
U.P.B. Sci. Bull., Series C, Vol. 79, Iss. 2, 2017 ISSN 2286-3540

TWO APPLICATIONS OF PARALLEL FINITE STATE MACHINE

EXECUTION

Alexandru AGACHE1

In this paper we present two results regarding finite state machines (also

referred to as FSMs). They involve the concept of parallel finite state machine ex-

ecution, which proves essential in outlining both findings. The first result concerns

FSM equivalence with incomplete knowledge, where we determine the amount of

information required about two black box automata that can be run on different

inputs. The second leads to a method of testing whether a variable-length code is

uniquely decodable.

Keywords: automata theory, finite state machine equivalence, product automa-

ton, unique decodability

1. Preliminaries

In this section we briefly present the most import notations and definitions that

are used throughout the paper. While many are widely encountered in automata

theory, they are still summarized here for the reader’s convenience.

An alphabet Σ is a non-empty finite set; its members are called symbols. A

word (or string) w over Σ is any finite sequence of symbols from Σ. The length of w

is equal to the number of symbols in w, and is denoted by |w|. Two strings u and v

can be concatenated (joined into a single sequence with u followed by v) using the ·
operator. A common shorthand notation for u · v is uv.

It’s easy to see that |uv| = |u| + |v|. There is one special word, called the

empty string, which is denoted by e, and has length |e| = 0. The emptry string is

also the identity element of concatenation: w ·e = e ·w = w, for any word w. The set

of all strings of length n over Σ is denoted by Σn. It’s worth nothing that Σ0 = {e}
for any alphabet Σ.

The set of all possible strings over Σ is called the Kleene closure of Σ, and

is denoted by Σ∗. It can be written as Σ∗ = ∪i∈NΣi. A formal language (or

simply language) over Σ is any subset of Σ∗. Concatenation is also defined for

languages: L1 · L2 = {uv |u ∈ L1 and v ∈ L2}. Applying the Kleene closure leads

to L∗ = ∪i∈NLi.

A finite state machine is a mathematical model of computation. We use this

term in the restricted sense of language acceptor : a finite state machine M computes

1PhD Student, Department of Computer Science, University POLITEHNICA of Bucharest,

Romania, e-mail: alexandru.agache@cs.pub.ro

61

62 Alexandru AGACHE

a function f : Σ∗ → {0, 1}. A word w is accepted by M if and only if f(w) = 1. We

also say that M accepts the language L(M) = {w ∈ Σ∗|f(w) = 1}. A deterministic

FSM is represented by a quintuple (Σ, S, s, δ, F). Σ is the alphabet over which

input strings are defined, S is a non-empty set of states, s ∈ S is the initial state,

δ : S×Σ→ S is the transition function, and F ⊆ S is the set of final (or accepting)

states. Unless otherwise specified, δ is a total function.

The execution of M for input w = a0 . . . an−1 (ai ∈ Σ) ends in state sn =

δ(sn−1, an−1), where s0 = s. If sn ∈ F the input is accepted; otherwise the input is

rejected. The sequence of states PM (w) = s0 . . . sn is called the execution path (or

simply path) of w in M . Two paths are distinct if they are represented by different

sequences. Multiple words can have the same execution path. A state q is reachable

if at least one input generates a path ending with q. We only consider automata

where every state is reachable, because unreachable states can be safely discarded.

The representation of a non-deterministic FSM is also possible with the quin-

tuple (Σ, S, s, δ, F), but with one significant difference: the transition function is

defined as δ : S × Σ → P(S). The execution of a non-deterministic FSM may lead

to multiple paths, so PM (w) becomes a set for any string w. There is a branch each

time multiple states are obtained from the application of δ. The input is accepted

if at least one path ends in a final state.

A well known result in automata theory [1] states that for any non-deterministic

FSM, there is an equivalent deterministic FSM. Two finite state machines, M1 and

M2, are equivalent if they accept the same language. We denote this by M1 ≡M2.

Definition 1.1. Consider two finite state machines M1 and M2, that receive inputs

over the same alphabet Σ. A third FSM M3 = (Σ, S3, s3, δ3, F3), called the product

automaton, can be built in the following manner:

• S3 = S1 × S2

• s3 = (s1, s2)

• δ3((p, q), x) = (δ1(p, x), δ2(q, x)), if M1 and M2 are deterministic

• δ3((p, q), x) = δ1(p, x)× δ2(q, x), if M1 and M2 are non-deterministic

We say that M3 executes M1 and M2 in parallel: any path in M3 actually

consists two paths side by side, one from M1, and the other from M2. The previous

definition does not constrain F3, which can be chosen to fit different purposes. For

example, if F3 = F1×F2, M3 will accept those words accepted by both M1 and M2,

and L(M3) = L(M1) ∩ L(M2). The existence of the product automaton ultimately

shows that a limited number of finite sate machines cannot integrate into a more

power construct in terms of computation; we can always find a single FSM that

exhibits the same overall behaviour. At the same time, this comes at the cost of a

greatly expanded state space, which means the verification of algorithmic properties

becomes increasingly difficult.

A code is defined as a non-empty set of distinct words C = {w0, w1, . . . , wn}.
If not all words have the same length, C is a variable-length code. C is uniquely

decodable if, for any string that can be written as x = x0 . . . xn (with xi ∈ C), the

Two applications of parallel finite state machine execution 63

representation is unique. This means that, if x = u0 . . . um and x = v0 . . . vn (with

ui, vi ∈ C), then m = n and ui = vi,∀i.

2. Introduction

The equivalence of finite-state machines is a classic topic in automata theory,

closely related to the notion of minimization. A classic result states that two FSMs

M1 and M2 are equivalent if, after minimizing them, the states of M1 can be renamed

such that both M1 and M2 actually represent the same machine. We look at the

equivalence problem from a different angle: if M1 and M2 are provided as black

boxes, how much information is necessary to determine if they are equivalent?

In this context, black box means a function f : Σ∗ → {0, 1}, that can be

computed by a FSM M = (Σ, S, s, δ, F). When M is provided as a black box, the

only information available about its quintuple is the input alphabet Σ. Further data

can be gathered by feeding different words into M , and observing whether they are

accepted or not. In Section 3 we present a necessary and sufficient condition for the

equivalence of black box finite state machines.

The problem of deciding if a given code is uniquely decodable or not is also

widely known, and has numerous applications. One example [2] is encountered in

the field of static verification of computer networks. The goal here is to determine

if a network configuration correctly implements a given specification, without any

undesirable behaviour. Headers and packets are pieces of data of a given size; every

packet begins with one or more headers in succession. Each network protocol has

a specific header, which is logically divided into multiple parts, called fields. They

have different lengths, measured in bits, and a predefined significance. Network

protocol stacks and tunneling lead to packets that have multiple headers.

For symbolic execution, headers can be described as sequences of numbers,

representing the lengths of their constituent fields. We can look at natural numbers

as distinct symbols (up to the maximum field length) of an alphabet. A header h

with m fields can be seen as the code E(h) = l0 . . . lm−1, where li is the length of

the ith field. Furthermore, the entire sequence of n headers from a single packet p

can be represented as E(p) = E(h0) · . . . · E(hn−1). An important question related

to symbolic packets is whether two different protocol combinations can generate

packets p1 and p2, such that E(p1) = E(p2). The answer is yes if and only if the set

of all headers is not uniquely decodable.

In Section 4, we present an automata-based method of deciding the unique de-

codability problem. First we discuss the intuition behind our solution, and continue

by illustrating a three step algorithm.

3. Equivalence of black box finite state machines

Let M1 and M2 be two black box automata. If no other information is provided

beforehand, there is no way to determine if M1 ≡ M2. Our only possibility of

interacting with the machines is to observe their behaviour relative to different

64 Alexandru AGACHE

string, and we can only provide a finite number of inputs until a decision has to

be made. If we find that M1 and M2 disagree at some point, they are clearly not

equivalent. However, nothing can be said if they agree each time. In this case, M1

and M2 can be equivalent, but this is not guaranteed, since for any set of words

X ⊂ Σ∗ we can build two machines that agree on every w ∈ X, but disagree on

other words.

The question turns into how much additional information is needed to de-

termine whether M1 is equivalent to M2 . The most extreme case is when both

quintuples are known, but we want to find a less stringent requirement. We start

by assuming the number of states is know for both M1 and M2. For simplicity,

we consider that |S1| = |S2| = n. Any definite result should be easily adapted to

the general setting. The aim is to find a limit k ∈ N, such that M1 and M2 are

equivalent if they agree on all words of length at most k. Since k is now a specific

number, it is possible to run both machines on every desired input in a finite (albeit

potentially very large) amount of time.

First, we consider k = n. In other words, we try to determine if two finite

state machines with n states are equivalent, if they agree on every word of length at

most n. The answer is negative once more, because an invalidating example can be

found for this assumption.

Example 3.1. Consider M1 and M2 over Σ = {a}, with S1 = S2 = S, |S| = n,

n ≥ 3, s1 = s2 = q0, and F1 = F2 = {q0, qn−1}. The two transition functions, δ1

and δ2, are defined as follows:

• δ1(qi, a) = δ2(qi, a) = qi+1, for i = 0..n− 2

• δ1(qn−1, a) = q0

• δ2(qn−1, a) = qn−1

M1 and M2 agree on all words of length at most n, but fail to do so for most

of the longer inputs. Next, we try to determine if setting the limit higher leads to a

satisfactory result. Moreover, we are interested in an expression entirely dependent

on the number of states, without additional variables such as the size of Σ. Before

going further, we discuss a property that is essential to our later findings.

Lemma 3.1. Let M be a FSM with n states. If M accepts every input w of lenght

at most |w| ≤ n− 1, then M accepts any input.

Proof. If a FSM accepts every word of length l, then all states which can be reached

in l steps from the initial state are accepting states, because every path of length l

must lead to an accepting state. Let Qi be the set of all states reachable in i steps

from the initial state, and Q = Q0 ∪ . . . ∪Qn−1.

When M accepts every word of at most n − 1 symbols, the relation Q ⊆ F

must hold. Moreover, there is no state q such that q 6∈ Q, as can be shown using

the pigeonhole principle. Any state q which is only reachable in more than n − 1

steps, has to be at the end of a path that contains n + 1 distinct states (the first

step involves s and at most one other state). But this is impossible, because M has

Two applications of parallel finite state machine execution 65

only n states. Thus, S ⊆ Q ⊆ F . Since F ⊆ S (by definition), this means F = S,

so M will accept every input. �

Lemma 3.1 does not work for a threshold lower than |S| − 1. Consider the

following example:

Example 3.2. Let M = (Σ, S, s, δ, F) be a finite state machine, where Σ = {a},
S = {s0, s1, s2, s3}, s = s0, δ(si, a) = si+1(mod 4), and F = {s0, s1, s2}.

All inputs w such that |w| ≤ |S| − 2 lead to final states, but M doesn’t accept

every string (s3 6∈ F , but it is reachable). With this in mind, let us return to M1,

M2, and the question of their equivalence.

Theorem 3.1. Two finite state machines, M1 = (Σ, S1, s1, δ1, F1) and M2 = (Σ, S2, s2, δ2, F2),

are equivalent if they agree on every word of length at most k = |S1| · |S2| − 1.

Proof. Consider the product finite state machine M3, with F3 = F1 × F2. This

particular choice of F3 means that for any word w, M3(w) = M1(w) ∧M2(w). In

other words, M3 will only accept w if and only if both M1 and M2 accept w. We go

further, by enlarging F3 in the following manner: F3 = (F1×F2)∪ (F1×F2), where

Fi = Si \ Fi.

In this case, M3 also accepts those words which are rejected by both M1

and M2, which means M3 only accepts an input if M1 and M2 agree on it. This

construct can be used to determine the equivalence of M1 and M2. If M3 accepts

every word, then M1 ≡M2 (from the previous construction of M3). The implication

in Theorem 3.1 can be proved using Lemma 3.1: M3 accepts every input if it accepts

each word of at most |S3| − 1 = |S1| · |S2| − 1 symbols. �

Our equivalence result is both necessary and sufficient. Theorem 3.1 proves

the latter, while the former is a trivial implication: if two finite state machines are

equivalent, they surely behave in the same way over words of length equal to, or

shorter than, a specified threshold. Moreover, the threshold k = |S1| · |S2| − 1 is

minimal: if we can only show that two FSMs agree on words shorter than k, then

nothing can be said about their equivalence.

The previous property can be shown to be true by relying on Lemma 3.1

(and further illustrated by Example 3.2). If k < |S1| · |S2| − 1, then we are no

longer certain that the product automaton build in the proof of Theorem 3.1 accepts

all possible inputs (as demonstrated in Example 3.2). Every input which is not

accepted represents a string that leads to a disagreement between the FSMs under

consideration. Thus, any value of k smaller than |S1| · |S2| − 1 no longer guarantees

the equivalence of M1 and M2.

To the best of the author’s knowledge, Theorem 3.1 is a novel result. It is

worth noting that no assumptions were made about Σ, or about anything related

to M1 or M2, besides knowing the number of states for both of them. We have also

shown that |S1| · |S2| − 1 is the minimum value of k required for the truth of the

equivalence result.

66 Alexandru AGACHE

4. Deciding unique decodability

Next, we turn our attention toward the problem of codes and unique decod-

ability. A very simple example of a uniquely decodable code is {0, 1}, as well as any

other code with elements that only consist of different symbols. On the other hand,

{a, ab, aab} is not uniquely decodable: a string like aaab can be represented both as

a · aab, and as a · a · ab.
Let C be the code over Σ which is checked for uniqued decodability, and M

a finite state machine that accepts the language L = C∗. We want to determine if

this FSM can be used to find solution to the unique decodability problem. There is

not much to be inferred if M is a deterministic FSM, because every input generates

a unique path. We can determine if there is at least one representation of w using

codes from C (when w is accepted). The situation changes when M is a non-

deterministic finite state machine. A particularly interesting example is the following

non-deterministic FSM:

Example 4.1. Let M = (Σ, S, s, δ, F) be a non-deterministic FSM, where S = {s0},
s = s0, F = {s0}, and δ(s0, w) = s0, ∀w ∈ C.

The previous example uses a shorthand method to describe a FSM. First, δ

is not total anymore. We assume that any transition which is not explicitly defined

leads to an implicit state where any further steps lead to the rejection of the input (a

sink state). We call this the reduced form of M . It is helpful because the execution

of the FSM fails as soon as no transition is available, instead of going for more steps

that ultimately reject the input anyway. Second, the domain of δ is now S×Σ∗. This

allows a more compact representation, by merging multiple states. Once more, if we

reach a step where no further progress is possible, the input is implicitly rejected.

The automaton in Example 4.1 has a single explicit state, which is also an

accepting state, and each transition starts from, and returns to it. This definition of

M is equivalent to exhaustively trying all possible combinations of codes from C (up

to |w|) to generate the input w. The fact that M is non-deterministic means there

can be multiple paths to acceptance. Each such path represents a different sequence

of codes, so finding any input that generates at least two different accepting paths

means C is not uniquely decodable.

There are two issues with this approach. First, the time complexity is ex-

ponential. Second, at each step, we only determine if one particular word can be

generated in more than one way. This leads once more to the situation where the

search never stops if C actually is uniquely decodable.

Definition 4.1. Let C be a code, and M ′ a non-deterministic FSM that accepts the

language C∗, and has multiple accepting paths for an input w if and only if w has

multiple encodings over C. We say that M uniquely accepts C∗.

If M ′ uniquely accepts C∗, we build the product automaton M ′′ = M ′ ×M ′,
with F ′′ = F ′ × F ′. A path P ′′ from M ′′ is called non-trivial if it contains at

least one state (qi, qj) ∈ S′′ with i 6= j, where qi, qj ∈ S′. The construction of M ′′

Two applications of parallel finite state machine execution 67

would be redundant for a deterministic FSM, because every path is trivial. Non-

deterministic automata allow multiple paths for the same input, so M ′′ reveals all

pairs of execution paths for a given string. It is important to note that M ′′ can be

built using the reduced representation of M ′ (resulting the reduced form of M ′′),

because any path that leads to a sink state in M ′ cannot be included in a successful

path of M ′′.

Proposition 4.1. C is uniquely decodable if and only if M ′′ has at least one non-

trivial accepting path.

Proof. In particular, by examining M ′′, we can determine whether at least one string

can be accepted via two distinct transition sequences. This is equivalent to finding

a non-trivial path P ′′ from s′′ to any final state of M ′′. If P ′′ exists, it can be split

into P ′1 and P ′2, two distinct accepting paths of M ′, and therefore C is not uniquely

decodable. On the other hand, if C is uniquely decodable, then M ′ has at most

one accepting path for any input. In turn, this means all accepting paths of M ′′

are trivial, because we cannot find two distinct acceping paths in M for the same

input. �

The biggest challenge of building M ′′ is the construction of the transition rela-

tion. The shorthand representation in Example 4.1 is not well-suited for describing

a product FSM that executes two copies of M , because the presence of transitions

which use multiple symbols hinders the application of Definition 1.1.

Example 4.2. Consider C = {u, v, w}, and u = v · w.

The input string u can be accepted in two ways: either by δ(s0, u) = s0, or

via δ(δ(s0, v), w) = s0. However, the product FSM M ′′ must use the same number

of symbols during each step, so δ′′ cannot be properly with s0 as the only explicit

state. Additional states are required for the initial FSM to allow the construction

from Definition 1.1.

The simplest general solution for building M ′ that uniquely accepts C∗ is to

have a separate path for each w ∈ C, one separate transition for each symbol in w,

and one separate state for all but the last every symbol in w. We call this the trivial

construction of the uniquely accepting FSM in the reduced form. For example, the

FSM in Figure 1 uniquely accepts the language C∗, for C = {a, ab, aab}.
We propose the following three-step procedure to determine if a variable-length

code C is uniquely decodable:

(1) Build the reduced form of M ′, the finite state machine that uniquely accepts

C∗, using the trivial construction method.

(2) Build the product automaton M ′′ = M ′ ×M ′, with F ′′ = F ′ × F ′.
(3) Check whether a non-trivial accepting path exists in M ′′.

We evaluate the complexity of each phase in reverse order. The search for a

non-trivial path is actually done during the construction of M ′′, which requires at

most O(|C| · |S′′|) = O(|C| · |S′|2) steps. The trivial construction method leads to

a FSM with |S′| =
∑

w∈C |w| − |C| + 1. We denote n = |S′|. The construction of

68 Alexandru AGACHE

q0

start

q1

q2 q3

a a

a

a

b b

Fig. 1. A FSM that uniquely accepts {a, ab, aab}∗

M ′ requires O(n) steps. In conclusion, the complexity of the previous procedure is

O(|C|n2).

Our solution illustrates an important aspect of the deterministic/non-deterministic

FSM correspondence. In general, results that concern non-deterministic finite state

machines have to account for the exponential state explosion caused by the trans-

formation to a deterministic automaton. We present a problem instance where

the asymptotic complexity is conserved. The conversion of M ′′ to a determinis-

tic FSM is not necessary, because reachability properties carry over between the

non-deterministic and deterministic cases.

The overall complexity of the solution can be reduced using instances of M ′

with smaller number of states. The trivial construction leads to an upper bound,

in the sense that we never have to consider a larger FSM. Simple optimizations are,

for example, merging common prefixes and suffixes. Figure 2 shows a smaller FSM,

which is equivalent to the one in Figure 1. Depending on C, the number of states in

S′ can be significantly smaller than n. The effort required to find a smaller M ′ that

uniquely accepts C has to be balanced with the complexity of the overall unique

decodability problem.

q0start q1

q2

a

a

a

b

b

Fig. 2. A smaller FSM that uniquely accepts {a, ab, aab}∗

5. Related Work

The problem of FSM equivalence has been extensively studied [3], and also

adapted to modern theoretical constructs and developments, culminating with quan-

tum finite automata [4, 5]. Most current research efforts focus on the situation where

Two applications of parallel finite state machine execution 69

complete information is available, and optimizations aim to increase the applicability

at scale [6, 7, 8].

In Section 3, we focus on the equivalence of two finite state machines, without

access to full information about their configuration. This can be seen as trying

to determine whether two FSMs are equivalent by observing their output on an

arbitrary (but finite) number of strings, and leads to Theorem 3.1.

FSM equivalence with incomplete information has been mostly studied in the

context of machine learning or language processing [9, 10]. To the author’s knowl-

edge, the closest result to the one presented in Section 3 can be found in [11],

which gives a somewhat similar property for probabilistic automata, which is fur-

ther discussed in [12], leading to an equivalence result for 1-way quantum finite

automata [13].

The best known algorithm for deciding if a code is uniquely decodable is the

Sardinas-Patterson algorithm [14], which can run as fast as O(|C|n) time using spe-

cialized data structures. We found our solution easier to implement, and reasonably

fast in practice. Our use of automata to discern properties of codes is similar to

other approaches [15, 16]. We focus on general variable-length codes, which are

useful for static verification of network properties.

6. Conclusions

We proved Theorem 3.1, which establishes a necessary and sufficient condition

for the equivalence of black box finite state machines, and described an automata-

based algorithm that can be used to determine if a variable length code is uniquely

decodable.

R E F E R E N C E S

[1] H. R. Lewis and C. H. Papadimitriou. Elements of the Theory of Computation. Prentice Hall

PTR, Upper Saddle River, NJ, USA, 2nd ed., 1997.

[2] R. Stoenescu, M. Popovici, L. Negreanu, and C. Raiciu. SymNet: Scalable Symbolic Execu-

tion for Modern Networks. In Proceedings of the 2016 Conference on ACM SIGCOMM 2016

Conference, SIGCOMM ’16, pp. 314–327. ACM, New York, NY, USA, 2016.

[3] J. E. Hopcroft . Introduction to Automata Theory, Languages, and Computation. Pearson

Addison Wesley, 3rd ed., 2007.

[4] A. Kondacs and J. Watrous. On the Power of Quantum Finite State Automata. In Proceedings

of the 38th Annual Symposium on Foundations of Computer Science, FOCS ’97, pp. 66–. IEEE

Computer Society, Washington, DC, USA, 1997.

[5] C. Moore and J. P. Crutchfield . Quantum Automata and Quantum Grammars. In Theor.

Comput. Sci., vol. 237, no. 1-2, pp. 275–306, 2000.

[6] C. A. J. V. Eijk and J. A. G. Jess. Detection of equivalent state variables in finite state

machine verification. In In Proc of the International Workshop on Logic Synthesis, pp. 3–35.

1995.

[7] S.-Y. Huang, K.-T. Cheng, K.-C. Chen, F. Brewer, and C.-Y. Huang . AQUILA: An Equiva-

lence Checking System for Large Sequential Designs. In IEEE Trans. Comput., vol. 49, no. 5,

pp. 443–464, 2000.

70 Alexandru AGACHE

[8] X. Y. Wang and X. R. Ma. An Equivalence Relation on Extended Finite State Machines. In

2009 International Conference on Computational Intelligence and Software Engineering, pp.

1–7. 2009.

[9] C. de la Higuera. Learning Finite State Machines, pp. 1–10. Springer Berlin Heidelberg, Berlin,

Heidelberg, 2010.

[10] B. Balle, J. Castro, and R. Gavald . Learning probabilistic automata: A study in state distin-

guishability. In Theoretical Computer Science, vol. 473, pp. 46 – 60, 2013.

[11] A. Paz . Introduction to Probabilistic Automata (Computer Science and Applied Mathematics).

Academic Press, Inc., Orlando, FL, USA, 1971.

[12] L. Li and D. Qiu. Determining the equivalence for one-way quantum finite automata. In The-

oretical Computer Science, vol. 403, no. 1, pp. 42 – 51, 2008.

[13] A. Brodsky and N. Pippenger . Characterizations of 1-Way Quantum Finite Automata. In SIAM

J. Comput., vol. 31, no. 5, pp. 1456–1478, 2002.

[14] A. Sardinas and C. Patterson. A necessary sufficient condition for the unique decomposition

of coded messages. In IRE Internat. Conv. Rec., , no. 8, p. 104108, 1953.

[15] A. Kontorovich and A. Trachtenberg . Deciding Unique Decodability of Bigram Counts via

Finite Automata. In J. Comput. Syst. Sci., vol. 80, no. 2, pp. 450–456, 2014.

[16] T. Head and A. Weber . Deciding Code Related Properties by Means of Finite Transducers,

pp. 260–272. Springer New York, New York, NY, 1993.

