology, we mention that the "American Society for Testing and
Materials" (ASTM) defines fatigue life, as the number of stress cycles of a
specified character that a specimen sustains before failure of a specified nature
occurs. By virtue of a full understanding of the text peculiarity, in all notations,
terminology and measurements, the names involved with their definitions used are
in compliance with ASTM A370 — 15, surnamed ‘“Standard Test Methods and
Definitions for Mechanical Testing of Steel Products”.

Another important question relates to whether the technical option is for
Stress or Strain test type, respectively.

In the HCF model, we have elastic material and a small strain increment
involves a large stress increment. By comparison, in the LCF model, we have
stresses close to (or at) the yield limit. The small stress increment involves large
strain increment. Best “resolution” is obtained if strains are employed in the
fatigue model [6, 7].
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In our paper, the cyclic temperature rupture tests were conducted on a
special alloy (known for its applications in nuclear power plants), named
Zircaloy-4 (Zy-4) [4, 5, 8]. The specimens were subject to a constant load and
different types of temperature cycles, but for this study only the fixed 300 °C
value is considered. The size of the microsamples and method of heating were
such that thermal stresses were considered to be negligible.

Weibull is the one who established, by interpreting the results of a cycling
test, that the percentage S of a group of samples standing to N cycles, for a given
loading and under established constant experimental conditions is given by the
relation

VY
S = e_[VO] . (19)
where Ny is a certain constant which features the endurance characteristics of the

material taken into consideration. It is easier to deal with the rupture fraction F,
which can be obtained from the fraction S, of the “surviving” samples, i.e.

N
F=1—S=1—e[N0] : (i

As it can be easily noticed, the equation (11) is similar to (7), for x > 0,
where N plays the role of the variable x.

Further on, we present the application of these results to the “Low Cycle
Fatigue” test [6]. For tests made at the same load, let us consider 10 experiments,
the rupture appearing after N;, N,,..., Njg cycles. We arrange the number of cycles
in a crescent order, as shown in Table 2, in the next chapter.

In order to find the weight, we use an estimation of the distribution
function, of the form:

F =100(1—o.5)l. (12)
n

4. Weibull probabilistic network

Practically, the parameters estimation of the Weibull distribution can be
made analytically or graphically via probability plotting paper, named Weibull
paper. In analytical manner we obtain the same results, using either least squares
algorithm (rank regression) or maximum likelihood estimation (MLE) [9, 10].

Starting from the function F(x), expressed by equation (7), after applying
twice the logarithm we get, step by step:

(=Y p
In(1- F(x))=1Ine [9] = —[%) (13, 2)
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B
—In(l- F(x)) = (%) : (13,b)
or after decimal logs in both sides
B
1g[—1n(1—F<x>)]=1g(§] =ples. (13, 0)
Immediately, noting the left-hand side member with y, we have
X
y=1g[—1n(1—F(X))]=ﬂ1g5 (13, d)
and equation (13, d) becomes
y=p(gx-1g0). (14)
Taking into discussion for second time the equation (13, b), we have relationships
[~In(1— F(x))]"/ = (gj (15, )
and
x=0[-In(1-F(x)]"”, (15, b)

or taking decimal logs on both sides
lgx = 1g{f[~In(1- F(x))]""1} . (15, ¢)

At the end of calculation, noting the left-hand side member with z, we
have

z=1gx=lg9+%lg[—ln(1—F(x))] (15, d)

Thus z=1gx when plotted against Ig[—In(1—-F(x))] should follow a
straight line pattern with intercept a =1gé and slope b=1/f. Ultimately, the
parameter values € =10“and #=1/b are obtained.

Plotting y against lgx as is usually done in a Weibull plot, one should see
the following linear relationship (14) with slope B =/ and intercept 4 =—-1g6.
Through a simple calculation, the values #=B and 6 =10""'? are obtained.

Remarks. In many books the parameter € is called the scale parameter or
characteristic life. The latter specified appellation is motivated by the evident
property F(€) =1—-exp(-8/60)=1— exp(— 1) =0.632, regardless of the shape
parameter . There are different manners for estimating the parameters 6 and .
One of the simplest is through the method of Weibull plotting, which used to be
very popular due to its simplicity, graphical appeal, and its informal check on the
Weibull model assumption. As immediately observed, according to the same
reasons, we resorted here to this method.
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Weibull paper scales
The Weibull p-quantile x, is defined by the following property

[

szX(xp)zP(XSxp)zl—e[ ) xe(0)]). (16)

In this short presentation, the results are due to the power transformation

property of the Weibull distribution function.
Let be a coherent notation X = F,(0,/x)=F(0,5), where X has a

Weibull distribution with parameters 6 and £ . The mention made allows us to
write that X = X“ =~ F(0*,8/a)=F(0,5) .
Certainly, it is a correct wording in virtue of next formal demonstrations
P(X <x)=P(X“<x)=P(X <x")=

L e ey (17)
l—e{ajﬁ:l—e["”jﬂ =1—e_[ ]/

0
At this point we say that we can adjust parameter values, obviously. Even
more, it is possible to bring the scale up or down (but mainly down), for an ideal
situation of data representation, respectively into the proper range by an

appropriate power transformation. After estimating (6,4) one can easily

transform back to (8, ) using the known value @, namely 6 =(6)"“and S = af .

A development of the subject, for complete samples and for the Weibull
special kind of censoring known as type Il censoring, can be read in the study of
Fritz Scholz, titled “Weibull Probability Paper” (2008), freely available on
Internet.

One example to determine the adequate scale of Weibull probability paper
is shown below, for a complete sample of size n = 10, see Table 2.

The value of the function y linearly depends on lg x, whence we obtain one
of the principles on which the logarithmic paper relies: on the horizontal axis we
build the logarithmic scale according to equationS, =k lgx, where k. is the

proportionality factor. From equation (14) we can also establish the size of the
form parameter £ . If we take x=1, then we get y, =—f1g@ andS, =k, 1g0.

Fory =Ig[-In(1- F(x))], corresponding to consecrate values set
Fnax=0.999, respectively Fniz=0.001, we quickly compute y . andy,. ., extreme
values of the border. Afterwards, based on the values y ., =-2.99 and
Youx = 0.83, a simple calculus leads to Ay =y, — .., =0.83—(-2.99) =3.82.

Further, by analogy, on the vertical axis we build the linear scale
according to equation S, =k y, where k, is the proportionality factor.
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We have thus established the modulus of the ordinates scale
S,(F)=(H/Ay)y=(H/3.82)y, where H is the length of the probabilistic

network in millimeters. In the above indicate example H =100 (see Fig. 4) and
find the ordinates scale modulus S (F)=(100/3.82)y =26.17y.

The drawing of the network was facilitated by using computational
software, developed by the authors.

5. Results and discussion

In the real world of engineering, the Weibull statistics, a mathematical tool
for processing experimental results [11, 12], is so powerful that the Weibull
Analysis is surnamed the Life Data Analysis.

The main goals of this paper are to apply a Weibull model to the Zircaloy-
4 thin-walled tubes reliability analysis, and then explore the failure rate over
service time.

Even more, in our study we disseminate and comment the results of the
low cycle fatigue test at 300 °C, on Zircaloy-4 microsamples. The experimental
results of the fatigue fracture tests are presented in Tables 1 and 2.

The strain amplitude &, (or total strain) can be written ase, =& +¢&”,
while the strain elastic amplitude is & (or total elastic strain) and the strain

plastic amplitude is &” " (or total plastic strain).

The fatigue life in the plastic deformation regime can be approximated by
experimental classic formula

-0.6
N
e’ =051—1| . 18
eos (Y] v

In fact, this empirical rule is the Coffin — Manson relationship [13, 14], in
the plastic behaviour part of material. In equation (18), N is the number of load
cycles to failure and D is the ductility, in accordance with the theory and notations
of Table 1. In context of mechanical testing, the ductility is defined as

A
D= ln(A—O) xE,, (19)
fra

where ¢, is the fracture strain amplitude, Ay is the value of initial transversal

fra
surface area (or cross-sectional area) and A, is the final transversal surface area,
named fracture transversal surface area of microsample.

Observation. Low-cycle fatigue is usually characterized by the Coffin-
Manson relation (published independently by L. F. Coffin in 1954 and S. S.
Manson in 1953). Similar relationships for materials such as Zirconium and its

alloys (Zircaloy-2, Zircaloy-4, used in the nuclear industry) [14] are already
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published. We felt the need to give a thorough explanation because we opted for
material rule introduced above and its verification.

Table 1
Low cycle fatigue test on Zircaloy-4 microsamples at 300 °C
2
Curvature | Number of g, & x 10 g N

radii samples (%) (s %) cycles N/ID
38 5.44 1.8 5.25 459 169

42 5.41 1.8 5.22 593 218

47 5.08 1.7 4.89 691 254

48 5.06 1.7 4.87 577 212

4 49 5.26 1.7 5.07 540 198
67 5.62 1.9 543 515 189

66 5.81 1.9 5.62 406 149

61 5.74 1.9 5.55 700 257

64 5.58 1.9 5.39 555 204

59 5.71 1.9 5.52 604 222

31 3.58 1.2 3.40 742 273

44 3.42 1.1 3.24 647 238

46 3.40 1.1 3.22 868 319

50 3.25 1.1 3.07 551 202

6.5 35 3.21 1.1 3.03 748 275
' 45 3.31 1.1 3.13 625 229
56 3.69 1.2 3.51 679 250

57 3.55 1.2 3.37 539 197

55 3.77 1.2 3.59 405 149

58 3.61 1.2 3.43 585 219

51 2.68 0.9 2.51 975 358

41 2.62 0.9 2.45 698 257

36 2.71 0.9 2.54 797 293

37 2.73 0.9 2.56 1209 444

g 43 2.60 0.9 2.43 739 272
60 2.82 0.9 2.65 831 305

63 2.82 0.9 2.65 703 258

69 3.06 1.0 2.88 649 238

65 3.04 1.0 2.86 371 136

68 3.29 1.1 3.03 968 356

We used results coming up from three cycling tests for samples strained at
different curvature radii, at 300 °C, namely the number of cycles at which the
samples broke down.

By putting these numbers under the form of an increasing order row and
taking into account the weight, we got Table 2, while Table 1 shows also other
data, representing the basis which the formalism we have built relies on.
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Strain amplitude «f' = 0.5+ (3}

Number of the cycles in a crescent order
Foo | N peg | R=6.5 | R=8
(%) | cycles )
6.70 10 406 | 405 371
16.23 20 459 536 649

25.86 30 516 551 698

35.51 40 540 585 703

45.17 50 555 625 739

54.83 60 577 | 647 797

64.49 70 598 679 831

74.14 80 604 | 742 968
83.77 | 90 691 | 748 | 975

93.30 | 100 | 700 | 868 | 1209

Strain amplitude
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Fig. 3. The dependence of plastic strain amplitude 85 " on the ratio (N/D)

Table 2

In Fig. 3 the plastic strain amplitude &”' depending on the ratio (N / D)

(number of load cycles to failure N and ductility D) through both experimental
values (Table 1) and the classical empirical curve from equation (18), are plotted.
As shown, the experimental data (colored points) is above the classical curve
(continuous full curve), which makes us say that it is not verified (valid) for the
material tested, respectively Zy-4.

Although it did not give the expected results, this task has been
accomplished to show that the only powerful tool in processing experimental
results of a low cycle fatigue test is Weibull Analysis, successfully used in our

study.
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Fig. 4. Weibull probabilistic network

By means of the probabilistic network, we represented the experimental
data. From the corresponding curves (in fact straight lines) we got the values of
parameters, as depicted in Figure 4.

Thus, from g, €{2.6,2.7,2.9} in all three cases we have the formula

[ N ]ﬂi

F(N)=1-e ™/ |i=123,

and N, € {560,630,810}, or N,, =560, N, =630, N,, =810.
This way we can estimate the rupture function F. This function, assuming

that N is a “continuous” variable and passing to x, helps us in computing the

statistical properties, namely to get a better statistical interpretation of the results.
Taking into account the statements made before, the rupture function has

now the expression

(20)

7(£']ﬂi
F(x)=1-e % ,i=123,
where the scale parameter has the values 6, =560, 6, =630, 6,, =810 and the

21)

shape parameter successively gets the values £, =2.6, §,, =2.7, f,, =2.9.
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The reconstruction of experimental Weibull distribution, in all three cases,
for f, €{2.6,2.7,2.9} and 6,, € {560,630,810} , is presented in Fig. 5.

0.0020 . Weibull Distribution

— 3=2.G, =060
— 3=2.T7, =030

— 3=2.9, =810

0.0015 |

= 0.0010F

flz)

0.0005 |
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T

Fig. 5. The reconstruction of experimental Weibull distribution
Table 3
Weibull statistical properties

6 | B, | Mean | Median | Mode o

560 | 2.6 | 497.39 | 486.37 | 464.61 6.72
630 | 2.7 | 560.24 | 550.03 | 530.79 6.81
810 | 2.9 | 722.26 | 713.83 | 700.09 7.01

The Weibull statistical properties are presented in Table 3.

In this chapter, we have explained the Weibull law plotting and its
motivation, in rapport with reliability data. It also shows that the two Weibull
parameter estimates are easily read from the Weibull paper, in the manner used
here (see the Weibull probabilistic network - Fig. 4).

After all these experimental results have been properly processed, we may
say the goals targeted ab initio were fully achieved. Moreover, they are in good
agreement with situations reported in the scientific literature.
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On the other hand, in the near future, we will propose a new perspective
on the physical processes involved in the material fracture, so that we can
maximize the fracture time period until tear depending on the parameters
involved. The same concept has been successfully used in articles [15, 16], for
seemingly distinct topics, but mathematically united under a common philosophy.

Finally, we can assume that a reader uninformed in the field, but also the
specialist in training or new to this area got a better understanding of the fatigue
major problems and how fatigue life is practically determined. In counterpart, for
specialists (physicists, engineers, statisticians and computer scientists), with
expertise of Materials Behavior or Life Prediction, it is hoped that some of this
information has been helpful as well.

6. Conclusions

In this paper, the results of the low cycle fatigue tests, on the standard
specimens sampled from Zircaloy-4 tubes, were interpreted.

As a first observation, we can say that the experimental data is far from the
classical curve, which makes us declare that for Zircaloy-4, the empirical relation
(18) is not verified.

The Weibull law with two parameters is applied to fit real reliability data
in different test conditions.

Inter alia, this article explains and builds the Weibull plotting and provides
its mathematical support. In addition, it shows how the two Weibull parameter
estimates are easily read from the Weibull plot.

The analysis results of the low cycle fatigue test on Zircaloy-4
microsamples, are in good agreement with real test data, and provide reasonable
prediction of future failure trends.
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