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ON A SPECIAL SYMMETRY IN THE DYNAMICS OF 

COMPLEX SYSTEMS IN A HOLOGRAPHIC-TYPE 

PERSPECTIVE 

Ștefana AGOP11, Maria-Alexandra PAUN2,3, Cătălin DUMITRAS4, Mihail 

FRASILA5, Vladimir-Alexandru PAUN6, Maricel AGOP 7,8,                         

Viorel-Puiu PAUN8,9, Gavril ȘTEFAN1 

By operating with the Scale Relativity Theory in the dynamics of complex 

systems, we can achieve a description of these complex systems through a 

holographic-type perspective. Then, gauge invariances of a Riccati-type become 

functional in complex system dynamics, which implies several consequences: 

conservation laws (in particular, for classical dynamics, the kinetic momentum 

conservation law), simultaneity and synchronization between the structural units (of 

a complex system) dynamics, and temporal patterns through harmonic mappings.  

Keywords: scale relativity theory, Schrödinger-type scenario, Madelung-type 

scenario, SL(2R) group, harmonic mappings 

1. Introduction 

If, in the dynamics of complex systems, we operate with the Scale Relativity 

Theory [1,2], the description of said complex systems can be achieved through a 

holographic-type perspective. Indeed, as long as, in such a framework, the 

description of dynamics is performed through continuous and non-differentiable 
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curves (fractal/multifractal curves), such a perspective becomes viable: the 

continuous and non-differentiable curves (fractal/multifractal curves) satisfy, in any 

one of their points, the self-similarity property (the part reflects the whole and the 

whole reflects the part – which would correspond to the holographic principle). 

Now, two scenarios in the description of complex system dynamics become 

operational: one scenario is explained through a Schrödinger-type 

fractal/multifractal equation (Schrödinger-type scenario) and another through the 

hydrodynamic-type fractal/multifractal equation system (Madelung-type scenario). 

The two scenarios for describing complex system dynamics are not 

mutually exclusive, moreover, they are complementary.  

Taking into account the fact that, in any of the scenarios, symmetries are 

highlighted, in the current paper, several symmetries will be explained only in the 

Schrödinger-type scenario and their consequences will be discussed. 

2. Conservation laws in complex systems dynamics as gauge 

invariances of a Riccati-type.  

It is a known fact that the dynamics of complex systems in the Scale 

Relativity Theory (SRT) [1,2] can be described through a Schrödinger type 

multifractal scenario explained through the differential equation (nonstationary 

multifractal Schrödinger equation) [3] 

𝜆2(𝑑𝑡)
[

4
𝑓(𝛼)

]−2
𝜕𝑙𝜕

𝑙Ψ + 𝑖𝜆(𝑑𝑡)
[

2
𝑓(𝛼)

]−1
𝜕𝑡Ψ = 0, (1) 

where 

𝜕𝑡 =
𝜕

𝜕𝑡
, 𝜕𝑙 =

𝜕

𝜕𝑥𝑙
 , 𝜕𝑙𝜕

𝑙 =
𝜕2

𝜕𝑥𝑙
2, (2) 

In the above relations Ψ is the states function, 𝑑𝑡 is the scale resolution, 𝑥𝑙 

is the multifractal spatial coordinate, 𝑡 is the non-multifractal temporal coordinate 

with the role of an affine parameter of the motion curves (it is mentioned that in 

SRT, the dynamics of the entities belonging to any complex system are described 

through continuous and non-differentiable curves – multifractal curves), 𝜆 is a 

parameter associated to the multifractal-non-multifractal scale transition, 𝑓(𝛼) is 

the singularity spectrum with a singularity index of order 𝛼 = 𝛼(𝐷𝐹) and 𝐷𝐹 is the 

fractal dimension of the motion curves [4,5].  

The nonstationary multifractal Schrödinger equation admits, besides the 

clasical Galilei group proper, an extra set of symmetries [6] that, in general 

conditions, can be taken in a form involving just one space dimension and time, as 

a SL(2,R) type group in two variables with three parameters [7]. Limiting the 

general conditions, the space dimension can be chosen as the radial coordinate in a 

free fall, as in the case of Galilei kinematics, which can also be extended as such in 

general relativity [8,9], for instance in the case of free fall in a Schwarzschild field.  
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The essentials of the argument of Alicia Herrero’s and Juan Antonio 

Morales’ work just cited are delineated based on the fact that the radial motion in a 

Minkowski spacetime should be a conformal Killing field, which is a three-

parameter realization of the SL(2R) algebra in time and the radial coordinate. This 

is a Riemannian manifold of the Bianchi type VIII (or even type IX, forcing the 

concepts a little) [10]. The bottom line here is that, as long as the general relativity 

is involved, the nonstationary Schrödinger equation describes the continuity of 

matter.  

And since, as a universal instrument of knowledge, the nonstationary 

multifractal Schrödinger equation is referring to free particles, we need to show 

what kind of freedom is this in classical terms. 

 For our current necessities it is best to start with the finite equations of the 

specific SL(2,R) group, and build gradually upon these [11,12], in order to discover 

the connotations we are seeking for. Working in the variables (𝑡, 𝑥) as above, the 

finite equations of this group are given by the transformations: 

𝑡 →
𝛼𝑡+𝛽

𝛾𝑡+𝛿
;  𝑥 →

𝑥

𝛾𝑡+𝛿
   (3) 

This transformation is a realization of the SL(2,R) structure in variables 

(t,x), with three essential parameters (one of the four constants , ,  and  is 

superfluous here). Every vector in the tangent space SL(2R) is a linear combination 

of three fundamental vectors, the infinitesimal generators: 

𝑋1 =
𝜕

𝜕𝑡
, 𝑋2 = 𝑡

𝜕

𝜕𝑡
+

𝑥

2

𝜕

𝜕𝑥
, 𝑋3 = 𝑡2

𝜕

𝜕𝑡
+ 𝑡𝑥

𝜕

𝜕𝑥
 (4) 

satisfying the basic structure equations: 

[𝑋1, 𝑋2] = 𝑋1, [𝑋2, 𝑋3] = 𝑋3, [𝑋3, 𝑋3] = −2𝑋2 (5) 

which we take as standard commutation relations for this type of algebraic structure, 

all along the present work. The group has an invariant function, which can be 

obtained as the solution of a partial differential equation: 
(𝑐𝑋1 + 2𝑏𝑋2 + 𝑎𝑋3)𝑓(𝑡, 𝑥) = 0 

 

(𝑎𝑡2 + 2𝑏𝑡 + 𝑐)
𝜕𝑓

𝜕𝑡
+ (𝑎𝑡 + 𝑏)𝑥

𝜕𝑓

𝜕𝑥
= 0 

(6) 

The general solution of this equation is a function of the constant values of 

the ratio: 

𝑥2

𝑎𝑡2 + 2𝑏𝑡 + 𝑐
 (7) 

which represents the different paths of transitivity of the action described by (4). 
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 In order to draw some proper conclusions from these mathematical facts, let 

us go back to the transformation (3) and consider it from the point of view of 

classical physics.  

First, comes the second of Kepler laws, viz. that law serving to Newton as 

a means to introduce the idea of a center of force: if, with respect to such a material 

point, a motion proceeds according to the second Kepler law, then the field of force 

should be Newtonian. The wave mechanics shows that this law means more than it 

was intended for initially, namely that it should have a statistical meaning, 

according to the idea of Planck’s quantization [11,12]. Indeed, if ‘x’ denotes the 

distance of the moving material point from the center of force, we have 

𝑥2𝑑𝜃 = 𝑎̇𝑑𝑡  𝑎̇
𝑑𝑡

𝑑𝜃
= 𝑥2 (8) 

where  is the central angle of the position vector of the moving material point with 

respect to the center of force. In this form the law usually serves as a transformation 

in the mathematical treatment the central motion. However, from the point of view 

of the physical content of time, the second equality in equation (8) tells us much 

more if we take the argument out of the mathematical form of the classical Kepler 

problem. 

In such a context, if it is considered that (7) is constant 

𝑥2

𝑎𝑡2 + 2𝑏𝑡 + 𝑐
= 𝐿 = 𝑐𝑜𝑛𝑠𝑡. (9) 

then from (7) and (8), through the substitutions  

𝑑𝑡

𝑑𝜃
= 𝑤̇,

𝐿𝑎𝑡2

𝑎̇
=

1

𝑀
𝑤2,

2𝐿𝑏𝑡

𝑎̇
= −2

𝑅

𝑀
𝑤,

𝐿𝑐

𝑎̇
= 𝐾 (10) 

the following Riccati-type differential equation is satisfied (i.e., we operate here 

with a Riccati-type gauge): 

𝑤̇ −
1

𝑀
𝑤2 + 2

𝑅

𝑀
𝑤 − 𝐾 = 0. (11) 

For obvious physical reasons, it is therefore important to find the most 

general solution of that equation. José Carineña et al. offer us a pass in short but 

modern and pertinent review of the integrability of Riccati's equation [13]. For our 

current needs it is enough to note that the complex numbers 

𝑤0 ≡ 𝑅 + 𝑖𝑀Ω,  𝑤0
∗ ≡ 𝑅 − 𝑖𝑀Ω;  Ω2 =

𝐾

𝑀
− (

𝑅

𝑀
)

2

 (12) 

roots of the quadratic polynomial on the right side of equation (11), are two 

solutions (constants, that's right) of the equation: being constants, their derivative 

is zero, being roots of the right-hand polynomial, it cancels. So, first we do the 

homographic transformation: 
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𝑧 =
𝑤 − 𝑤0

𝑤 − 𝑤0
∗ (13) 

and now it can easily be seen by direct calculation that 𝑧 is a solution of the linear 

and homogeneous equation of the first order 

𝑧̇ = 2𝑖Ω𝑧 ∴ 𝑧(𝑡) = 𝑧(0)𝑒2𝑖Ω𝑡. (14) 

Therefore, if we conveniently express the initial condition 𝑧(0), we can give 

the general solution of the equation (11) by simply inverting the transformation 

(13), with the result 

𝑤 =
𝑤0 + 𝑟𝑒2𝑖Ω(𝑡−𝑡𝑟)𝑤0

∗

1 + 𝑟𝑒2𝑖Ω(𝑡−𝑡𝑟)
 (15) 

where 𝑟 and 𝑡𝑟 are two real constants that characterize the solution. Using equation 

(12) we can put this solution in real terms, i.e. 

𝑧 = 𝑅 + 𝑀Ω (
2𝑟sin [2Ω(𝑡 − 𝑡𝑟)]

1 + 𝑟2 + 2𝑟cos [2Ω(𝑡 − 𝑡𝑟)]

+𝑖
1 − 𝑟2

1 + 𝑟2 + 2𝑟cos [2Ω(𝑡 − 𝑡𝑟)]
)

 (16) 

which highlights a frequency modulation through what we would call a Stoler 

transformation [11,12] which leads us to a complex form of this parameter. More 

than that, if we make the notation 

𝑟 ≡ coth 𝜏, (17) 

equation (16) becomes 

𝑧 = 𝑅 + 𝑀Ωℎ (18) 

where ℎ is given by 

ℎ = −𝑖
cosh 𝜏 − 𝑒−2𝑖Ω(𝑡−𝑡𝑚)sinh 𝜏

cosh 𝜏 + 𝑒−2𝑖Ω(𝑡−𝑡𝑚)sinh 𝜏
. (19) 

The meaning of this complex parameter will be clear a little later. For the 

moment, let's note that any dynamic process appears here as a frequency modulation 

process [13]. Moreover, by admitting a gauge invariance of a Riccati-type, in the 

Classical Theory of Motion, the kinetic momentum conservation law is obtained.  

3. Simultaneity in complex systems dynamics as gauge invariances of a 

Riccati-type  

 Consider an extended body revolving in a central field (for example of 

Newtonian forces). It can be imagined as a swarm of classical material points, and 
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such a swarm illustrates classical laws, provided it is considered as a swarm of free 

material points in the classical sense of the word [14]. In the first of equations (3) 

this requirement would mean that the material points are considered simultaneously 

[15]. Then each material point can be located in the swarm by four homogeneous 

coordinates (,,,), or three nonhomogeneous coordinates, if the equations (3) 

represent the content of time and radial coordinate for the space region covered by 

this body. The simultaneity in the motion of the swarm of material points can be 

differentially characterized, giving a Riccati equation in pure differentials: 

𝑑
𝛼𝑡 + 𝛽

𝛾𝑡 + 𝛿
= 0, 𝑑𝑡 = 𝜔1𝑡2 + 𝜔2𝑡 + 𝜔3 (20) 

Thus, for the description of the extended body in motion as a succession of 

states of the ensemble of simultaneous material points, it suffices to have three 

differential forms, representing a coframe of the SL(2R) algebra: 

𝜔1 =
𝛼𝑑𝛾 − 𝛾𝑑𝛼

𝛼𝛿 − 𝛽𝛾
; 𝜔2 =

𝛼𝑑𝛿 − 𝛿𝑑𝛼 + 𝛽𝑑𝛾 − 𝛾𝑑𝛽

𝛼𝛿 − 𝛽𝛾
; 𝜔3 =

𝛽𝑑𝛿 − 𝛿𝑑𝛽

𝛼𝛿 − 𝛽𝛾
 (21) 

That this coframe refers to such an algebra, can be checked by direct 

calculation of the Maurer-Cartan equations which are characteristic to this algebra: 

𝑑⋀𝜔1 − 𝜔1⋀𝜔2 = 0 

 

𝑑 ∧ 𝜔2 + 2(𝜔3 ∧ 𝜔1) = 0 

 

𝑑 ∧ 𝜔3 − 𝜔2 ∧ 𝜔3 = 0 

(22) 

Using these conditions one can prove that the right hand side of equation 

(9) is an exact differential [15], therefore it should always have an integral. The 

Cartan-Killing metric of this coframe is given by the quadratic form (2/2)2 – 13, 

so that a state of an extended orbiting body in the Kepler motion, can be organized 

as a metric phase space, a Riemannian three-dimensional space at that. The 

geodesics of this Riemannian space, are given by some conservation laws of 

equations 

𝜔1 = 𝑎1(𝑑𝜃); 𝜔2 = 2𝑎2(𝑑𝜃); 𝜔3 = 𝑎3(𝑑𝜃) (23) 

where a1,2,3 are constants and  is the affine parameter of the geodesics, so that, 

along these geodesics the differential equation (9) is an ordinary differential 

equation of Riccati type: 

𝑑𝑡

𝑑𝜃
= 𝑎1𝑡2 + 2𝑎2𝑡 + 𝑎3 (24) 

This equation can be identified with (8), provided its right hand side is 

proportional to the square of a ‘radial coordinate’ of a free classical material point. 

Mathematically this requires an ensemble generated by a harmonic mapping 

between the positions in space and the material points, with the square of the radial 



On a special symmetry in the dynamics of complex systems in a holographic-type perspective  183 

coordinate ‘x’ measuring the variance characterizing the distribution of material 

points in space. Following the same line of thought previously presented, a solution 

of the same type as (19) can be highlighted [16-20].  

4. Synchronization in complex systems dynamics as gauge invariances 

of a Riccati-type 

According to the meanings of the state function 𝛹 from the Scale Relativity 

Theory, a physical significance is only attached to the density of state 𝜌 = 𝛹𝛹̅. In 

such a context, if 𝛹 = 𝑎 + 𝑖𝑏, then the constant density of states can be localized 

inside the unity radius circle   

𝑥2 + 𝑦2 = 1 (25) 

where 

𝑎2

𝜌
= 𝑥2,

𝑏2

𝜌
= 𝑦2 (26) 

Now, the metric of the Lobachevsky plane can be produced as a Caylean 

metric of a Euclidean plane, for which the absoluteness is the circle (25). In this 

way, the Lobachevsky plane can be put into a biunivoc correspondence with the 

interior side of the circle. In such a conjecture, using the general procedure of 

metrization of a Caylean space, which implies the differential quadratic form 

[11,12]  

−
𝑑𝑠2

𝑘2
=

Ω(𝑑𝑋, 𝑑𝑋)

Ω(𝑋, 𝑋)
−

Ω2(𝑋, 𝑑𝑋)

Ω2(𝑋, 𝑋)
, (27) 

where 𝛺(𝑋, 𝑌)is the duplication of 𝛺(𝑋, 𝑋) and 𝑘 is a constant connected to the 

space curvature, it results: 

𝑑𝑠2

𝑘2
=

(1 − 𝑦2)𝑑𝑥2 + 2𝑥𝑦𝑑𝑥𝑑𝑦 + (1 − 𝑥2)𝑑𝑦2

(1 − 𝑥2 − 𝑦2)2
, (28) 

where 

Ω(𝑋, 𝑋) = 1 − 𝑥2 − 𝑦2 

Ω(𝑋, 𝑑𝑋) = −𝑥𝑑𝑥 − 𝑦𝑑𝑦 

Ω(𝑑𝑋, 𝑑𝑋) = −𝑑𝑥2 − 𝑑𝑦2 

(29) 

Now, performing the coordinate transformations 

𝑥 =
ℎℎ̅−1

ℎℎ̅+1
,             𝑦 =

ℎ+ℎ̅

ℎℎ̅+1
 (30) 

with 

ℎ = 𝑢 + 𝑖𝑣,             ℎ̅ = 𝑢 − 𝑖𝑣 (31) 

the metric (28) takes the form of Poincaré metric of the superior complex plane 
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𝑑𝑠2

𝑘2
= 4

𝑑ℎ𝑑ℎ̅

(ℎ − ℎ̅)
2 =

𝑑𝑢2 + 𝑑𝑣2

𝑣2
, (32) 

The metric (32) induces the simply transitive group in the quantities ℎ and 

ℎ̅, whose actions are: 

ℎ ↔
𝑎ℎ + 𝑏

𝑐ℎ + 𝑑
, 

ℎ̅   ↔
𝑎ℎ̅  + 𝑏

𝑐ℎ̅  + 𝑑
, 

(33) 

The structure of this group is typical of SL(2R), i.e., 

[𝐵1, 𝐵2] = 𝐵1, 
[𝐵2, 𝐵3] = 𝐵3, 

[𝐵3, 𝐵1] = −2𝐵2 

(34) 

where 𝐵𝑙 are the infinitezimal generators of the group: 

𝐵1 =
𝜕

𝜕ℎ
+

𝜕

𝜕ℎ̅
 

𝐵2 = ℎ
𝜕

𝜕ℎ
+ ℎ̅

𝜕

𝜕ℎ̅
 

𝐵3 = ℎ2
𝜕

𝜕ℎ
+ ℎ̅2

𝜕

𝜕ℎ̅
 

(35) 

and admits the 2-form (32). 

Since (32) is invariant with respect to the group 𝑆𝐿(2𝑅)[3,4,8], this group 

can be assimilated with a “synchronization” group between the different structural 

units of complex system. In this process, the amplitude of each of the structural 

units of any complex system participates, in the sense that they are correlated. 

Moreover, the phases of any entity of the complex system are also correlated [21-

25].  

5. Temporal patterns in complex systems dynamics through harmonic 

mappings 

In the following, complex system dynamics will be generated through 

harmonic mappings. Indeed, let it be assumed that the complex system dynamics 

are described by the variables (𝑌𝑗), for which the following multifractal metric 

was discovered: 

ℎ𝑖𝑗𝑑𝑌𝑖𝑑𝑌𝑗 (36) 

in an ambient space of multifractal metric: 

𝛾𝛼𝛽𝑑𝑋𝛼𝑑𝑋𝛽 (37) 
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In this situation, the field equations of complex system dynamics are derived 

from a variational principle, connected to the multifractal Lagrangian: 

𝐿 = 𝛾𝛼𝛽ℎ𝑖𝑗

𝑑𝑌𝑖𝑑𝑌𝑗

𝜕𝑋𝛼𝜕𝑋𝛽
 (38) 

In the current case, (36) is given by (32), the field multifractal variables 

being ℎ and ℎ̅ or, equivalently, the real and imaginary part of h. Therefore, if the 

variational principle: 

𝛿 ∫ 𝐿√𝛾𝑑3𝑥 (39) 

is accepted as a starting point where 𝛾 = |𝛾𝛼𝛽|, the main purpose of the complex 

system dynamics research would be to produce fractal/multifractal metrics of the 

multifractal Lobachevski plane (or relate to them). In such a context, the 

multifractal Euler equations corresponding to the variational principle (39) are: 

(ℎ − ℎ̅)∇(∇ℎ) = 2(∇ℎ)2 

(ℎ − ℎ̅)∇(∇ℎ̅) = 2(∇ℎ̅)
2
 

(40) 

which admits the solution: 

ℎ =
cosh(Φ

2⁄ ) − sinh(Φ
2⁄ )𝑒−𝑖𝛼

cosh(Φ
2⁄ ) + sinh(Φ

2⁄ )𝑒−𝑖𝛼
, 𝛼 ∈ ℝ (41) 

with 𝛼 real and arbitrary, as long as (Φ
2⁄ ) is the solution of a multifractal Laplace 

equation for the free space, such that 

∇2(Φ
2⁄ ) = 0 (42) 

For a choice of the form 𝛼 = 2𝛺𝑡, in which case a temporal dependency 

was introduced in the complex system dynamics, (41) becomes: 

ℎ =
𝑖[𝑒2Φ sin(2𝛺𝑡) − sin(2𝛺𝑡) − 2𝑖 𝑒Φ]

𝑒2Φ[cos(2𝛺𝑡) + 1] − cos(2𝛺𝑡) + 1
 (43) 

The significance of this complex parameter must be linked to the harmonic 

mappings between the Euclidean space (i.e., measurement space) and the 

hyperbolic space (i.e., phase space, in which the “self-structuring” manifests – for 

details see [11,12]) For the moment, let it be noted that the measurement process is 

mimed here as a frequency modulation process. More precisely, this process is a 

calibration of the difference between the multifractal kinetic energy and the 

multifractal potential energy, which brings this quantity to a perfect squared form.  

In Fig. 1 a-d the “self-structuring temporal pattern” of the structural units of 

complex systems in the form of quasi-periodicity are presented: 3D diagram, 

contour diagram, time series and reconstituted attractor for the scale resolutions 

given by 𝛺𝑚𝑎𝑥 = 2.8.  
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(a) 3D diagram (b) contour plot 

  

(c) time series (d) reconstituted attractor 

Fig.1. a–d. - “Self-structuring temporal pattern” of structural units of the complex system 

in the form of quasi-periodicity (3D diagram (a), contour diagram (b), time series (c) and 

reconstituted attractor (d) for scale resolution given by Ω𝑚𝑎𝑥 = 2.8). Such patterns are not 

singular. By employing the Multifractal Theory of Motion in the description of complex systems 

dynamics [26-31], several types of patterns can be highlighted: period doubling, intermittences, 

harmonized oscillations, damped oscillations etc. 

6. Conclusions 

In a Scrödinger-type scenario for the description of complex system 

dynamics, a SL(2R) symmetry is highlighted. The existence of such a symmetry 

has several consequences for the aforementioned dynamics: conservation laws as 

gauge invariances of a Riccati-type (in particular, for classical dynamics, the kinetic 

momentum conservation law); simultaneity as gauge invariances of a Riccati-type; 

synchronization as gauge invariances of a Riccati-type; temporal patterns through 

harmonic mappings. 

Ωmax = 2.8 Ωmax = 2.8 

Ωmax = 2.8 
Ωmax = 2.8 
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Moreover, the existence of such a symmetry implies, through a Poincaré 

metric of the hyperbolic space, that holography can be associated with deep 

learning.  
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