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OPTICAL SYSTEM OPTIMIZATION FOR PHASE
RETRIEVAL USING A GENETIC ALGORITHM APPROACH

Victor-Cristian Palea! and Liliana Preda?

We propose an implementation based on a genetic algorithm
approach to optimizing the optical system design for a phase retrieval prob-
lem solved using a forward-backward approach. The algorithm uses the de-
sired input and output complex valued optical profiles, the total propagation
length, a given number of lenses and up to two phase masks based on which
the optimal arrangement of the optical elements is computed. Once com-
puted, the optimal system can be used to compute its corresponding phase
mask.
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1. Introduction

Implementations of the problem of phase mask computation for manip-
ulating optical beams has been presented in a range of applications such as
optical tweezers [1, 2], cold atom traps [2, 3], two photon microscopy [4] and
novel optical beams [6, 7, 8] to name a few. Solutions to this problem vary
from objective specific o nes, t o m ore general a pproaches s uch as Gerchberg-
Saxton[9] and Yang-Gu[10] algorithms.

An algorithm for solving this problem has also been presented by the
authors[11] and it is based on a forward-backward propagation approach from
which the phase difference a t t he p lane o f t he p hase m ask(s) i s computed
and used to modulate the incident beam. From an experimental perspective,
this method requires a manual optimization of the optical system. This can
be made by a trial and error approach or using educated guesses, until the
quality of the output reaches a desired level of similarity with the desired one.

In order to highlight the problem we address in this article, consider the
case of a scenario presented in figure 1. An optical system is required in order
to transform an input optical profile into an output desired one using phase
modulation. We assume that in order to implement it, we have access to a
limited propagation distance D and we can use one lens and one phase mask.
Using the forward-backward propagation method, not all configurations for the
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Fi1c. 1. Diagram of an optical system consisting of a lens and
a phase mask. The input profile should be converted into an
optical profile that is idealy identical with the desired output
profile. In order to achieve this, the positions of the lens and
phase mask should be shifted in order to manualy optimize for
a better synthesized output profile.

lens and the phase mask return output profiles that are similar to the desired
one. This is due to the observation that at the plane of the phase mask an
amplitude match has to be achieved between the forward propagated input and
the backward propagated output[11]. The same is true for Gerchberg-Saxton
where a 2f system is required, while for Yang-Gu the optimal phase mask is
computed based on the optical system at hand, although that optical system
might not be the optimal one given the input and desired output profiles.

This implies that a method for optimizing the positions of the optical
elements constituting the optical system is required. For the forward-backward
propagation method we have used a manual optimization approach, where each
element has been shifted along the propagation axis until the amplitude match
criterion has been achieved, which is often time consuming. In order to limit
the time for optimizing the optical system, we have considered developing a
software solution based on a genetic algorithm (GA) approach.

GAs[12] can be summarized as a sequenced Monte-Carlo method for com-
puting the output of various mutated offsprings of a given set of states, which
are then selected based on a survival of the fittest approach using a fitness func-
tion. This process of mutation, selection and reconstruction of the population
is repeated until the population is sufficiently adapted to the requirements
imposed by the fitness function. This approach has been used in the context
of optimizing optical setups for aberration correction[13], integrated optical
device design[14] and prism design[15] to name a few.

Our implementation of a GA to the optimization of optical systems for
phase modulation using phase masks is given in figure 2 and it starts with
a population consisting of randomly generated optical systems structured in
cohorts. These systems are generated using user defined types of optical el-
ements that are placed at random positions along the propagation axis, as
in the general case from figure 1. A phase mask is computed for each sys-
tem given the user defined input and output profiles. Then the input profile



Optical system optimization for phase retrieval using a genetic algorithm approach 179

Random
Population S S, Ss Sh, <—
Similarity & Cs Cs Cy

Survivors | Sas 58, -5 Sw
Repopulate and mutate

Fic. 2. A simplified flow chart for the GA implementation. A
set of randomly generated systems are created which represents
the population. The similarity is computed for each system
which then allows for the selection of the best fitted cases. The
survivors are then used to recreate the population of n systems
during which mutations are applied. The process then cycles for
a given number of generations.

is propagated through each optical system in which its corresponding phase
mask has been introduced, which returns the degree of similarity between the
desired and computed output profiles. A fraction consisting of the best optical
setups is kept and then used as a starting point for regenerating the popu-
lation via mutations consisting of slight shifts of the positions of the optical
elements of the surviving group. With the population reestablished as the first
generation of the initial one, the process is repeated for a user given number of
generations. The user can reiterate the process for any number of generations
until the computed output profile is similar to the desired one up to the user’s
requirements.

The main advantage of a GA solution to this problem is that it automates
the process of design for the optical system. A user based implementation, in-
dependent of its level of expertise, will ultimately rely on heuristics or prede-
fined arrangements such as a 2f system used to implement an optical Fourier
Transform for a Gerchberg-Saxton approach. This can limit the method of
constructing an optical system since in some instances multiple arrangements
are possible, as we will present in the following. By contrast, a GA algorithm
uses randomness to search for solutions and thus can find optimal setups that
cannot be easily reduced to predefined arrangements.

The GA implementation that we have developed is using an in-house
Python 3 module named PyParax|[5], which is free for download from Github at
https://github.com/victorcristianpalea/PyParax. A bried description
of PyParax is given in appendix 1 however we highly recommend checking
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Palea et al.[5] for extra information on the module, Palea et al.[11] for the
phase retrieval approach, and the module documentation and examples on the
repository for code description and examples.

2. Implementation of GA algorithm

The GA algorithm implementation can be structured into four main
parts: inputs, population structure, evolution, and outputs.

2.1. Inputs

The algorithm uses some fixed parameters that are not altered during the
evolution from one generation to the next one. Based on the general case from
figure 1, the input and output optical profiles are examples of fixed parameters.
Additionally the algorithm requires:

e number of lenses - can be any natural number and represents the num-
ber of lenses that are to be placed into the system.

e number of phase masks - can be set to 1 or 2 and represents the number
of phase masks that are to be computed given an optical system.

e possible focal lengths - the lenses that are to be introduced into the
system have their focal lengths chosen randomly from a list of possible
values. This approach we consider helps the user to compute an optimal
system that can be implemented using equipment that is at its disposal.

e maximum propagation distance - the total free space allowed for the
optical system, labeled D in figure 1. We consider this parameter to be
relevant for space restricted scenarios where an optimum is intended given
a limited propagation distance.

Other parameters that are used during the evolution process include:

e keep percentage - the fraction that defines how many specimens survive
from one generation to the other.

e mutation amplitude - the maximum absolute value by which a mutation
can change a given parameter of a specimen. Its value depends on the
type of mutation that is applied.

2.2. Population structure

The population of optical systems is divided in cohorts which represent
sets of objects that contain one optical system each. These objects are la-
beled in the following as specimens. A specimen is an object that contains
information such as the optical system structure, the maximum length of the
propagation distance, and functions that allow it to mutate. The population
and the cohorts are just upper layer groups of specimens. In order to start
the evolution of a population, its initialization is required. This is done by
choosing the number of cohorts per population and of specimens per cohort,
followed by the initialization of each structure.
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The initialization of each structure requires the following parameters:

e specimen: number of lenses, number of phase masks, possible focal

lengths and maximum propagation distance.

e cohort: number of specimens per cohort, 1 set of parameters required for

specimen.

e population: number of cohorts, 1 set of parameters required for cohort.
When initializing a cohort, the set of parameters for defining a specimen are
applied to all specimens initialized inside the cohort. The same stands for
initializing a population.

This structure assures that multiple types of solutions survive inside a
population, while also allowing for a computational speed up via the parallel
implementation of the evolution process.

2.3. Evolution

The evolution is the process of going from one existing generation to the
next one at a population level. During this process the following steps are
applied:

(1) The phase mask(s) is(are) computed for each specimen using the forward-
backward approach[11].

(2) An output profile is computed using the previous phase mask(s).

(3) A comparison between the computed output and the desired one is made
using the cross-correlation of the L? normalized profiles resulting a number
in-between 0 and 1 which is attributed to the specimen. The normalized
profiles are computed using

T — )
2 9[n]I?

and the cross-correlation is given by
(1 * ho)[l] = Z Y1[n]ys[n + 1] (2)

where 1, 1) and 1 are discrete functions that describe optical profiles on
a equally spaced grid.
(4) A search for the best fitted specimens is made by computing

F = maX(|¢computed * wdesiredD (3)

which is the fitness function for each specimen. The fitness function F'
is computed using normalized profiles, so it can take values in-between 0
and 1. The similarity between the two profiles is greater if F' approaches
1 for the shifts along the transverse axes being 0. Under these conditions
F' is then used in order to identify the fraction of survivors based on the
keep percentage. This evaluation is carried out at a cohort level e.g.
for a cohort of 100 specimens, if the keep percentage is 10%, then the
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best 10 specimens in terms of similarity values survive, while the others
are discarded.

(5) The cohort is repopulated until it reaches the same number of specimens
that it had initially. The repopulation consists first of saving the surviving
specimens as they are, followed by the occupation of vacant slots with
mutated versions of them. This approach guarantees that if mutations
degrade the quality of the surviving specimens, the progress made in terms
of optimization is not lost from one generation to the next one.

The above mentioned steps are repeated for a given number of genera-
tions. Additionally, at each step from one generation to the next one, data
regarding the best specimen inside each cohort is recorded.

The mutation mentioned in the previous steps consists of randomly se-
lecting an optical element from each specimen except free spaces, and changing
its position randomly. This shift is done by an arbitrary amount limited by
the user through the mutation amplitude parameter.

The second type of mutation we have considered affects the maximum
propagation distance parameter. This type of mutation acts at a cohort
level by multiplying all the free spaces of each specimen by a randomly gener-
ated number limited by the user through the mutation amplitude param-
eter. The result of this mutation is that the optical elements are separated
or approached proportionally, thus increasing or decreasing the maximum
propagation distance parameter associated with the specimen.

The evolution as described above motivates the structure of the popula-
tion by allowing different cohorts to evolve independently. If only one cohort
is considered, then by running the evolution procedure for a given number of
iteration, all the specimens tend to only one arrangement due to the elimi-
nation of a fraction. For example a cohort of 100 specimens evolving with
a keep percentage of 10% could maintain mutated copies of only the best
fitted specimen from the original population in 2 generation.

In terms of computational performance, the cohorts can be evolved in
parallel since they are independent from each other which reduces the compu-
tational time significantly.

2.4. Outputs

The implicit outputs of the algorithm are the optical systems that have
been selected during the repeated evolution process in order to satisfy the
conditions imposed by the fitness function. These optical systems are described
by the properties and positions of the optical components they consist of. The
corresponding phase mask can be computed based on the optical positioning
of each known optical element and the position at which the phase mask is
supposed to be positioned. Other outputs are:
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e a record of the best specimen - at each step along the evolution process
the best specimen per cohort is recorded in order to follow the evolution
of the optical system.

e a record of the maximum and minimum values of the cross-correlation
comparison - at each step along the evolution process the maximum and
minimum values of the comparison analysis are recorded per cohort. The
maximum values can be used to follow the convergence of the specimens
to an optimum, while the minimum values show the overall tendency of
the entire cohort to move towards an optimum.

3. Numerical case studies
3.1. Similarity optimization

This is the most straightforward result that can be tested using the imple-
mentation described in section 2 since the survivability of a specimen depends
on the similarity of the computed output to the desired one. For the pur-
pose of this case, we have considered three scenarios consisting of a number
of lenses of 0, 1 and 2. The rest of the parameters are number of phase
masks = 1, possible focal lengths = 10mm, 30mm and 50mm, maximum
propagation distance D = 100mm, keep percentage = 50%, mutation
amplitude = Imm. The only mutation that has been applied implied the
shift of an optical element and not the propagation distance.

This analysis is carried out for a 1-dimensional transverse spatial do-
main with the input profile being a Gaussian and the output a truncated Airy
function. The population consists of 10 cohorts, each of which having 20 spec-
imens. As it can be seen in figure 3, after 10 generations all the cohorts have
evolved to a similarity close to 1, with the number of generations required for
convergence increasing with the number of lenses.

In terms of positioning of the optical elements, it can be seen in figure 4
that on the case where no lenses are considered, all cohorts evolve such that
the position of the phase mask goes towards a common value. This is not the
case for 1 and 2 lenses since multiple configurations are possible.

3.2. Propagation distance optimization

For the purpose of propagation distance optimization we consider a sce-
nario where we assume that an optimal space for the entire optical system is
unknown so a guess of 10mm for maximum propagation distance is used
as a starting point. The selection is made for a number of lenses = 0. The
mutation amplitude for the propagation distance is 0.2 which changes the
distances d by the formula

d—d-(140.2- RNG(min = —1, max = 1)) (4)

where RNG is a random number generator function that returns a value from
a uniform distribution defined on the interval (—1,1).
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FiG. 3. Evolution of the maximum (red) and minimum (blue)
absolute values of the peak cross-correlation as a function of
generation number for similarity comparison. Each pair of lines
corresponds to a different cohort.

The choice for the parameters have been set in order to guarantee that
an optimum cannot be found simply by shifting the positions of one optical
element, thus rendering the propagation distance change via mutation a re-
quirement. The implementation consists of evolving the population in steps of
10 generations followed by a propagation distance mutation. This cycle then
repeats until at least 1 cohort reaches a cross-correlation peak absolute value
of 99%. The evolution of the similarity analysis is represented in figure 5.

As it can be seen in figure 5, a stair-like pattern emerged where each
jump indicates the introduction of a propagation distance mutation. Thus
for the first 10 generations the similarity optimization has selected for the
optimal solution given the conditions imposed by the parameters. After the
10th generation a propagation distance mutation is applied which immedi-
ately translates into an increase of the similarity value when the similarity
optimization is resumed. The process of similarity optimization followed by
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distance optimization.

propagation distance mutation is repeated generating noticeable jumps in the
similarity plot until the 99% threshold is reached. The whole process can be
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accelerated by choosing a higher value for mutation amplitude parameter
but overshooting the minimum required value for the propagation distance is
more probable.

3.3. Robustness of the optimal system

In this case study we compare the robustness of the optical system ob-
tained through evolution in order to check if the GA returns to the same solu-
tion if various mutations are applied on the solution. The parameters for this
scenario have been similar to the ones from subsection 3.1 with the differences
being number of lenses = 2, the number of cohorts is 5, and 50 generations
cycles on which shifting mutations are used to optimize. In-between two suc-
cessive cycles two random shifting mutations with mutation amplitude =
20mm are applied on each specimen. Due to the high value of the mutation be-
tween cycles, a significant change is expected in the outcomes of the similarity
function and the return to the original setup can be investigated.

In figure 6 the similarity analysis is plotted showing that between each
two consecutive cycles the minimum cross-correlation peak absolute values
drop significantly, followed by a rapid recover. Next in figure 7 the system
evolution of the best specimen per cohort is plotted individually. For cohorts
1, 3, 4 and 5 the evolution reached a stable system since at generations that
are multiples of 50 a shift of the optical elements can be observed, followed by
a return to the optimal arrangement. The case in cohort 2 is similar but with
the added observation that the system is shifted from the optimum much more
than the others, so convergence to a steady state does not occur completely
during the 1100 generation, but a constant tendency to it is obvious due to
the shift of the phase mask and first lens towards the approximately 21mm
position.
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Fia. 7. Phase mask (green) and lenses (red) positions at each
generation for robustness analysis.

4. Experimental results

For validating the GA approach we have made an optical system similar
to the one from figure 1 consisting of a lens with focal length 300mm and
a Holoeye LC2002 spatial light modulator for the phase mask. The input is
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a Gaussian profile and the expected output is a 2-dimensional Airy profile.
A Motic 1SP camera has been used for recording the intensity profile in the
output plane, which limits the propagation distance to 500mm.

The optimal system given by the GA algorithm required that the phase
mask is placed at approximately 49.5mm and the lens at 450mm, both val-
ues being referenced to the input plane. The computed phase mask for this
setup has been validated numerically and experimentally. The numerical case
generated an output profile with similarity of 99.79%. For the experimental
result, we have just placed the optical elements according to the results of the
GA. The first step in comparing the numerical and experimental results has
been to check the scaling between the recorded image and the one used for the
GA, with approximately 36um for the numerical one and 38 — 40um for the
experimental one. These lengths describe the distances from the global inten-
sity peak to its upper and left neighbors, so being relatively close implies that
the two images are similar in scale. Furthermore the similarity between the
numerical and experimental intensity outputs has been computed after setting
both images at the same scale, returning 90.07%. The actual intensity profiles
are shown in table 1.

In order to showcase that this setup is optimal at least locally, we have
shifted the lens by 5cm and 10cm respectively towards the phase mask. This
comparison is also shown in table 1 where it can be seen visually that the
numerical case shifts diagonally and has an increase in the spatial frequency
of the local intensity peaks, while the experimental case loses any resemblance
with the wanted profile.

Want Ocm —5cm —10cm

TABLE 1. Intensity profiles of wanted output compared with
numerically and experimentally retrieved ones (Ocm), along with
outputs for shifted lens showcasing that the system configuration
is optimal at least locally (—5cm and —10cm).

5. Conclusions

The GA approach to the optimization of an optical system has been
presented in terms of three criteria, namely output similarity, propagation dis-
tance and robustness, with experimental validation. The method also indicates
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the existence of multiple optical setups that can transform the input into an
output that is similar to the desired one under certain conditions. These re-
sults suggest that a GA approach can be used for optimizing an optical system
for phase mask computation and modulation and reducing the time needed for
designing an optical system intended for phase modulation.

Appendix - Brief PyParax description

PyParax simulates the propagation of optical beams using the paraxial
approximation of the wave equation

0 = 3 (0% + O
where 1 is the envelope of the electric field component of the electromagnetic
wave which is assumed to vary slowly along the propagation axis, k = 2w /A
where ) is the wavelength, i = /=1 and 97 is short-hand notation for the
partial derivative of order § with respect to the variable a.

This propagation model allows for the introduction of some optical ele-
ments along the propagation axis z, namely phase and amplitude masks, one
particular example of phase mask being lenses. These are implemented in Py-
Parax such that an optical system made of various phase and amplitude masks
can be created and used for simulating the propagation of a beam through it.

The computation of the numerical solution is done in Fourier space on

the transverse axes where the solution for the propagation equation is given
by

- ~ 2:(¢2 2
D€, 2) = (., 0) exp (—Lk*’”)

with ¢ being the Fourier transform of ¢ along the axes z and y with the
corresponding spatial frequencies £ and 7.

The solution is computed on a discrete grid using the Fast Fourier Trans-
form algorithm as a numerical equivalent of the Fourier transform. Thus a
profile at position z along the propagation axis consists of a 2-dimensional
complex valued array [n, m| with sizes N and M along each axis. From a
physical perspective, the relevant quantities intensity / and the phase ¢ are
linked to v via

I[n,m] = [¢[n,m][?

¢[n, m] = arg(¢[n, m])
both of which being N x M arrays. All the calculations are done using data
from the N x M arrays 1 from propagation to analysis using cross-correlation.
For instance, a mask of shape N x M is applied to a profile ¢ with the same
shape using an element-wise product between the two corresponding arrays.
The above mentioned cases describe a 2-dimensional transverse profile,
but they can also be reduced to 1-dimensional transverse profiles by eliminating
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the y variable, along with its corresponding spatial frequency 7. In section 3
we have used the 1-dimensional transverse case, while for the experimental
result from section 4 we have used the 2-dimensional case. Thus, in subsection
2.3 the optical profiles consist of 1-dimensional discrete complex valued arrays.
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