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ANALYTICAL APPROACH OF UNDETECTABLE BRIDGING
FAULTS IN COMBINATIONAL CIRCUITS

I.I. BUCUR"

Defectele fizice cuprind defectele scurtcircuit, defectele intrerupere,
tranzistor blocat la 1 si tranzistor blocat la 0. Comparativ cu defectele traditionale
,blocat la” introduse la nivelul de abstractizare poartd, defectele fizice reprezintda
mult mai fidel defectele reale care apar la nivelele de reprezentare poartd §i
tranzitor. Modelarea analitica pentru astfel de defecte, utilizata in proiectare si
testabiliate, este un domeniu inca nou si in dezvoltare. Defectele scurtcircuit
nedetectabile apartin clasei defectelor dificil de detectat si pot invalida anumite
seturi complete de teste proiectate pentru defectele blocaj clasice. Aceasta lucrare
defineste o caracterizare analiticd a defectelor scurtcircuit nedetectabile prin
utilizarea unei abordari analitice matematice discrete.

Physical faults include bridging faults, break (open) faults, transistor stuck-
on and transistor stuck-off. Compared to traditional gate-level stuck-at faults,
physical faults more closely represent realistic faults appearing at the gate level and
transistor level. Analytical modeling for such faults, used for design and testability,
is still a new and emerging area. Undetectable bridging faults belong to hard to
detect faults class and can invalidate several sets of tests designed for classical
stuck-at faults. This work defines an analytical characterization for undetectable
bridging faults using discrete analysis mathematical approach.

Keywords: bridge defects, bridging fault models, resistive bridging faults, fault
simulation, undetectable bridging faults, multiple bridging faults, stuck-at
faults, induced wired-AND, induced wired-OR, nMOS circuits, TTL,
Boolean differential calculus, exclusive-disjunctive expansion, discrete
Taylor expansion.

Introduction

A key goal in manufacturing test is to maximize the quality of parts
delivered to customers — ideally, shipping zero defective parts while reducing the
cost of testing those parts. The purpose of testing is to develop confidence that a
design or its specific implementation is functioning correctly or to identify the
location and nature of the fault(s) within it (diagnosis). Because the numbers,
types and locations of possible faults are huge, it is practical impossible that
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testing can guarantee a perfect design. Many different faults, as types and/or
locations, are often exhibiting similar symptoms involving that one test pattern
could detect all of them. It makes facts more tractable but actual testing
complexity is still very large. It was observed that some faults are more probable
than others so a test for the most frequent faults will produce higher confidence
(but not sureness) in the perfection of the design. The advent of deep-submicron
(DSM) designs has created new difficulty in clock skew and power delivery,
while the latest nanometer technologies have demonstrated that defects are located
predominantly in routing [1]. Inductive fault analysis of actual circuits suggests
that bridging faults account for thirty to fifty percent of all faults [2]. Other studies
also show that most silicon defects exhibit bridging fault behavior and test
strategies that use simple fault model, such as single stuck-at, do not satisfy the
growing test quality requirements [3, and 4]. Test strategies that are using simple
fault model, such as the single stuck-at model, are not satisfying growing test
quality requirements. Other test approaches, such as delay and Ippo testing, are
increasingly used for manufacturing testing of integrated circuits. A number of
papers are showing that each such test policy detects some sole defects [5, and 6].
Although, Ippp testing has been successfully used for detection of shorts for a
long time, the efficiency of this method in complex deep sub-micron circuits has
recently become questionable. Consequently, a significant part of the testing must
rely on other approaches such as voltage and delay testing.

In [7] is investigated a characterization of hard-to-detect bridging faults.
For circuits with large numbers of lines (or nodes), this characterization can be
used in selecting target faults for test generation when it is impractical to target all
the bridging faults (or all the realistic bridging faults). Pomeranz et al., [7],
demonstrate that the faults selected based on the proposed characterization are
indeed hard-to-detect by showing that the fault coverage of a given test set with
respect to this subset is lower and more sensitive to the test set than the fault
coverage obtained with respect to a random subset of the same size, with respect
to the complete set of faults, and when possible, with respect to a subset of
realistic bridging faults of the same size. Authors of [7] also demonstrated that a
test set for the selected subset of faults detects other faults more effectively than
when a test set is derived for a randomly selected subset of faults of the same size.

An efficient algorithm is presented in [8] for identification of bridges
between two lines in combinational CMOS logic, such narrowing down the two-
line bridge candidates based on tester responses for voltage tests. Due to the
implicit enumeration of bridge sites, no layout extraction or precomputed stuck-at
fault dictionaries are required. The bridge identification is easily refined using
additional test pattern results when necessary. Vogels et al., [8], did present
results for benchmark circuits and four common fault models (dominant,
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composite, wired-AND, and wired-OR), evaluating the diagnosis against other
possible fault types, and summarizing the quality of their results.

Lechner et al., [9], discuss the significance of fault simulation techniques
to investigate pragmatic circuit malfunction modes and test requirements. It is
revealed for an ADC goal design that hard faults frequently cause minor rather
than disastrous failure; hence have to be subject to test. In [10], Engelke et al.
introduced the concept of a multiple-valued logic simulator that is able to more
accurately determine the possible behavior of a circuit in the presence of a
bridging fault. However, this approach needs user defined mapping of a range of
voltages to a logic value and the simulator takes care of certain voltages more
closely than common bridge fault simulators that map all voltages to either logic 1
or 0.

Bridging faults are hard to be studied at circuit’s logic level because most
of the information about circuit’s layout and interconnects are missing [3, &,
and 9]. This information is available only after the technologically mapping and
when all modules are placed and routed. For the past three decades, researchers
have used the stuck-at fault model to represent faults in digital circuits. The stuck-
at fault model has been used satisfactory to model faults in Transistor-Transistor-
Logic (TTL) and n-channel Metal-Oxide-Semiconductor (nMOS) circuits.

Most of the testing technology is still using traditionally developed tests
using stuck-at model, because complete tests for this model are detecting most of
the physical faults. However, bridging faults and other typical physical faults
occurring on DSM circuits are hard to be modeled using stuck at concept.

Among the bridging faults, the undetectable ones are still more difficult to
test, for obvious reasons, but their invalidating effect on complete sets of tests
designed for stuck-at faults is making them separate target [11, and 12].
Undetectable faults are, generally, due to re-convergent fan-out and redundant
logic. Hazard-free multiplexers, as an example, have undetectable faults due to re-
convergent fanout and redundancy. Bridging input lines of an AND gate, in TTL
technology, is equivalent of a wired-AND gate. Such a bridging fault is
undetectable. If all possible bridging faults between any only two nodes are
considered, for P nodes the number of bridging faults will be P> — P (either
model) [13, and 14]. In practice, only the adjacent or overlapping wires in the
circuit layout need to be considered.

This paper will focus on the analysis of undetectable bridging faults,
introducing accurate relationship between functions carried on p lines connected
through a wired-OR or wired-AND bridging fault.
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1. Bridging fault model

There are three advanced, deterministic fault models for DSM defect
testing: the bridging fault model, the path-delay fault model the transition fault
model, and the transition fault model [1]. The bridging fault model, assumes that
two or more wires are connected, but not intended to, by a resistive short line
between them, which could be caused by a piece of metal from the sputtering
process (Fig. 1). For a shorted line w, one have to distinguish between the value
one could actually observe on w and the value of w as determined by its source
element; the latter is called driven value. Bridging faults models [15] are
capturing device faults caused by short between circuit connections. In [15] there
are presented three bridging fault models valid for different CMOS technologies.
These models are partitioned into a general framework, shared by all three
models, and a technology-specific part. The first model is based on Shockley
equations and is valid for conventional but not deep submicron CMOS. The
second model is obtained by fitting SPICE data. The third resistive bridging fault
model uses Berkeley Predictive Technology Model and BSIM4. This third
resistive bridging fault model is valid for CMOS technologies with feature sizes
of 90nm and below, accurately describing non-trivial electrical behavior in those
technologies. Polian ef al., [15], did obtain experimental results for ISCAS
circuits showing that the test patterns obtained for the Shockley model are still
valid for the Fitted model, but lead to coverage loss under the Predictive model.

Aggressor (1)
z

AW

N
Victim (0)

Fig. 1. Bridging fault becomes active when two or more nets connected by a
resistive short line between them are driven to opposite values.

For most manufacturing processes, one could appreciate that defects
between metal lines are the most plausible fault mechanism. Efficient and
accurate bridging fault modeling are essential for reducing test costs and
enhancing quality of generated test patterns.

There are two current models for wires shorted together:

e Wired-AND/Wired-OR fault model. Several classic studies
suppose that bridging faults are pure-short defects, involving that
bridge resistance is low or negligible.
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e Dominant fault model. Bridging faults in CMOS technology
require more complicated models. Whereas the stuck-at fault
model assumes that a cell input or output is always tied to a fixed
value, this bridging fault model assumes that one gate will
dominate the value driven on the other net via the electrical path
through the resistive short. If one net dominates, then the other
may have an incorrect logic value at one or more of its fanouts.

Fig. 2 shows a general model of a bridging fault between two lines w and
t, inducing a wired-function [13]. Such bridging fault is noted by (w, ¢) and the
function introduced by the bridging fault is noted by Z(w, ). The fanout of Z is the
union of the fanouts of the shorted signals. Note that the values of w and ¢ in this
model are their driven values but these are not observable in the circuit.

w

Bridging fault Z(w,1)

il -

t

Fig. 2. Bridging fault model inducing a wired-function.

Induced wired-function Z has the property that Z(a, a) = a. What happens
when x and y have opposite values value of Z depends only on the technology. For
example, in CMOS the value of Z(a, a’) is, in general, non-determinate but in
many technologies (such as TTL or ECL), when two shorted lines have opposite
driven values, one value (the strong one) overrides the other. If ¢ € {0, 1} is the
strong value, then Z(0, 1) = Z(1, 0) = ¢, and the function introduced by the
bridging fault is AND if ¢ =0 and OR if ¢ = 1.

If there exists (at least) one path between x and y, then bridging fault (x, y)
creates one or more feedback loops. Such a fault is referred to as a feedback
bridging fault. A bridging fault that does not create feedback is referred to as a
nonfeedback bridging fault. A feedback bridging fault transforms a combinational
circuit into a sequential one. Moreover, if feedback loop involves an odd number
of inversions, the circuit may oscillate. If the delay along the loop is small, the
resulting oscillations have high frequency and may cause the affected signals to
assume indeterminate logic values [13, and 14].

The multiple bridging fault models represents shorts involving more then
two signal lines. A multiple bridging fault with p > 2 shorted lines can be modeled
as being composed of p-1 bridging faults between two lines. Multiple bridging
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faults among lines 7, s and 7, as an example, could be represented by the bridging
faults (7, s) and (s, 7). This model assumes that only one group of lines are shorted.
Masking relations may occur among the components of a multiple bridging fault
[15], but most multiple bridging faults are detected by the tests designed to detect
their component bridging faults. The number of feasible bridging faults is
potentially larger than the number of single stuck-at faults in the same circuit.

Stuck-at faults can be reduced, for testing but not for diagnosis, using
functional (structural) equivalence and dominance relations. For bridging faults
such similar collapsing techniques are not yet developed.

2. Analytical Model of Undetectable Bridging Faults

The concept of Boolean difference, as developed by J.P. Deschamps, M.
Davio and G. Bioul [16], was introduced by Reed [17], and has been thoroughly
investigated in papers due to A. Thayse and M. Davio [18], A. Thayse [19, and
20], etc. In these papers, various differential operators are introduced and
described in connection with their application to switching functions. The
Boolean differential calculus used here, in this paper, encompasses and
generalizes the algebraic concepts introduced by these authors; it is considered
here as a general method of analysis of an arbitrary Boolean function, and, as
such, it could be applied to any classical switching problem. However, this
representation tool seems particularly well suited for specific problems such as,
for example, the diagnosis of switching circuits.

Following two propositions [21] are describing dependencies of p internal
functions of scalar function f'and involved in bridging fault inducing wired-AND,
and respectively wired-OR.

Proposition 1. Let /; .l ,...,ll-p_1 be p lines in a combinational circuit C

implementing scalar function /', and let note with y, ,y,,...,»,

lp,

1 locale functions

of these p lines. Then, a bridging fault inducing a wired AND between lines
/ ,Zi. yens li,),. is undetectable in C, if and only if:

0 (@ (D) f(x0)-y")=0. 0

1gj<2P 2

Where it was noted with f'(X, y) same function f but depending explicitly on both
of primary variables X and internal variables Yy, these internal variables being
noted: y = (¥jg» Vise- Vi, )

Proof: 1t’s obvious that wired AND between lines /, ,/, [, introduces new

L /T

function in network C. Let z=y; y; ... Vi, be this wired-AND. It could be

remarked that faulty function f has now this form:
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f *(X, Vig =2 Vi =L Vi | = z) = f(X, z). One can start the proof considering

exclusive-disjunctive expansion of f [18]:

fon= @ (Fo6iyD) 2)
0<j<2”-1
Outlining first term in above sum:
o= @ (Fi-yM)er(x0® £(x0 (3)
0<j<27-1
And using identity: @ y(j) =1, previous expression becomes:
0<j<27 -1
o= & voyMerxo-( @ yP)erxo @
0<j<27-1 0<j<27-1
Factoring term y(j) in (4), one can obtain:
o= @ (FoH®L0)-yV)® f(x,0) )
0<j<2”-1

Outlining last term in ring sum of (5):

o= @& Fxp®rexo-yV)e rx0e
1<j<27 -2 (6)
®(f(x2" ~D® f(x 0y '
Making obvious sybstitutions and re-arranging terms in (6), it becomes

= @ Uxherx0) y)e r(x00,..0e

1<j<2?7-2

(7)
€r)(f(x,1,1,...,l)69f(X,O,O,...,O))-yl.0 Vi ""yip,l
Using previously introduced notation z = Vig Vi o Vi, relation (7) could be
re-written: _ 0
/= @ D@ sx0-yV)e f(x00..0)@
I<j<2r-2 (8)

@ (f(x11,...,)® f(x,0,0,...,0))- z
If bridging fault between lines/, ,Z.,...,lipil, equivalent of a wired-AND, is

o’ h

undetectable then, this identity, linking faulty function /' and f, hold:

FOY) = (Y= 2= f (Xoz2e02) = f (X,2) ©)
Making discrete Taylor expansion [19] for f (X, 2),inz=0:
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£(x2)= f(x0)®df 2 (10)

And, yet using discrete derivatlve deﬁnltlon [16]:

* *

J X2)=1 (X0,)®(f(X1)® f(X,0)-z (1D
Considering (8) and (10), and tacking in account that bridging fault is
undetectable, it results:

® (FxHerx0)-y)=o.

I<j<2? -2

And it finishes proof of the if part of Proposition 1.
If (1) is true, then it results that:

f(x, y) = f(x,O, 90) ® (f(x,l, ’1) ® f(X,O, 50)))}10)}11 yi,,_ (12)

1

And using notation z = Vig " Vi - Vi, » On€ can deduce that f(X, y) =f *(x, z), i.e.

bridging fault inducing a wired-AND, between lines Z,-0 , Z,-1 y e Iip—l , 1s
undetectable. It finishes up second part (only if) of the proof.
Considering p = 2, then (1) becomes:
(S (%3, =Ly, =0® (X, = 0,3, =0)-y, -y, @
(13)

(_B(f(xayil zoayio =1)®f(xayil =0,yl'0 20))'.)}1'1 .yio =0.

Using discrete derivative definition [16] one could write (13) as follows:

d X, ! d X, !
% Vi, Vi, @% Vi, Yiy =0. (14)
Vi) Vi, =0 Viy Vi =0
df (X, Y)

X

depends only on X and Vi, » and YY) depends only
dy iy dy i

on X and y, . Using an exclusive-disjunctive expansion one can obtain for both

It’s obvious that

derivatives:

df (% y) _ df (%) e Y Cy (15)
dyj, dyj, dyj, h

yil :O yll :1
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A (% y) _ df(%y) @ YY) . (16)

. Lo ) i
dyil dyzl ylo =0 dyzl yio =1 0

Multiplying (15) and (16) with yl'v1 A and Vi, y;0 , respectively one get:

aexy) o

_ df (X, y)
i V¥, =

iy v : yilyio (17)
le yl] :0

)

—df;;; U Vi ylllo = —dfg,;; y) " ViV, (18)
1 1 Vi, =0
This way relation (14) is rewritten:
GON 0 LIy o, (19)
i, dy;,
or, using exclusive-or properties:

df (X ' df (X '
LoDy, =L, 5, (20)
Ly h

For p = 2 relation (20) represents necessary and sufficient conditions of
bridging fault undetectably when bridging fault, inducing an equivalent wired-
AND, occurs between only two internal lines in circuit C.
Similar conditions holds for bridging fault, inducing wired-OR, between p internal
lines [21] in combinational circuit C:

Proposition 2. Let [,/ ,...,I. be p lines in a combinational circuit C

i ? 7 2Ty

implementing scalar function f'and let note with y, .y, ...,y

. locale functions of
these p lines. Then, a bridging fault inducing a wired OR between lines

ll.0 ,ll.l yeens li,,,l is undetectable in C, iff:

(& voxherexy?)=o 1)
1<j<27 2
Where it was noted with (X, y) function f depending both of primary variables X
and internal variables y = (y; , yj .-, Vi, ).

Considering p =2, in (21), then it is expanded as follows:
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Sy, =0,y =)@ sy =Ly, =Dy -y @

, (22)
Uy =Ly, =0 Xy, =Ly, =Dy -y =0
Using Boolean derivative definition, expression (22) becomes:
df (X, ' df (X, '
% Vi o Vi, @ % Yy Vi T 0. (23)
yll le :1 le yi] :1
Remarking that:
e Expression YY) depends on X and i , and
iO
e Expression YY) depends on X and Vi, -
i
Making Taylor expansion for both expressions, it results:
df (X, df (X, ' df (X,
oy _ 4 y) e Ny
yl() le yll :O ylo yll =
df (X, df (X, ' df (X,
oy _ 4y Ly edN| gy
Vi Vi ¥i, =0 Vi v, =1
Multiplying (24) and (25) with y;1 © ¥, and, respectively, with y; - yl'-o it yields:
d X, ' d X, '
fc(i— y) . 1'1 . yi() = —fc(i y) . yil . yiO (26)
yl() yio yl.l =
df (X, ' df (X, '
AL A () o7
yil yil yiO =1

This way expression (22) becomes:

df (X, ' df (X, '

M . yil . yl.o &) M . il . yi = 0. (28)
v, dy; 0

h
Equivalent to:
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df (X, y) v dfxy)
W “ Vit Vi, = T “ Vit iy (29)
Conclusions

Expressions (20) and (29) derived from (1) and respectively (21) are same
as formulas suggested in [11] by K.L. Kodandapani and D.K. Pradhan, but
presented without proofs. It makes both Proposition 1 and Proposition 2
generalizations [21] of formulas in [11]. This analytical tool will be continued
with application intended to efficiently compute expressions involved in it.
Known methods are suitable for low complexity bridging faults (low value of
parameter p). Real situations however are involving bridging faults between
arbitrary numbers of lines. Performances of such application will make it usable
for analysis in practical and manufacturing situations. Using and developing
algorithms called pseudo canonical expansions having at most as many terms as
the best canonical ones [21, and 22], make calculus of expressions (1) and (21)
feasible for more then 20 variables. Undetectable bridging faults, once detected,
may require special design modifications including circuits partitioning [23, and
24].

Other way of extending this tool will consider different type of circuits
including CMOS. Modeling physical faults involves closer relationship with
semiconductor processes and appropriate statistics, and behavior of such faults,
but not limited to them.
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