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STATISTICAL TEXTURE ANALYSIS OF ROAD FOR 
MOVING OBJECTIVES 

Dan POPESCU1, Radu DOBRESCU2, Nicoleta ANGELESCU3 

Obiectivul articolului este acela de a identifica şi de a localiza regiunile 
importante din imaginile cu textură pentru navigaţia obiectivelor mobile. Sunt 
analizate două tipuri de trăsături. Primul tip sunt histogramele şi densităţile de 
pixeli de contur. Trăsăturile de al doilea tip derivă din matricele de co-ocurenţă 
medii, noţiune ce a fost introdusă de autori. Algoritmii au fost implementaţi în 
MATLAB. Asfaltul este considerat textură de urmărit (referinţa) iar pietrişul şi iarba 
sunt considerate texturi de evitat. Rezultatele experimentale au reliefat faptul că 
trăsăturile ce derivă din matricele de coocurenţă medii prezintă putere de 
discriminare mare, atât pentru clasificarea, cât şi pentru localizarea regiunilor.  

The paper objective is to identify and localize significant regions in textured 
images for navigating an autonomous agent. Two types of statistic texture features 
are used. The first type features are the histograms, and the edge density. The 
second type features derive from the medium co-occurrence matrices, which is a 
notion introduced by the authors. The algorithms are implemented in MATLAB. The 
basic texture is considered the asphalt and the different textures are considered the 
grass and the pebble. The experimental results indicate that the features, which 
derive from medium co-occurrence matrices, have a good discriminating power 
both for texture classification and region localization.  

Keywords: texture, statistic features, medium co-occurrence matrix, edge 
densities, grey level histogram 

1. Introduction 

Image texture, defined as a function of the spatial variation in pixel 
intensities (gray values), is useful in a variety of applications and has been a 
subject of intense study by many researchers. It is very hard to define rigorously 
the texture into an image. The texture can be considered like a structure which is 
composed of many similar elements (patterns) named textons or texels, in some 
regular or continual relationship. Texture analysis has been studied using various 
approaches, like statistical type (characteristics associable with grey level 
histogram, grey level image difference histogram, grey level co-occurrence 
matrices and the features extracted from them, autocorrelation based features, 
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power spectrum, edge density per unit of area, etc.), fractal type (box counting 
fractal dimension), and structural type. In the last case, the textures are composed 
of primitives, and an image description is produced by the placement of these 
primitives according to certain placement rules. The structural approach is 
suitable to analyze textures with more regularity in the placement of texture 
elements. The statistical approach utilizes features to characterize the stochastic 
properties of grey level distribution in the image. 

There are two important categories of problems that texture analysis 
research attempts to solve: texture segmentation and texture classification. 
Another problem, texture synthesis is often used for image compression 
application. The process, called texture segmentation, consists of similar texture 
region identification and different texture region separation. Texture classification 
involves deciding what texture class an observed image belongs to. Thus, one 
needs to have an a priori knowledge of the classes to be recognized. The major 
focus of this paper is the route analysis for moving objectives, based on statistical 
features (especially derived from medium co-occurrence matrix).  

For the purpose of algorithm validation, two experimental studies have 
been conducted. The first study is focused on region classification and localization 
of textured images composed of asphalt and pebble (Fig. 1, Image I1), and the 
second study is focused on route identification and localization form textured 
images composed of asphalt and grass (Fig. 1, Image I2).  
 

 
Fig. 1. Analyzed images I1 and I2. 

With this end in view, the whole image is partitioned in sixteen equivalent 
regions (Fig. 2). Different textured regions are compared, based on minimum 
distance between measured features, which are derived from medium co-
occurrence matrices (contrast, energy, entropy, homogeneity, and variance). Other 
texture features, like grey level histograms or contour pixel densities, are also 
discussed. Image region I1(1), which contains asphalt texture, is considered the 
reference texture template. If a region contains another texture or mixed textures, 
then it is a defect region. 
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The experimental results indicate that the five features selected from 

medium co-occurrence matrices have a good discriminating power, both in texture 
classification applications and in defect region detection and localization. 

2. Statistical methods to texture analysis 

The statistical approach to texture analysis is more useful than the 
structural one. The simplest statistical features, like the mean (1) and standard 
deviation (3), can be computed indirectly in terms of the image histogram h.   
Thus, 
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N = n1 n2 is the image dimension, and K is the number of grey levels. 
The shape of an image histogram provides many clues to characterize the 

image, but sometimes it is inadequate to discriminate textures (it is not possible to 
indicate local intensity differences). 

Another simple statistic features is the edge density per unit of area, Dene 
(4). The density of edges, detected by a local binary edge detector, can be used to 
distinguish between fine and coarse texture, like in Fig.3. Dene can be evaluated 
by the ratio between the pixel number of extracted edges (which must be tinned – 
one pixel thickness) and image area (pixel number of image region):  
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In (4), Ne represents the number of edge pixels (tinned edges, with one pixel 
thickness) and A is the region area.  

Fig.2. Sixteen regions image partition. 
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In order to characterize textured images, connected pixels must be 
analyzed. For this reason, correlation function (5), difference image (6) in certain 
direction d = (Δx, Δy), and co-occurrence matrices (9), must be considered:  
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Id(x,y) = I(x,y) – I(x+Δx , y+Δy)                                  (6) 

 

From the histogram of the difference image hd, one can extract the mean       
(7) and standard deviation (8): 
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The most powerful statistical method for textured image analysis is based 
on features extracted from the Grey-Level Co-occurrence Matrix (GLCM), 
proposed by Haralick in 1973 [1]. GLCM is a second order statistical measure of 
image variation and it gives the joint probability of occurrence of grey levels of 
two pixels, separated spatially by a fixed vector distance d = (Δx, Δy). Smooth 
texture gives co-occurrence matrix with high values along diagonals for small d. 
The range of grey level values within a given image determines the dimensions of 
a co-occurrence matrix. Thus, 4 bits grey level images give 16x16 co-occurrence 
matrices. The elements of a co-occurrence matrix Cd depend upon displacement 
d=(Δx, Δy): 

Cd (i,j) = Card{((x,y),(t,v))/I(x,y) = i, I(t,v) = j, 

 (x,y), (t,v) ∈N x N, (t,v) = (x+ Δ x, y+ Δ y)}                      (9) 

From a co-occurrence matrix Cd one can draw out some important 
statistical features for texture classification. These features, which have a good 
discriminating power, were proposed by Haralick: contrast (11), energy (12), 
entropy (13), homogeneity (14), variance (15). The contrast measures the 
coarseness of texture. Large values of contrast correspond to large local variation 
of the grey level. The entropy measures the degree of disorder or non-
homogeneity. Large values of entropy correspond to uniform GLCM. The energy 
is a measure of homogeneity.  
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3. Local features derived from mean co-occurrence matrix 

For each pixel we consider increasing (2d+1)x(2d+1) symmetric 
neighborhoods, d = 1, 2, 3,...,15. Inside each neighborhood there are 8 principal 
directions: 1, 2, 3, 4, 5, 6, 7, 8 (Fig. 3) and we evaluated the co-occurrence 
matrices Cd,k corresponding to vector distances determined by the central point 
and the neighborhood edge point in the k direction (k = 1,2,...,8). With a view to 
obtain statistical feature insensitive relatively to texture rotate, we introduce the 
mean co-occurrence matrix notion. For each neighborhood type, the mean co-
occurrence matrix Cdm is calculated by averaging the eight co-occurrence matrices 
(10):  

Cdm =1/8(Cd,1+Cd,2+Cd,3+Cd,4+Cd,5+Cd,6+Cd,7 Cd,8),  d=1,2,...,10           (10) 

Thus, for 3x3 neighborhood, d = 1; for 5x5 neighborhood, d = 2; for 7x7 
neighborhood, d = 3; for 9x9 neighborhood, d = 4, and so on. 

                                                            
Fig.3. The principal directions for co-occurrence matrix calculus. 

 

In order to quantify the spatial dependence of the gray level values from 
the average co-occurrence matrices Cdm, d = 1, 2,..., 10, it is necessary to compute 
various textural features like Contrast – Cond – (11), Energy – Ened – (12), 
Entropy – Entd – (13), Homogeneity – Omod – (14) and Variance – Vard – (15). 
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In the preceding relations, LxL represents the dimension of co-occurrence 
matrices. 

4. Experimental Results for Texture Classification and Route 
Identification by Statistical Features 

 For algorithm testing and program validation we used two textured images I1 
and I2  (Fig. 1), each partitioned into sixteen regions Ii(1), Ii(2),. . . , Ii(15), Ii(16), 
i=1,2. The considered regions have 128 x 128 pixels, and 16 grey levels.  

 

 
Fig. 4. Selected regions from I1 and I2. 

 

From these images we chosen five regions for I1 image: I1(1) – reference 
texture, asphalt; I1(5) – tested region, asphalt; I1(4) – tested region, pebble; I1(8) – 
tested region, pebble I1(3) – tested region, asphalt and pebble, and three regions 
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for I2  image: I2(4) – tested region, grass; I2(8) – tested region, grass; I2(3) – tested 
region, asphalt and grass (Fig. 4).    

Firstly, the analysis of the simple grey level histograms (Fig. 5) 
demonstrates that the regions can be discriminated with the aid of the vectors of 
the histogram values. The distance between the histogram vectors of the regions 
I1(1) and I1(5) is smaller than the distance between the histogram vectors of the 
regions I1(1) and I1(3) or between the histogram vectors of the regions I1(1) and 
I2(3). 

 
Fig.5. Grey level histogram 

It was also tested the efficiency of the grey level image difference 
histogram in texture classification and defect region detection. With that end in 
view, we have considered the same images I1(1), I1(5), I1(3), I2(3). The image 
difference histograms in the displacement x = 10, y = 10 are presented in Fig. 6. In 
the graphical histogram representation, the value for gray level 0 is too high and 
irrelevant comparing with the others. Therefore it is neglected. One can observe 
that the difference image histogram has a better behavior referring to texture 
classification than to defect region detection and localization.  
 

 
Fig.6. Grey level difference histogram 

Secondly, supposing that the histograms are not so different, another set of 
statistical texture features makes possible the region classification. Thus, we can 
consider the co-occurrence matrices and the features derived from them. Textural 
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features like Cond, Ened, Entd, Omod, and Vard are calculated from average co-
occurrence matrices for different distances d. The normalized results are presented 
in Table 1, for d = 10. The normalized characteristics are necessary because the 
ranges of initial characteristics can differ too much for efficient Euclidian distance 
calculation. 

For the purpose of the evaluation of the discriminating power of the 
selected features, we have calculated the Euclidian distances between regions with 
similar texture:, D{I1(1),I1(5)}, and  the Euclidian distances between regions with 
different textures: D{I1(1),I1(4)}, D{I1(1),I1(3)}, D{I1(1),I2(4)}, D{I1(1),I2(3)}. 

Table 1 

  Statistical texture features for d = 10 
Region
Index Ent Ene Con Omo Var 

I1(1) 2.017 4.976 0.324 1.320 2.391 
I1(3) 1.693 1.005 1.547 0.973 1.596 
I1(4) 1.706 0.843 1.699 0.861 1.150 
I1(5) 2.013 4.876 0.325 1.323 2.420 
I2(3) 1.849 1.542 0.898 1.186 1.691 
I2(4) 1.867 1.543 1.183 1.072 1.104 
I2(8) 1.847 1.327 1.279 1.032 1.102 

 The Euclidian distance D{I1, I2} between two images I1 and I2, which are 
characterized by the feature vectors [C1,E1,Et1,O1,V1]T and [C2,E2,Et2,O2,V2]T, is 
expressed by the following relation: 
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where: C = Con, E = Ene, Et = Ent, O = Omo, V = Var. The results of the 
mentioned distances calculus are presented in Table 2. 
 

Table 2 

 Euclidian distances between template I1(1) and different regions 
d D{I1(1),I1(5)} D{I1(1),I1(4)} D{I1(1),I1(3)} D{I1(1),I2(4)} D{I1(1),I2(3)} 

5 0.120 5.050 4.629 4.001 3.773 

10 0.105 4.563 4.257 3.577 3.448 

15 0.121 4.117 3.919 3.183 3.104 
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  One can observe that the distances between two different regions, like 
D{I1(1),I1(4)}, D{I1(1),I1(3)},D{I1(1),I2(4)},D{I1(1),I2(3)},are greater than the 
distances between two similar regions, like D{I1(1),I1(5)}. In order to evaluate the 
efficiency of the presented algorithm, we analyzed the most unfavorable cases, 
namely the minimum distance between two regions coming from different 
textures, and the maximum distance between two regions coming from the same 
texture. Thus, the minimum value for dissimilar textures, 

min{D{I1(1),I1(3),D{I1(1),I1(4)},D{I1(1),I2(4)},D{I1(1),I2(3)}} = 3.104, 

is greater than the maximum value for similar textures,  

max{D{I1(1),I1(5)}} = 0.121, 

in the large neighborhood case (d = 5,10,15). To ameliorate the classification 
accuracy, a development of the recognition algorithm, consisting in the 
attachment of new textural features, like edge point density per unit of area, is 
analyzed. Thus, we considered an edge extraction algorithm, based on binary 
image and logical function [11], which gives tinned edges (Fig. 7).  

Unfortunately, the edge densities for the analyzed regions I1(5), I1(3), 
I1(4), I2(3), and I2(4) show that this feature has not a good discriminating power 
(Table 4). The combination with the previous second order type statistical features 
will give better results in texture classification. Another disadvantage of this 
algorithm is the dependence of the results on the threshold level for edge 
extraction. 

                                      
Fig. 10. Contour image for some regions. 

 
Table 4.  

Edge densities for some regions 
Region I1 (5) I1 (4) I1 (3) I2 (4) I2 (3) 
Dene 0.401 0.188 0.195 0.300 0.199 

 



Dan Popescu, Radu Dobrescu, Nicoleta Angelescu 84

5. Concluding remarks 

Because it is an average co-occurrence matrix, the presented algorithm is 
relatively insensitive to image translation and rotation. The results confirm that 
the statistic second order features, extracted from medium co-occurrence matrices, 
in the case d = 5, 10, 15, offer a good discriminating power both in the texture 
identification process and in the defect region detection and identification. The 
main application of the algorithm consists in road (asphalt) identification and 
defect region detection (pebble or grass) in textured images (like images from 
fixed camera or images from video camera of intelligent vehicles). The additional 
features, like difference image histograms and edge pixel density per unit of area, 
can increase the power of discrimination for texture identification and 
classification. The efficiency of the route following and defect region detection 
and localization depends upon the range of image partition. 
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