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COLOURED CHAOS IN THE ROL-USD EXCHANGE RATE 
VIA TIME-FREQUENCY ANALYSIS  

E. I. SCARLAT, C. P. CRISTESCU, Cristina STAN, A. M. PREDA, Liliana 
PREDA, Mona MIHAILESCU* 

 
Lucrarea se referă la analiza existenţei elementelor caracteristice haosului 

determinist în seria temporală a cursului de schimb leu-dolar, urmărit de-a lungul 
unei perioade de aproape şaisprezece ani. Studiul este pus în corespondenţă cu 
istoricul evoluţiei de la economia centralizată spre o economie de piaţă, după 
prabuşirea regimului totalitar, şi relevă existenţa unor sub-intervale caracteristice. 
Coeficienţii Liapunov sunt pozitivi pe toate sub-intervalele. De asemenea, am 
estimat dimensiunea atractorilor sistemului dinamic care dă naştere unei astfel de 
serii temporale. Analiza spectral a datelor, prelucrate prin filtrare, probează 
existenţa “haosului colorat” în spectrul din spaţiul frecvenţelor. 

This work is focused on the analysis of the existence of deterministic chaos in 
the evolution of the Romanian national currency (ROL) exchange rate with respect 
to the United States Dollar (USD). The study is related to the economic evolution 
toward an open system after the collapse of the totalitarian regime. We test the daily 
variation of the time series for almost sixteen years. Positive Lyapunov exponents 
were detected along the entire period. We also estimate the dimension of the 
attractors of the underlying dynamic system producing this time series. The 
frequency spectrum reveals evidence of coloured chaos in the detrended data. 

Keywords: nonlinear dynamics, deterministic chaos, largest Lyapunov exponent, 
space reconstruction, embedding dimension, correlation dimension, 
coloured chaos, data detrending, underlying economic system.  

Introduction 

This paper is illustrating how to use the physical laws of nonlinear 
dynamics in the economic field. The purpose of econo-physics1 theories is either 
to develop models that can explain observed regularities or to forecast long term 
tendencies. The autonomous physico-mathematical models applied to the 
financial markets are now currently used to explain particular aspects of the 
complex non-linear dynamics of stock markets, interest rates, money supplies, and 
price levels, as well as the exchange rates2,3,4 dynamics. Time analysis of the 
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financial series was introduced in order to predict the traditional unexpected 
phenomena that cause crisis or shocks in hot financial systems5. 

There are two polar models in linear dynamics: white noise and harmonic 
cycles. Obviously, real data fall between these two extremes. Closer to the first 
category are the stochastic processes (probabilistic predictable), while towards the 
last one are the systems with a completely deterministic dynamics (definitely 
predictable); the deterministic chaos (short run predictable6,7) belongs to the 
deterministic category which, in addition, has the property of sensitivity to initial 
conditions.  

Existence of chaotic behaviour in economics has strong implications for 
the predictive ability of the time series, especially in as long as possible short run 
(notwithstanding!) predictions. As mentioned above, one feature of chaotic 
systems is their sensitive dependence on initial conditions. Hence, one way of 
revealing the existence of deterministic chaos in a time series is to measure the 
degree of divergence of nearby orbits in phase-space. Such divergence can be 
measured by the Lyapunov exponents, and the presence of at least one positive 
exponent is taken as an indication of chaos8,9. Thus, the largest Lyapunov 
exponent allows regular and chaotic behaviours to be distinguished. 

It has been proved the possibility to extract information about a complex 
dynamical system, which generates several observed time series, while using only 
the time series of one single (available) characteristic parameter. In other words, if 
there is a dynamical system hidden in a “black box”, it is possible to reconstruct 
its “geometrical shape” using only the available time series.  

Thus, under several assumptions, the exchange rate ROL-USD series does 
offer information about the evolution of the Romanian monetary system. The 
above mentioned assumptions are regarding the applicability of the subsequent 
theoretical model.    

1. Theoretical model 

1.1 Nonlinear causality 

The main hypotheses concerning the chaotic dynamics of the underlying 
system are: a/ causality, or deterministic evolution, and b/ stationarity, i.e. the 
system remains unchanged in time (otherwise, a filter could extract the trend and 
simulate the steady state conditions). Regarding the first point, it’s worth noting 
that the stochastic processes are excluded. For the second, it’s clear that there is 
no absolute stationarity because the historical conditions are not reproducible. 
Thus, we limit ourselves to a certain quasi-stationarity. For example, the 
economic growth is essentially a non-stationary parameter, but we can remove the 
influence of long time tendency by using an adequate detrending procedure. 
Moreover, the real signals are containing both deterministic and stochastic 
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components. The most common stochastic component is the white Gaussian noise 
i.e. its amplitude follows the Gaussian distribution with zero mean while the 
frequency spectrum is absolutely flat. According to the Wiener-Hincine theorem, 
the last property implies that the correlation function is a Dirac spike and any 
sample does not depend on any of the previous ones (the samples are statistically 
independent). A Gaussian coloured noise is the same, except the spectrum and, 
consequently, the correlation function which is showing a decay rate due to the 
“memory” of the successive samples.  

In order to deal with chaos, one has to remove the whole stochastic part, as 
well as the linear dependence from the deterministic component. The difficulty 
arises especially when trying to separate the deterministic nonlinear component 
from the “with-memory” stochastic one. One method is to use the Auto 
Regressive Conditional Heteroskedastic10 (ARCH) methods followed by the 
Brock-Deckert-Scheinkman11 (BDS) test on the residuals of the series. The first is 
assumed to remove the one-step conditional probabilistic dependence, while the 
second is a robust test against the null hypothesis of independent, identically 
distributed noise. If the null hypothesis is rejected, then there are arguments for 
deterministic dynamics. 

For the sake of didactic purposes, we can state that the constant and the 
linear term of a signal expansion are indicating the long run evolution, while the 
nonlinear terms characterize the short run behaviour. Since we are interested in 
the short run nonlinear features, the linear dependence is also not desirable, so we 
drop it out. Finally, we get a series of samples that is a quite fairly expression of 
the underlying nonlinear dynamics.  

If the insulating methods of the nonlinear determinism are not very 
convenient, a more direct method is to use the so-called “surrogate data”. The 
basic assumption is of the existence of nonlinear determinism in the genuine 
series, and a posteriori to test this assumption on several sets of randomized 
samples. This method works only if one obtains significant differences from the 
original set.   

Now, the idea is not to analyze the given dynamic system, which remains 
mostly unknown, but an image-system with the same topology that preserves the 
main characteristics of the genuine one. As it is stated in literature12, there are 
many attempts to simulate a minimal model, almost all of them being based on the 
Ruelle-Takens’ embedding theorem13.  

The simulation has to follow two steps: the reconstruction of the phase 
space where the image-system is evolving, and the evaluation of the largest 
Lyapunov exponent. In turn, the reconstruction involves at least two aspects: the 
proper choice of the dimension for the reconstructed phase space, i.e. the 
embedding dimension, and the evaluation of the correlation dimension referring to 
the degree of complexity expressed by the minimum number of variables that is 
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needed to replicate the dynamic system. The last one is the same with the 
dimension of the (strange) attractor characterizing which one of the topological-
equivalent systems14. 

 

1.2 Takens’ theorem 

So far we focused on the applicability of the theoretical model. Suppose 
now that the dynamics of the system is indeed deterministic and nonlinear. A 
simple form of its temporal evolution might be written as  

 
xi+1=T(xi),     (1) 

 
where T is a deterministic rule, and xi  is an n-dimensional state vector xi∈S, S 
being the phase space S⊆Rn. Given the initial point x0 and a sampling time (daily, 
in our case), we get an orbit X as the sequence 

 
X=(x0, x1, x2, ...) = (x0, T(x0), T(T(x0)), ...).   (2) 

 
More clearly, for N points we have 
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In real life, we cannot know the state xk∈S⊆Rn of the system, but the 

system states completely determine a measured sequence via a read-out function 
f:S⊆Rn→R, so that for each orbit X there is a corresponding time series (here the 
exchange rate): 

 
Y = (y0, y1, ...) = (f(x0), f(x1), ...).    (3) 

 
Since the single measurement cannot describe the entire internal state of the 
complex system, the problem is: can we reconstruct it starting from incomplete, 
truncate information? Under certain assumptions, the answer is partially 
affirmative, and this is the famous Takens-Ruelle theorem. We briefly sketch here 
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the method of the space reconstruction and the calculation of the largest Lyapunov 
exponent.  
 

1.3 Phase space reconstruction 

Provided that the time development admits an attractor, and according to 
Takens, it is possible to reconstruct the dynamics for the system in Eq. (1) using 
only the scalar time series from Eq. (3). Specifically, the data points in an 
observed scalar time series contain information about unobserved state variables 
that can be used to define a state at the present time. Therefore, let us consider m-
tuples of real numbers (yi, yi+r, . . . , yi+(m−1)r) and denote the m-points projection of 
the real orbit via the real function f 

 
Ym,i = (f(x i-1), f(T(x i-1)), . . . , f(Tm−1(x i-1))),   (4) 

 
where the i is the starting point, and r the time lag. For the sake of simplicity, 
hereafter r=1. Now it’s the basic statement of the theorem: the scalars in Eq. (4) 
are no more considered as the projections of m different state vectors xi-1,… xi+m-1, 
belonging to the real trajectory X, but the co-ordinations of a single point in a m-
dimensional “embedding space”: 
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If N is the number of points of the genuine temporal series, then there will be M 
points of the “reconstructed” trajectory XREC in the embedding space  
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where the constants N, m and M are related as 
 

M = N– m +1.     (6’) 
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In some sense, this conversion is similar to Fourier transform with constant kern. 
The reconstruction is effective provided that the condition 
  

m > 2n      (7) 
 

is fulfilled. One can observe that, again, this condition is similar to the well 
known Shannon’s sampling condition.    

It is important that the embedding dimension and the reconstruction delay 
are correctly chosen so that the original system and its reconstruction are 
qualitatively equivalent15,16. Takens proved that there is a map that performs a 
one-to-one coordinate transformation between the original n-dimensional state xt 
and the m-dimensional reconstructed state REC

ix  (Eq. (5)). This map preserves 
topological information about the unknown dynamic system under the mapping, 
e.g. the Lyapunov exponents. In particular, the map induces a functional 
T̂ :SREC⊆Rm→Rm on the reconstructed trajectory  

 
( )REC

i
REC

1i ˆ xx T=+ .     (8) 
 

Thus, T̂  in Eq. (8) is a reconstructed dynamic system, e.g., a ‘‘reconstructed’’ 
economy, which has the same Lyapunov exponents as the unknown real system. 
 

1.4 Estimation of the correlation dimension 

As regards the complexity of a chaotic (irregular) attractor, the notion of 
fractal dimension is often used as a measure of the degree of its complexity. In the 
present context, the main motivation for estimating the dimension of a 
reconstructed attractor is the perception that fractal dimension is a geometrical 
and dynamical characteristic, that remains unaltered by the process of phase space 
reconstruction. Since the fractal dimension of a reconstructed attractor cannot 
easily be computed in practice, the notion of correlation dimension17 is often used 
as an alternative measure. For a vectorial, discrete quantity the correlation 
dimension is 
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where η is the step unity function (the Heaviside function), i.e. it is 1 for positive 
arguments and 0 otherwise. 
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Due to the property of deterministic systems that following states are uniquely 
determined by previous ones, one approach to estimate the correct correlation 
dimension is to check the size of the distances between the images of close points 
on the reconstructed trajectory as m increases from zero to N. It’s worth noting 
that all distances decrease more slowly with a further increase of the embedding 
dimension, provided that the embedding dimension is equal to or larger than the 
correct one. As a matter of fact, if there is a plateau in the (m, Dcorr) diagram, then 
the slope of the linear part of the plot (lnε, lnC(N,m,ε)), for small ε, is the 
correlation dimension Dcorr. Thus, the saturation is a strong indicator of the 
determinism.  

 

1.5 Estimation of the largest Lyapunov exponent 

Supposing the reconstruction of the dynamics given by Eq. (8), we have to 
search for the nearest neighbour of each state on the trajectory by minimizing the 
distance to the particular reference state16 

 
RECRECmin ik

ki
k xx −=

≠
δ , for  k=0, 1,…, M.   (10) 

 
where kδ , REC

kx  and REC
ix  are the minimum distance, the k-th state (reference) 

and its current neighbour, respectively. One can consider each pair of neighbours 
as initial conditions for virtual trajectories only if the temporal separation between 
them should be greater than the mean period of the time series (which can be 
defined as the reciprocal of the mean frequency found in the power spectrum). 
Taking into account the condition, a new indexed collection of ordered pairs is 
obtained ( )( ) ( )( ) ( )( )( )RECRECREC

1
REC
1

REC
0

REC
0 ,,...,,,, qiqii xxxxxx  that are corresponding 

one to one to the collection of the minimum distances (δ0(0), δ1(0),…, δq(0)) , 
where q is of the order of the halved number of points of the reconstructed orbit 
q~M/2. The j-th pair of nearest neighbours then diverges at a rate approximated by 
the largest Lyapunov exponent λMAX(k): 

( ) ( ) ( ) j
kk

kj ⋅⋅≅ MAXe0 λδδ , for k=0,…q,   (11) 
 
where j is the number of separation steps. Taking the logarithm on both sides of 
Eq. (10) gives 

( ) ( ) ( ) jj kkk ⋅+≅ MAX0ln ln λδδ ,  for k=0,…q,  (11’) 
which represents a family of q approximately parallel lines with a slope 
approximately proportional to λMAX(k). The Lyapunov exponents are then 
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estimated using a least-square fit with a constant to the average line defined by 
plotting ( )kj δln  ,  for every k.  As stated before, recall that the solution paths to 
the unknown dynamic system remain within a bounded set, so the solution paths 
to the reconstructed dynamic system also remain within a bounded set. 
Consequently, the approximations given in Eqs. (11) and (11’) are more reliable 
for a limited number of separation steps. To be more specific, the proper number 
of separation steps is achieved when the plot (11’) reaches a quasi-constant value. 
Finally, the largest exponent will be found by averaging the q values of the 
exponents:  

kMAXMAX λλ = .    (12) 
  

1.6 Coloured chaos 

The spectral analysis is an additional task that might reveal interesting 
properties of the samples. Besides the already mentioned Gaussian white noise, 
there are several more well known types of pink noise, like 1/f and 1/f2, i.e. the 
signal power distribution versus frequency follows a 1/fα law, α=1,2. For α=0 one 
obtains the “white” noise. If  α ∉{0;1;2}, then it’s called “coloured” noise. By 
analogy with the coloured noise, coloured chaos is the chaos that characterizes a 
time series with the spectrum following a f}α power law. 

 

2. Data analysis 

Our time series of ROL-USD exchange rate covers the interval between 
January 1990 and 31 Oct. 2005 i.e. 4080 daily samples. We use here an averaged 
interbanking exchange rate17. The absolute values of ROL are expressed in 
present denominated values. Only the legal working days were considered. 

 

2.1 Romanian environment 

By simple visual inspection, one can a priori identify at least two intervals 
in the Romanian financial and economic environment (see Fig.1): the first, 
between January 1990 and December 2001, the structural changes period, is 
characterized by the elaboration and implementation of a new infrastructure (laws, 
regulations, institutions, etc.) that match the requirements of a functional market 
economy, and the second, between January 2002 and 31 Oct. 2005 (the final day 
of our study), is the beginning of the stationary regime, when the Central Bank 
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reached enough power to influence the monetary system by open market 
operations.  

The first period shows a quasi-parabolic shaped dependence with several 
angle points and jumps. The very small increase in 1990 and even in 1991 is 
because of the inertia of the total deterministic evolution of the centralized 
economy that has been legally operated until the end of 1989; however, the effect 
prolonged, as one can see in Fig.1, for almost two more years. As the economy 
diminished to work as a national holding and the structural changes begin to 
manifest their effects, as well as the emergence of the competing economic 
agents, the system is searching for new macro-economic equilibriums and, 
consistent with the irreversibility and the increasing entropy law18, the exchange 
rate is moving up very fast. 

Fig.1 ROL-USD exchange rates (absolute, denominated values); the vertical line indicates the 
border between transition and steady-state intervals 

 
The second period might be considered as the beginning of the quasi-

stationary regime; it is apparent a major down step when, in March 2005, the 
Central Bank announced an almost nil interventionist policy concerning the 
exchange rate. Despite several future jumps and oscillations of little amplitude, 
and neglecting the exogenous sources of economic crashes and shocks, it’s very 
likely to observe a quite steady future monetary regime. 
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2.2 Data detrending 
 
As the issue of choosing an appropriate time-sampling rate is often out of 

our choice (because it depends on the availability of the numerical data), the 
selection of a reference trend or a proper transformation to simplify the empirical 
pattern of the measured time series remains an open problem. Consequently, 
finding a proper transformation is called the problem of trend-cycle 
decomposition, or, simply, detrending. A distinctive problem in economic 
analysis is how to deal with growing trends in an aggregate economic time series. 
Unlike laboratory experiments in natural sciences, there is no way to maintain 
steady flows in economic growth and describe business cycles by invariant 
attractors. Many controversial issues in macroeconomic studies, such as noise 
versus chaos in business cycles, are closely related to competing detrending 
methods19,20.  

It is the theoretical perspective that dictates the choice of a detrending 
approach. The econometric practice of pre-whitening data is justified by 
equilibrium theory, and is convenient for regression analysis. For pattern 
recognition, a typical technique in science and engineering is to project the data 
onto some well-constructed deterministic space to recover possible patterns from 
empirical time series. Notable examples are the Fourier analysis and wavelets. 
The essence of trend-cycle decomposition is finding an appropriate time window, 
or equivalently, a proper frequency window, for observing time-dependent 
movements.  

There are several approaches in econometric analysis21. In principle, a 
choice of observation reference is associated with a theory of economic dynamics 
and consequently with a certain detrending method. Often the detrending 
procedure also solves the problem of linear filtering and is apparent to fulfill the 
stationary hypothesis.   

In our case it’s obvious a power-law trend for the transition period (see 
Fig.1), so the trend is fitted with a thirteen-degree polynomial expression; the 
resulting samples are given by 

( ) ( ) ∑
=

−=
13

0
POL

i

i
itatyty     (13) 

 
In Fig.2 the detrended evolution of the exchange rate between Jan. 1990 and Oct. 
2005 is represented. 

We assume that the series yPOL(t) fulfills the conditions a/ and b/ from the 
chapter 1.1. Thus, we can perform the analysis in order to characterize the 
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underlying system from the point of view of the existence of the deterministic 
chaos. 

 
Fig.2 ROL-USD exchange rate:  conversion of the absolute values after polynomial 

detrending 

3. Results 

The results are synthesized in the Table 1. We assume the validity of 
Takens’ theorem for the detrended data, such that the reconstruction method 
described before is applicable. 

 Table 1 
Interval Lyapunov 

exponent 
Correlation 
dimension 

Embedded 
dimension 

Time lag 

Structural changes  
(Jan.1990-Dec.2001) 

0.057±0.018 1.93 5 1 

Steady state  
(Jan.2002-Oct. 2005) 

0.118±0.022 4.45 9 1 

 
A smaller Lyapunov exponent is consistent with a higher degree of short 

run predictability in an economic system; for the first period, the exchange rate is 
predictable also from the long run perspective (positive trend). For the second 
interval, the predictability is significantly lower and, again, is consistent with the 
long run behaviour, which in fact has no trend and the curve approaches a random 
walk appearance (Fig.1). In a steady state running economy, as mentioned by 
other authors22,23,24, a positive real part of the largest Lyapunov coefficient seems 
to be normal.  

In order to estimate the dimension of the system producing the exchange 
rate series, we also calculate the correlation dimension. It saturates for both 
intervals, so it is well defined (see Fig.3). 
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Fig.3 Correlation dimension for ROL/USD exchange rates: for the structural changes interval 

1990-2001 and for the beginning of the steady state interval 2002-2005 
 

For the last interval the saturation is not so obvious as for the first one; this is due 
to the insufficient length of the time interval or, equivalent, to the insufficient 
number of samples. An analogous behaviour is shown in Fig.4 for the first 
interval, where we were simulating the lack of data. More exactly, we represented 
the analysis for the fractions 1990-1993 and 1990-1996.  

   
   a.      b. 

Fig.4 Insufficient number of samples in the series might provoke the lack of clear saturation: 
correlation dimension for ROL/USD exchange rates 1990-1993 (a) and 1990-1996 (b) 

 
The greater the correlation dimension, the more complex the economic system 
and the monetary policy of the Central Bank. This means that, in the first period, 
the largest part of the resources are spent for qualitative changes, the economic 
aggregates diminishing their outputs25.  
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On the other side, as shown in Fig.5, the spectral analysis shows different 
slopes of the linear regression in the power spectra for the investigated periods. 
Both of them have absolute values greater than unity, indicating the existence of 
the so called “coloured” chaos26.  

Conclusions 

From the historical point of view, the analysts are considering that the 
structural transition from the command economy to the free market economy 
came to an end with the year 2000. Our study partially confirms that by revealing 
quite perceivable distinctions along the time evolution of the ROL-USD exchange 
rate for the intervals 1990-2001 and 2002-2005. This allows us to perform the 
analysis separately for each of the intervals. However, we considered here that a 
twelve years period is the best approximation for the transition time length. 

The novel approach in the present work is the analysis of a non-stationary 
evolution, and it seems to furnish reliable results. Positive Lyapunov exponents 
were found for both intervals. The smaller exponent characterizing the structural 
changes period indicates smaller sensitivity to the initial condition, but a non-
randomly evolution toward a more complex system characterizing the steady state 
regime. The power spectra reveal coloured chaotic behaviour for the whole 
period. 
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